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Rayleigh-Bénard instability in graphene
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Motivated by the observation that electrons in graphene, in the hydrodynamic regime of transport, can be
treated as a two-dimensional ultrarelativistic gas with very low shear viscosity, we examine the existence of
the Rayleigh-Bénard instability in a massless electron-hole plasma. First, we perform a linear stability analysis,
derive the leading contributions to the relativistic Rayleigh number, and calculate the critical value above which
the instability develops. By replacing typical values for graphene, such as thermal conductivity, shear viscosity,
temperature, and sample sizes, we find that the instability might be experimentally observed in the near future.
Additionally, we have performed simulations for vanishing reduced chemical potential and compare the measured
critical Rayleigh number with the theoretical prediction, finding good agreement.
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I. INTRODUCTION

Graphene, consisting of literally a single carbon monolayer,
represents the first instance ever of a truly two-dimensional
material. Due to the special symmetries of the honeycomb
lattice, electrons in graphene are shown to behave like
an effective Dirac fluid of massless, chiral quasiparticles,
propagating at a Fermi speed of about vF ≈ 1.1 × 106 m/s
(cf. Refs. [1,2]). Recent theoretical insights [3–6] have opened
up the possibility to describe the electrical current on graphene
close to the Dirac point as a classical relativistic fluid when in-
elastic electron-electron and electron-hole scattering dominate
over elastic electron-impurity and electron-phonon processes.
Since electrons are about 300 times slower than photons, their
mutual interaction is proportionately enhanced, leading to an
effective fine-structure constant αgr = e2/�vF ∼ 1. As a result
of such strong interactions, it has been recently proposed that
this peculiar two-dimensional graphene electron gas should be
characterized by an exceptionally low viscosity/entropy ratio
(near-perfect fluid), coming close to the famous anti–de Sitter
and conformal field theory lower bound [7] conjectured for
quantum-chromodynamic fluids, such as quark-gluon plasmas.
This spawns the exciting prospect of observing electronic
preturbulence in graphene samples, as first pointed out in
Ref. [6] and confirmed by recent numerical simulations [8].

One of the most common hydrodynamic instabilities is
the Rayleigh-Bénard, which has been studied experimentally
since 1901 [9], and was first described theoretically by Lord
Rayleigh in 1916 [10]. Here, one observes the creation of
convection cells, which couple the heat and particle flow,
where the driving mechanisms are the temperature gradient
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and the buoyancy force (typically caused by gravity [11]).
This instability appears in many scientific and industrial
applications [12–14], and is still the subject of current research.

Since electrons and holes in graphene can be described by
relativistic hydrodynamics, it opens the question whether the
Rayleigh-Bénard instability can be also observed. Although
gravity in this case is negligible, we can use an external electric
field to mimic its effects. In the classical case, the Rayleigh-
Bénard instability will always appear if the Rayleigh number
[11], defined by

Racl = αgβρcV l4

κη
, (1)

exceeds a critical value. Here, α is the thermal volume
expansion coefficient, g the gravitational acceleration, β the
uniform adverse temperature gradient, cV the specific heat
at constant volume, ρ the mass density, l the length of
the system parallel to the gravitational force, κ the thermal
conductivity, and η the shear viscosity. From this expression,
we can notice that for low values of shear viscosity and
thermal conductivity, we obtain a large Rayleigh number,
and consequently, they contribute to the appearance of the
instability. Graphene’s electronic fluid has a very low shear
viscosity but a high thermal conductivity [15], therefore, it is
not straightforward to judge the existence of the instability,
under actual experimental conditions. In order to answer
this question, we first introduce a linear stability analysis
in the context of relativistic hydrodynamics, and calculate
the critical relativistic Rayleigh number. We also perform
numerical simulations of electronic flow in graphene in order
to observe the convection rolls, and to validate our linear
stability analysis. By studying the parameter regime, in which
the instability can be observed in graphene, we have found that
under actual experimental conditions, it is unlikely to observe
the instability, but since the construction of larger samples of
graphene is a target in current research, it might be observed
in the near future.
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This work is organized as follows. In Sec. II we write
the macroscopic equations from the relativistic Boltzmann
transport theory for graphene in the “hydrodynamic regime”
[5]. These partial differential equations build the basis
for the linear stability analysis, which will be derived in
Sec. III. Thereby, we define the dimensionless relativistic
Rayleigh number, determine its critical value, which marks
the onset of the instability, and investigate the experimental
realizability of the phenomenon. The Einstein summation
convention and the signature (+, − ,−) for the Minkowski
metric gαβ are used. Greek indices run from 0 to 2, whereas
Latin indices can only take the values 1 and 2. The other
constants which are used throughout the article are kB for
the Boltzmann constant, � ≡ h/2π for the reduced Planck
constant, and e for the absolute value of the elementary electric
charge. In Sec. IV, we perform simulations of the electron flow
for vanishing reduced chemical potential. For this purpose,
we first extend the relativistic lattice Boltzmann developed in
Ref. [16], analyze the functional form of the shear viscosity and
thermal conductivity, and validate our implementation of the
external force. Finally, the critical relativistic Rayleigh number
is measured and compared to the theoretical prediction. As a
general introduction to the lattice Boltzmann method and its
extension to relativistic dynamics and quantum statistics we
refer the reader to Refs. [17–19].

II. HYDRODYNAMIC REGIME OVERVIEW

In the hydrodynamic regime [5,6], it is known that carriers
in graphene behave as a two-dimensional relativistic fermionic
plasma whose quasiparticles are charged, nearly massless,
and moving at the Fermi speed c ≡ vF . Henceforth, we
will denote the Fermi speed by c. In order to describe the
collision-dominated electron transport in this material, we use
the relativistic Boltzmann equation [6]

pα ∂fσ

∂xα
+ σKα ∂fσ

∂pα
= J (σ )

coll , (2)

with σ = ∓ denoting electrons (+) and holes (−), pα being
the (pseudo) 3-momentum, and σKα = σFαβpβ being the
electromagnetic 3-force acting on the electron/hole fluid
component with distribution function fσ in phase space (�x, �p)
at time t [20]. Here, J (σ )

coll denotes the collision operator, further
explained in Ref. [5]. Fαβ is the “electromagnetic field strength
tensor,” defined as

Fαβ =
⎛
⎝ 0 eE1/c eE2/c

−eE1/c 0 eB

−eE2/c −eB 0

⎞
⎠,

with �E = (E1,E2,0) and �B = (0,0,B) being the electric
and magnetic fields, respectively. This formulation implies
that the Coulomb interactions are invariant under Lorentz
transformations defined with the speed of Fermi. Obviously,
in fact they spread at the real speed of light, cL � c, and
therefore, they break the Lorentz invariance of our system.
However, since we will deal with fluid flows at low speeds
we can work in the laboratory frame (cf. Ref. [6]). The
contravariant “charge flow” J α and energy-momentum tensor
T αβ are defined as first and second moments of the distribution

function:

J α(�x,t) ≡ 〈
pα

σ

〉
σ

≡
∑

σ

c

∫
d �p
p0

pα
σfσ (t,�x, �p), (3)

T αβ ≡ 〈
pα

σpβ
σ

〉
σ

≡
∑

σ

c

∫
d �p
p0

pα
σpβ

σ fσ (t,�x, �p), (4)

with pα
σ = σpα . Using Eq. (2), the definitions (3), (4), and

integrating by parts, the macroscopic conservation equations
for charge, energy, and momentum can be obtained:

∂αJ α = 0, (5)

∂βT αβ = FανJν . (6)

Following an idea expressed in Ref. [21], we employ the Eckart
decomposition (cf. Ref. [20]) with respect to the 3-velocity
Uα ≡ (c,u1,u2)α√

1−|�u|2/c2
of the “charge flow” J α (cf. Ref. [22]), i.e.,

the current 3-vector and the energy-momentum tensor for the
case of the viscous heat conducting fluid are given by

J α = nUα , (7)

T αβ = ε
UαUβ

c2
− (p + ω)αβ + p〈αβ〉

+ 1

c2
(Uαqβ + Uβqα), (8)

where n(�x,t) is the charge density divided by e, ε the internal
energy density, p the hydrostatic pressure, ω the dynamic
pressure, qα the contravariant heat flux, and p〈αβ〉 the pressure
deviator in local equilibrium. Assuming that linear irreversible
thermodynamics can be applied and using the procedure
outlined in Ref. [20], we find for the constitutive equations

p〈αβ〉 = 2η

[
1

2

(
α

γ 
β

δ + α
δ β

γ

) − 1

3
αβγδ

]
∇γ Uδ ,

qα = κ

(
∇αT − T

c2
DUα

)
, (9)

ω = −ν∇αUα,

where η and ν stand for the shear and bulk viscosities, and
κ for the thermal conductivity. αβ ≡ gαβ − UαUβ

c2 stands for
the projector into the space perpendicular to Uα , D ≡ Uα∂α

for the convective time derivative, and ∇α ≡ αβ∂β for the
gradient operator in this decomposition. It should be noted
that the direct contribution of the electromagnetic fields to the
heat flux vanishes due to the antisymmetry of the field strength
tensor. However, they have an indirect contribution through the
term DUα .

Nonrelativistic current flow

Assuming |�u|/c � 1, we simplify the conservation equa-
tions (5) and (6) to

0 = ∂tn + �∇ · (n�u), (10)

ϕ = ∂tε + �∇ · [(ε + p)�u] + �∇ · �q + n�u · e �E, (11)
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�ψ = ∂t

c2
[(ε + p)�u + �q] + �∇p + ne �E, (12)

with ϕ ≡ ∂i[(ν − 2η

3 )ui( �∇ · �u) + η�u · ( �∇ui + ∂i �u)] being the
change in energy due to dissipation and ψi ≡ −∂i[(

2η

3 −
ν) �∇ · �u] + ∂j [η(∂iuj + ∂jui)] the viscous term. To get those
equations we have used the approximations from Ref. [20] for
the expressions (7) and (8), and recovered the Fourier law of
heat conduction �q = −κ �∇T .

III. LINEAR STABILITY ANALYSIS

In analogy to the classical Rayleigh-Bénard problem [23],
we study a system with constant volume, confined to (x1,x2) ∈
R × [−l/2,l/2] with l being the length of our system. It
has two thermal contacts at x2 = ±l/2 with temperatures
T±, respectively, and feels a constant homogeneous external
electric field �Eext = Eextê2. We consider our system thermally
isolated elsewhere, which can be achieved, for example,
by a freely suspended sheet [24], or using supports with a
much smaller thermal conductivity. However, the contact with
another material may require one to consider a graphene-
substrate interaction which can alter the dynamics. For the
description of the electron-hole fluid we choose the velocity
�u, the temperature T , the volume V , and the electrochemical
potential μ as state variables. Following the procedure outlined
in Ref. [11] we make a linear stability analysis by perturbing
the stationary, nonhomogeneous, quiescent state characterized
by (�u = 0, T = T̄ , μ = μ̄). This state is chosen to simplify
the theoretical analysis. By symmetry, the variables T̄ and μ̄

only depend on x2/l. They can be calculated by solving the
ordinary differential equations

T̄ ′κ ′(T̄ ,μ̄) + T̄ ′′κ(T̄ ,μ̄) = 0, (13)

p′(T̄ ,μ̄) − lE2(T̄ ,μ̄)en(T̄ ,μ̄) = 0, (14)

which follow from Eqs. (11) and (12) under the stated
assumptions. It should be noted that the average electric field
Ē2 = E2(T̄ ,μ̄) not only contains external information, as the
fluid components also experience an internal electric field due
to intrinsic distributions of charge.

A. Perturbation equations

Writing for each fluid quantity in Eqs. (10)–(12), X = X̄ +
X̃ with X ∈ {T ,ε,p,n,ui,Ei,κ,η,ν} and ignoring nonlinear
terms in the perturbations X̃ we find for the perturbation
equations

∂t ñ + n̄′u2 + n̄∂i ũi = 0, (15)

∂t ε̃ + ε̄′ũ2 + c2ρ̄∂i ũi + ∂i q̃i = 0, (16)

ρ̄∂t ũi + ∂t q̃i

c2
− ∂j [η̄(∂iũj + ∂j ũi)] + ∂ip̃ + f̃i

= ∂i

[(
2η̄

3
− ν̄

)
∂j ũj

]
, (17)

where we have defined ρ̄ ≡ ε̄+p̄

c2 as mass density,

q̃i ≡ κ̄∂i T̃ + κ̃ T̄ ′δi2 and

f̃i ≡ ñeĒ2δi2 + n̄eẼi ,

for the perturbations of the heat flux and force density,
respectively. In addition, we assume that the thermodynamics
of the plasma is very similar to a photon gas. Hence, we
know that its internal energy is mainly determined by the state
variables of temperature T and volume V , i.e., ε̃ ≈ c̄V T̃ with
cV being the volume-specific heat capacity at constant volume.
Employing the Oberbeck-Boussinesq approximation [11], for
which the electric field takes the role of the gravitational field,
the perturbation equations in linear approximation become

∂i ũi = 0, (18)

∂t T̃ = − βRũ2 + κR

(cV )R
T̃ , (19)

∂t ũi = − (αq)RaRT̃ δi2 − nR

ρR

eẼi + ηR

ρR

ũi

− 1

ρR

∂i

(
p̃ − κR

c2
∂t T̃

)
, (20)

with reference temperature TR = T̄ (x2 = 0), gradient βR ≡
T̄ ′(x2 = 0), reference electrochemical potential μR = μ̄(x2 =
0), reference acceleration aR ≡ nReER

ρR
, electric field ER ≡

Ē2(TR,μR), and reference thermal charge expansion coeffi-
cient (αq)R ≡ 1

nR

∂n
∂T

|T =TR,μ=μR
. The approximation will be

reasonable if variations in these properties primarily stem
from temperature fluctuations and T+−T−

T++T−
� 1 holds. Higher

order terms, which include non-Boussinesq effects, can also
be considered by the method described in Ref. [25]. In analogy
to Ref. [11], we apply the curl operator twice on Eq. (20) to
get rid of the gradients and use the component parallel to the
applied electric field(

ηR

ρR

 − ∂t

)
[ũ2 − ∂2∂i ũi] = (αq)RaR∂2

1 T̃ − nR

ρR

e∂t∂1B̃.

From the Maxwell-Ampère equation [26], we can deduce

∂t∂1B̃ ≈ −μ0enR∂t ũ2 − μ0ε0∂
2
t Ẽ2,

with μ0 and ε0 being the vacuum permeability and permittivity,
respectively. In this form, we realize that the contribution
of this term to the overall dynamics is negligible, since
μ0e

2n2
R

ρR
� 1 and μ0ε0enR

ρR
� 1. Consequently, the final and

smaller set of simplified linear perturbation equations reads

∂i ũi = 0, (21)

∂t T̃ = βRũ2 + κR

(cV )R
T̃ , (22)

(αq)RaR∂2
1 T̃ =

(
ηR

ρR

 − ∂t

)
ũ2, (23)

and has the same form as in Ref. [11]. Therefore, we
define the Prandtl and relativistic Rayleigh number of this
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system as

Pr ≡ ηR(cV )R
ρRκR

, (24)

Rarel ≡ (αq)RaRβRl4

κR

(cV )R
ηR

ρR

= (αqcV )RnReERβRl4

κRηR

, (25)

by following the method of Ref. [23]. In analogy with
the classical case, we expect a positive Rayleigh number.
Therefore, we find that the possibility for the occurrence
of the instability depends on the sign of the product of
the temperature gradient, the external electric field, and the
thermal charge expansion coefficient, as all other parameters
are non-negative.

B. Analysis into normal modes

Since the equations in the previous section have the same
form as in the classical case, except for different coefficients,
we can draw on the work in Ref. [11] concerning the analysis
into normal modes and the calculation of the critical Rayleigh
number. Due to the geometry of the problem we can expand
any perturbation into the complete set of plane waves and
hence write

T̃ (x1,x2,t) =
∫
R

dk θk(x2)eskt+ıkx1 , (26)

ũi(x1,x2,t) =
∫
R

dk uk,i(x2)eskt+ıkx1 , (27)

with sk ∈ C. One can show that the imaginary part of sk

needs to vanish if one demands nonconducting or transversal-
conducting boundaries at x2 = ±l/2. These conditions imply
for the charge velocity perturbations under consideration of
∂i ũi = 0 that

uk,1(x2 = ±l/2) = 0, (28)

∂2uk,2(x2 = ±l/2) = 0, (29)

for the case of nonconducting, and

∂2uk,1(x2 = ±l/2) = 0, (30)

∂2
2 uk,2(x2 = ±l/2) = 0, (31)

for the case of transversal-conducting boundaries on top of
uk,2(x2 = ±l/2) = 0, for both conditions. For the temperature
perturbation one needs to require θk(x2 = ±l/2) = 0, since the
system is in contact with two heat baths, i.e., its temperature
is fixed at the boundaries. We can conclude that the transition
from a stable to an unstable situation for our set of equations
occurs exactly at sk = 0. As a result, the critical relativistic
Rayleigh number and wave number for nonconducting bound-
aries at x2 = ±l/2 are approximately given by

Rac ≈ 1707.762, (32)

kc ≈ 3.117

l
, (33)

which coincides with the classical value [11]. The reason for
this is the assumption of a nonrelativistic current flow, which
will lead in linear stability analysis to similar equations as in
the classical case (cf. Refs. [11,23]) if the role of mass and
charge are interchanged. Therefore, one should find the same
critical Rayleigh number. The ultrarelativistic nature of the
quasiparticle and the Fermi-Dirac statistics become apparent
in the formulas for the constituents of the relativistic Rayleigh
number, such as thermal charge expansion coefficient, charge
density, thermal conductivity, etc. For transversal-conducting
boundaries, the critical Rayleigh number and wave number are
given by

Rac = 27π4

4
≈ 657.51, (34)

kc = π√
2l

≈ 2.221

l
. (35)

Having derived the relativistic Rayleigh number, and its
critical value for the onset of the instability, we will now
replace the physical values for graphene and see if under
actual experimental conditions, it is possible to observe the
instability.

C. Application to graphene

Despite its high thermal conductivity, κR/d ∼
1022 eV/(K m s) (cf. Ref. [27]), with d ∼ 10−10 m being the
nominal thickness of graphene, its electronic fluid also has a
very low shear viscosity [6],

ηR ≈ Cη�

(
kBTR

α�c

)2

{1 + O
[
log−1(α)

]} ∼ 10−3 eV s/m2,

where Cη ≈ 0.449 is a constant, α ≡ e2/ (�cεr ) � 2.2/εr is
the fine-structure constant, and εr is the relative permittivity.
Using Eq. (12) in Ref. [28] we find for the heat capacity
at constant volume (cV )R ∼ 1010 eV/(K m2). In the hydrody-
namic regime of transport, we deal with a “Dirac liquid,” i.e.,
we require nR ∼ 1013 m−2 (cf. Ref. [28]). Therefore, to induce
that charge density in the graphene sample, we apply an electric
field given by eERl ∼ 10−1 eV, such that the Fermi level
changes accordingly. In addition, we approximate (αq)RβRl ≈
T+−T−

TR
∼ 10−2. Thus, we can make a crude estimate for

the relativistic Rayleigh number of graphene with a length
l ∼ 100 μm and εr ≈ 1 at TR ≈ 100 K to find

Ra(gr)
rel ∼ 103. (36)

This magnitude is comparable to the critical Rayleigh number
calculated in the previous paragraph. It tells us that the
experimental realization is challenging due to the length of
about 100 μm but probably achievable in the near future, since
single-layer samples with sizes larger than 70 μm have already
been produced [29,30].

We want to point out that for higher temperatures smaller
sample sizes could be used, since the ratio (cV )R /κR ∼ O(T 2)
and eERl ∼ O(T ), while the remaining parameter combina-
tion in the relativistic Rayleigh number is almost unaffected.
However, electron-phonon interactions will become more
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pronounced and hence the dynamics could be altered (cf.
Refs. [31,32]).

IV. RELATIVISTIC LATTICE BOLTZMANN SIMULATION

In order to test our theoretical predictions we use the method
described in Ref. [16] to perform a relativistic lattice Boltz-
mann simulation of the electrons in graphene for vanishing
reduced chemical potential. The collision operator for the
particles in Eq. (2) is approximated by an Anderson-Witting
collision operator [33], i.e., the relativistic Boltzmann equation
is modified to

pα ∂f

∂xα
+ Kα ∂f

∂pα
= −pαUα

L

c2τ
[f − feq], (37)

with τ the relaxation time and Uα
L being the 3-velocity of

the fluid element in Landau-Lifshitz decomposition, i.e., the
3-velocity of the energy flow, as opposed to our theoretical
treatment where we measured with respect to the charge flow.
For the equilibrium distribution we use the ultrarelativistic
Fermi-Dirac distribution

feq = 4/h2

eUα
Lpα/kBT + 1

,

which leads to

neq = Uα
L〈pα〉eq = π

12

(
kBT

�c

)2

, (38)

εeq = Uα
L〈pαpβ〉eqUβ

L = 2peq , (39)

peq = 3ζ (3)kBT

4π

(
kBT

�c

)2

. (40)

Then, we perform an expansion into orthogonal polynomials,
which are written in Appendix A of Ref. [16],

feq(t,�x,p,�v) = π2

ep/T0 + 1

∞∑
n,k=0

a
(nk)
i (t,�x)P (n)

i (�v) F (k) (p) ,

with � = kB = c = e = 1 and �p = p�v = p(cos φ, sin φ) in
polar coordinates. T0 is a constant, dimensionless lattice
temperature. The relevant coefficients up to a

(22)
i are calculated

in Ref. [16]. To simplify the computation even further the
angle φ and radius p are discretized such that a numerical
quadrature of the expansion exactly reproduces the zeroth,
first, and second moment of the equilibrium distribution.
The corresponding weights and discrete values for the radii
can be found in Appendix C of Ref. [16]. For the angular
quadrature, one finds the weights α

(φ)
i = 1/6 and angles φi =

π/2 + (i − 1)π/3 with i ∈ {1,2,3,4,5,6}, leaving us with a
hexagonal unit cell for each radius (see Fig. 1). The obtained
lattice site distribution function now evolves in time steps
δt = δx/c according to the lattice Boltzmann algorithm with

f�q(t + δt,�x + ê�qδt) − f�q(t,�x)

= −pαUα

p0τ

[
f�q(t,�x) − f

(eq)
�q (t,�x)

]
,

where �q ≡ (q ′,q ′′) labels the discrete momenta (radius, angle)
and ê�q ≡ �vq ′′ = �p�q/p0.

e(q',1)

e(q',2)e(q',3)

e(q',4)

e(q',5) e(q',6)

y = x

x = x

2

1

FIG. 1. (Color online) Hexagonal lattice structure according to
Ref. [16].

A. External force implementation

For including the external force in the simulation, we use
the same polynomials as in the expansion of the equilibrium
distribution to write

mKα ∂f

∂pα
= 1

ep/T0 + 1

∞∑
n,k=0

b
(nk)
i P

(n)
i (�v)F (k)(p).

In addition, Eqs. (5) and (6) need to be fulfilled, i.e.,∫
d �p
p0

pβmKα ∂f

∂pα
= −FβνNν ,

∫
d �p
p0

mKα ∂f

∂pα
= 0.

From this we infer

−F 0νNν = T 2
0

[
�

(1)
F b(01) + c10�

(0)
F b(00)

]
,

−F iνNν = T 2
0

2

[
�

(1)
F b

(11)
i + c10�

(0)
F b

(10)
i

]
,

0 = T0�
(0)
F b(00),

and finally choose

b(01) = 〈pi〉Ei

�
(1)
F T 2

0

, (41)

b
(10)
i = 2〈p0〉Ei

T 2
0 c10�

(0)
F

, (42)

with all other coefficients equal to zero. For the validation we
measure the velocities ui ≡ 〈pi 〉

〈p0〉 of the particle 3-flow as a
function of time for very small fields, such that according
to Eq. (12) a linear relation between time and velocity
is expected. Choosing a homogeneous temperature T = T0,
constant electric field in the x direction and zero energy flux
as initial conditions, the result for the first particle-velocity
component as shown in Fig. 2 confirms the linear dependence.
The fit has been done with the function

u1(t) = − nE1

ε + p
t + b, (43)

where b is a fit parameter. The fit parameter is not zero, since
we impose a vanishing energy flux but measure the charge
velocity. These velocities differ since the electric field creates
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/
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FIG. 2. First particle-velocity component u1 as a function of time
for E1 = 10−7, E2 = 0, T0 = 2, τ = δt , system size of 64 × 64,
and periodic boundaries. The solid line represents the fit: u1(t)

c
=

( 10π2

54ζ (3)
t

δt
− 2.69) × 10−8.

a heat flux, e.g., Joule heating. We also find that the force does
not have any influence on the second velocity component, the
density or the pressure, i.e., the absolute value of their temporal
change always stays below the numerical error of 10−16.

B. Shear viscosity measurement

In order to measure the shear viscosity we use a Poiseuille
flow test. For this purpose, we examine the steady (t � 105δt)
velocity profile obtained by imposing simple bounce-back
boundary conditions in the y direction, periodic boundaries in
the x-direction, and applying a small, constant, homogeneous
force density �f = −nE1ê1. The initial state is chosen with
T = T0 and zero energy flux. As we arrive at the steady state
according to Eq. (10), we know that �∇ · �u = 0. Hence we can
write for Eq. (12),

η�u = nE1ê1.

As our system is translationally invariant in the x direction and
we assume that η is homogeneous, we expect the velocity to
depend only on y, i.e.,

ηu′′
1 = nE1.

Considering the no-slip boundary condition in the y direction
with height l the velocity profile is

u1(y) = nE1

2η
(y2 − ly),

which could be confirmed in the measurement. By fitting our
results to this profile we are able to extract information about
the shear viscosity. Thus, we measure the dependence of the
shear viscosity on the temperature T and the relaxation time τ ,
which are shown in Figs. 3 and 4 together with the curve of the
function η = ε+p

4 (τ − δt/2). For the conversion to a physical
temperature one uses Eq. (38) to find the scale �c

kBδx
= T ∗.

By choosing δx ∼ 0.1 μm we find T ∗ ∼ 100 K. We have

0 2 4 6 8

0

20

40

60

80

T/T ∗

η

FIG. 3. Shear viscosity η as a function of the temperature with
T ∗ = 100 K. Here we have used E1 = 10−8, E2 = 0, τ = δt , and
a system size of 64 × 64. The solid line denotes the curve η(x) =
9ζ (3)x3

32π
.

chosen 100 K as a reference temperature to still simulate
the hydrodynamic regime of transport in graphene and at
the same time avoid significant effects of the electron-phonon
interactions (cf. Refs. [31,32]).

Note that rigid boundaries stem from a classical under-
standing of fluid dynamics, since in relativity the concept of
solid walls is not well defined due to the Lorentz contraction.
However, this effect is negligible as we are working in a
reference frame with nonrelativistic velocities and stationary
walls.

C. Thermal conductivity measurement

According to Ref. [20] we can measure the heat flux for
processes close to equilibrium by considering the difference

0.5 0.6 0.7 0.8 0.9 1

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

τ/δt

η

FIG. 4. Shear viscosity as a function of the relaxation time τ .
Here we have used E1 = 10−8, E2 = 0, T0 = 1, and a system size of
64 × 64. The solid line represents the curve η(x) = 9ζ (3)

16π
(x − 0.5).
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FIG. 5. Thermal conductivity κ as a function of the temperature
at t = 103δt with T ∗ = 100 K. The following values have been used:
E1 = 10−8, E2 = 0, τ = δt , and a system size of 32 × 32. The solid
line is the fit: κ(x) = 1.525x2.

in the 3-velocities for the Eckart Uα and Landau-Lifschitz
decomposition Uα

L , i.e.,

qα = (ε + p)

(
Uα

L − 〈pα〉
n

)
. (44)

For the measurement of the thermal conductivity, we use
periodic boundary conditions in both directions and introduce
a very small constant, homogeneous electric field into the
system. As initial configuration, we choose a homogeneous
temperature T = T0 and zero energy flux. Therefore, we are
dealing with a homogeneous situation, i.e., all spatial gradients
vanish and a constant, homogeneous acceleration ∂t �u = − n �E

ε+p

is acting on the fluid components. According to the constitutive
Eq. (9) the heat flux can be written as

�q = −γ κT ∂t

(
γ u1

γ u2

)
≈ κnT

ε + p

(
E1

E2

)
,

where for the last approximation we have assumed a non-
relativistic charge flow, i.e., |�u|/c � 1. We find a constant,
homogeneous heat flux �q. The temperature and relaxation
time dependence of the heat conductivity are shown in
Figs. 5 and 6. Expectedly, we cannot confirm κ ∝ τ − δt/2,
but instead, we have found κ ≈ 1.525τT 2. This is due to the
fact that our model recovers only the first three moments
of the equilibrium distribution, which are not sufficient to
match all transport coefficients, in particular the thermal
conductivity, given by theoretical predictions [34]. In the
classical two-dimensional lattice Boltzmann simulation with
a standard Bhatnager-Gross-Krook collision operator [35] one
observes a similar effect when using the energy-conserving
method from Ref. [36], if the moments do not match up to
fourth order.

D. Stability analysis

In analogy to the classical lattice Boltzmann simulations
of the Rayleigh-Bénard instability [37], we include the

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

τ/δt

κ

FIG. 6. Thermal conductivity as a function of the relaxation time
τ at t = 1000δt . The following values have been used: E1 = 10−6,
E2 = 0, T0 = 1, and a system size of 32 × 32. The solid line denotes
the curve given by the expression: κ(x) = 1.525x.

unperturbed force density n̄eĒ1ê1 = −�∇V into the pressure
term, i.e., p → p + V , and could start the simulation with
a homogeneous temperature distribution T = T0 and zero
energy flux. Since triggering an instability can be very
complicated in numerical simulations, we have based our
triggering mechanism on the method used in Ref. [37].
Following this work, we proceed by changing the coefficients
of the external force in Eqs. (41) and (42) by

b(01) = b0〈p1〉
〈p0〉�(1)

F T 2
0

,

b
(10)
i = 2d0(T/T0 − 1)

c10�
(0)
F T 2

0

δi1,

where the temperature distribution is calculated by

T = π2

18ζ (3)

ε

n
.

The new parameters stand for bR = (cV )RβR , and dR =
ρR(αq)RaR . Thus, the relativistic Rayleigh number reads

Rarel = dRbRl4

κRηR

≈ 3.047
b0d0(l/δx)4

T 5
0 τ/δt(τ/δt − 1/2)

. (45)

Since, in our simulations, we are using the Landau-Lifschitz
decomposition, it is not straightforward to impose the non-
or transversal-conducting boundaries from Eqs. (28)–(31),
and therefore, we approximate the nonconducting thermal
boundaries by replacing the distribution function with the
equilibrium value for T = T0 and �uL = 0 at the edges in x

direction. In y direction we choose periodic boundaries. The
height of the system is chosen twice as long as the width, since
according to Eq. (33) the critical wavelength is λc ≈ 2.016l.
As initial condition, we start with a temperature distribution

T (x,y,t = 0) = T0

[
1 + 10−8 4x

l

(
1 − x

l

)
cos(kcy)

]
.
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FIG. 7. (Color online) Electron velocity �u/c and temperature
perturbation field T̃ at t = 105δt with T ∗ = 100 K. The simulation
has been performed using a relaxation time τ = δt , lattice temperature
T0 = 1, b0 = d0 ≈ 4.2 × 10−3 ⇒ βR > 0, Rayleigh number Rarel =
1800, and a system size of 64 × 128. Here |�u/c|max ∼ 10−4.

One observes the expected formation of convection cells
with a wavelength λ ≈ 2l and a cosine-shaped temperature
perturbation, which vanishes at the thermal contacts, as shown
in Fig. 7.

As a next step, we use Eq. (45) to identify the critical
Rayleigh number of our setup and compare it to our theoretical
value, given by Eq. (32). This is done by measuring the
logarithmic growth rate of the peak velocity of the charge flow
perpendicular to the applied electric field u2 at near-critical
Rayleigh numbers, similar to the procedure described in
Ref. [37]. The maximum velocity is measured for 10−4t ∈

0.5 1 1.5 2 2.5 3

·105

−25

−20

−15

t/δt

m
a
x

lo
g
(|u

2
/
c|)

Rarel = 1710

Rarel = 1720

Rarel = 1730

Rarel = 1740

FIG. 8. Logarithm of the peak vertical velocity as a function of
time for a system size of 64 × 128.
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FIG. 9. Logarithmic growth rate as a function of the relativistic
Rayleigh number for a system size of 64 × 128 with dashed horizontal
line at y = 0.

{6δt,9δt, . . . ,30δt}. In Fig. 8 we see the exponential growth.
In Fig. 9 we observe the linear dependence and measure a
critical Rayleigh number of Rac ≈ 1697, which is about 0.6%
smaller than the theoretical value in Eq. (32). This shows
that our numerical results have excellent agreement with our
theoretical predictions.

V. CONCLUSION

We studied both, theoretically and numerically, the rela-
tivistic Rayleigh-Bénard instability for the charge transport
in quantum critical graphene. As a new driving mechanism
we introduced an electrical field to mimic the effects of the
buoyancy force in the classical phenomenon, i.e., interchang-
ing the role of mass and charge. We have found that the
classical inhibitors (viscous forces and heat transport) and
drivers (temperature gradient and external force) keep their
role, and the instability can develop. Using a linear stability
analysis, we derived a quantitative criterion (Rarel � Rac)
for the occurrence of the instability which compares the
relativistic Rayleigh number of the system with the critical
values in Eqs. (32) and (34), whose magnitude depends on
the nature of the boundary conditions. The ultrarelativistic
fermionic plasma influences the formula for the relativistic
Rayleigh number, but under the assumption of nonrelativistic
current flow it does not alter the critical Rayleigh number.
Applying our result to graphene we have found that the
experimental realization for the appearance of convection cells
is challenging due to a large sample length of about 100 μm
but probably achievable in the near future. The reason for
the large sample length is twofold. On one hand, graphene’s
high thermal conductivity suppresses the instability. On the
other hand, we are constrained by the hydrodynamic regime
of transport which limits the value for the charge density
assuming a given average temperature where electron-electron
and electron-hole collisions dominate over other scattering
mechanisms. For the numerical simulations we have improved
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the method proposed in Ref. [16], by adding an external force
and determined the functional dependence of the transport
coefficients on temperature and relaxation time. We have
demonstrated the occurrence of the convection cell pattern with
the expected critical wavelength and temperature distributions
in the case of nonconducting boundaries. In addition, we
have measured a critical relativistic Rayleigh number which
is in very good agreement with our theoretical predictions
from the stability analysis. Extending our theoretical results
by analyzing non-Boussinesq effects, studying the influence

of substrates (as, e.g., SiC), considering electron-phonon
interactions on the instability, as well as applying our finding
to thermoelectronic devices, will be a subject of future
research.
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[16] D. Öttinger, M. Mendoza, and H. Herrmann, Phys. Rev. E 88,

013302 (2013).
[17] R. Benzi, S. Succi, and M. Vergassola, Phys. Rep. 222, 145

(1992).
[18] M. Mendoza, B. M. Boghosian, H. J. Herrmann, and S. Succi,

Phys. Rev. Lett. 105, 014502 (2010).
[19] E. A. Uehling and G. E. Uhlenbeck, Phys. Rev. 43, 552 (1933).

[20] C. Cercignani and G. Kremer, The Relativistic Boltzmann Equa-
tion: Theory and Application (Birkhauser-Verlag, Stuttgart,
Germany, 2002).

[21] L. Landau and E. Lifshitz, Course of Theoretical Physics, 2nd
ed., (Pergamon, New York, 1987), Vol. 6.

[22] R. K. Wangsness, Electromagnetic Fields, 2nd ed. (Wiley, New
York, 1986).

[23] J. Severin and H. Herwig, Forsch. Ingenieurwes. 66, 185 (2001).
[24] J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T.

Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S.
Ruoff, and L. Shi, Science 328, 213 (2010).
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