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Superdiffusive heat conduction in semiconductor alloys. II. Truncated Lévy formalism
for experimental analysis
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Nearly all experimental observations of quasiballistic heat flow are interpreted using Fourier theory with
modified thermal conductivity. Detailed Boltzmann transport equation (BTE) analysis, however, reveals that the
quasi-ballistic motion of thermal energy in semiconductor alloys is no longer Brownian but instead exhibits
Lévy dynamics with fractal dimension α < 2. Here, we present a framework that enables full three-dimensional
experimental analysis by retaining all essential physics of the quasiballistic BTE dynamics phenomenologically.
A stochastic process with just two fitting parameters describes the transition from pure Lévy superdiffusion
as short length and time scales to regular Fourier diffusion. The model provides accurate fits to time
domain thermoreflectance raw experimental data over the full modulation frequency range without requiring
any “effective” thermal parameters and without any a priori knowledge of microscopic phonon scattering
mechanisms. Identified α values for InGaAs and SiGe match ab initio BTE predictions within a few percent. Our
results provide experimental evidence of fractal Lévy heat conduction in semiconductor alloys. The formalism
additionally indicates that the transient temperature inside the material differs significantly from Fourier theory
and can lead to improved thermal characterization of nanoscale devices and material interfaces.
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I. INTRODUCTION

Heat in nonmetallic solids is predominantly conducted
by random motion of energy carriers called phonons [1].
The spectrum of phonon mean free paths (MFPs), i.e., the
distribution of the average distance phonons travel ballistically
between consecutive scattering events, governs key aspects of
the thermal behavior. Even at room temperature, a significant
portion of heat in commonly used semiconductors is found
to be carried by phonons with MFPs well into the micron
range [2,3]. Thermal transport over these length scales is of
crucial importance for nanoscale devices [4].

The macroscopic net result of the phonon dynamics is
observed as redistribution of thermal energy typically de-
scribed by the Fourier diffusion equation. However, when the
dimensions of the thermal gradient become comparable to
phonon MFPs, this classical model begins to fail [5]. Several
hyperbolic heat conduction [6] and ballistic-diffusive [7]
theories were proposed but many characteristic features they
predicted have not been observed experimentally. Measure-
ments in which the physical dimensions [8–10] or penetration
depth [11,12] of the heat source overlap with phonon MFPs
exhibit an apparent reduction of effective thermal conductiv-
ity [9–12] keff, or equivalently, an additional ballistic thermal
resistance [8]. Despite showing clear evidence of nondiffusive
thermal transport, most experiments are interpreted with
modified Fourier theory, i.e., a regular diffusion model but
with adjusted thermal parameters.

Boltzmann transport equation (BTE) analysis with ab initio
phonon dispersions and scattering rates, documented in Paper I
[13], shows that quasiballistic transport in semiconductor
alloys is no longer Brownian, but instead governed by a Lévy

*bvermeer@purdue.edu
†shakouri@purdue.edu

process with fractal dimension α < 2. The associated energy
density distribution is non-Gaussian, and a new approach
beyond modified Fourier theory is needed to accurately
represent the quasiballistic transport dynamics. BTE solutions
themselves, unfortunately, are not easily suitable for direct
comparison with experiments. Analytical BTE modeling is
typically limited to 1D analysis of the dominant cross-plane
heat flow, leaving the method unable to account for lateral heat
spreading and Gaussian shape of the heat source encountered
in actual measurements. In addition, nonidealities in real
world samples such as crystal impurities or grain boundaries
cause the phonon spectra and resulting thermal properties to
invariably deviate to some extent from ab initio predictions.

Here, we provide a phenomenological approach that pre-
serves the essential dynamics contained within BTE solutions
yet at the same time offers sufficient flexibility to achieve
full three-dimensional (3D) analysis of experimental measure-
ments. We stress that the BTE analysis performed in Paper
I only serves to provide physical support for a Lévy-based
approach, but is not directly involved in any way in the
actual processing of measurement data. The formalism we
present below is a fully autonomous model, independent of the
relaxation time approximation, in which key properties of Lévy
dynamics act as free fitting parameters. The method is widely
applicable to heat conduction dominated by mass impurity
(or other high order) phonon scattering, without requiring
ab initio simulations or any other prior knowledge about
the phonon properties of the specific material at hand. Our
formalism provides superior fittings of raw thermoreflectance
(TR) experimental data without the need for any “effective”
thermal parameters varying with laser modulation frequency.
Identified Lévy fractal dimensions in InGaAs and SiGe
match ab initio BTE predictions within a few percent. In
addition, the formalism offers great potential for improved
thermal performance characterization of nanoscale devices and
metal/semiconductor interfaces.
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II. METHODOLOGY

Our formalism is based on a probabilistic framework:
the motion of thermal energy inside the semiconductor is
described in terms of a stochastic process. The method relies
on the duality T (x,t) ↔ P (x,t)/C between the temperature
response T to a unit energy impulse and probability P to
find a random-walking energy carrier in position x at time
t . C denotes the volumetric heat capacity of the medium.
Continuous time random walk (CTRW) processes essentially
consist of a series of transition events [14]. Each transition
increments the position of the energy carrier by an amount
u randomly chosen from a distribution pU (u), while the time
between consecutive transitions is governed by a distribution
pT (t). In our context, the process is Poissonian in time,
pT (t) = � exp(−�t) with � the average number of transitions
per second, while pU is always an even function. The latter
expresses equal probability for left and right transitions in
accordance with thermal isotropy.

The mathematical description of the process simplifies
considerably when pU and pT are stochastically independent.
Physically, this decoupling of space and time results in a
situation in which the transition velocity can sporadically
become arbitrarily large. Although this is not a rigorous
representation of actual phonon dynamics, an unbounded
velocity approximation is physically adequate for our pur-
poses. Justification follows by comparing the extent of the
thermal gradient �x � � to the energy containment |x| � xmax

imposed by finite phonon velocities. Here, � = √
2Dt is the

Fourier thermal penetration depth with D = κ/C the thermal
diffusivity of the medium, and xmax = vt with v the sound
velocity. Time domain TR observations utilize data taken at
pump-probe delays tpp � 50 ps for thermal characterization.
Even at such short times, we find that xmax/� > 10 in
typical semiconductor alloys (D ≈ 5 mm2/s, v ≈ 5000 m/s).
The finite velocity thus hardly imposes restrictions on the
development of the thermal gradient at time scales probed by
the experiments, and can be safely considered as effectively
unbounded. The transitions in the resulting stochastic process
with uncoupled space and time are typically called “flights”
with “jump lengths” governed by pU .

Regular Fourier diffusion is stochastically equivalent to
Brownian motion [15]. This process obeys a jump length
probability distribution pU(u) ∝ |u|−3 and induces the familiar
Gaussian energy density with mean-square displacement
(MSD) �2(t) = 2Dt . During the quasiballistic regime, how-
ever, BTE solutions of the energy density are governed by
a Lévy process with fractal dimension α between 1 and
2 [13]. These dynamics correspond to jump length distri-
butions pU(u) ∝ |u|−(1+α) and induce characteristic fractal
patterns [16] consisting of medium range motion clusters
separated by occasional long jumps [Fig. 1(a)]. Lévy behavior
has been observed in travel patterns of foraging animals [17],
protein movements along DNA chains [18], turbulence in
fluids [19], and financial market fluctuations [20]. Similar
effects were observed in the context of anomalous heat
conduction in theoretical studies of 1D atomic chains between
reservoirs at constant temperature [21]. The latter is still
quite different from realistic experimental and technological
configurations. The model we develop here describes 3D

quasiballistic heat flow in thermally semi-infinite structures
subjected to a transient surface heat flux.

The inherent fractal nature of pure Lévy flights maintains
the quasiballistic regime indefinitely. In reality, however, the
thermal transport recovers to regular Fourier diffusion at
sufficiently long length and time scales. This gradual transition
between the two regimes is naturally embedded in the BTE
framework. The same can be achieved here by considering a
truncated Lévy (TL) process, in which the likelihood of very
long jumps is suppressed [22,23]. The main principle is to
force the tail of pU to drop equally or more steeply than |u|−3

such that Brownian dynamics are recovered at sufficiently large
distances. For mathematical convenience, we use exponential
truncation of the form

pU(u) = A exp (−|u|/uBD)

|u|(1+α)
(1)

with A a normalizing constant determined below and α,uBD

two fitting parameters. As demonstrated later, uBD and as-
sociated tBD = u2

BD/2D regulate respectively the length and
time scales over which the transition from quasiballistic to
diffusive transport occurs. We note here that certain subtypes of
exponentially truncated Lévy flight processes can be described
in terms of generalized fractional diffusion equations [24]. This
may offer prospects for future development of a universal heat
equation for microscale thermal transport in closed form.

The generalized CTRW master equation [14] provides
the single pulse energy density in Fourier-Laplace domain,
P(ξ,s), for given jump length and wait time distributions
in transformed variables pU (ξ ) and pT (s). For a Poissonian
process with jump frequency � and stochastically independent
jump length distribution pU (u), the solution can be inverted
analytically to the time domain, and we obtain

lnP(ξ,t) = −�t

∞∫
−∞

[1 − exp(−jξu)]pU(u)du (2)

in which j denotes the complex unit. For the truncated Lévy
jump length distribution described by (1) this can be evaluated
analytically:

1 < α < 2 : lnP(ξ,t)

= (−2t)
πA�

	(α)α sin(απ )

[(
ξ 2 + ξ 2

BD

)α/2

× cos

(
α arctan

[
ξBD

|ξ |
]

− απ

2

)
− ξα

BD

]
(3)

with ξBD = u−1
BD. The energy density in real space-time

domain then directly follows from numerical inverse Fourier
transform:

P1D(x,t) = 1

π

∫ ∞

0
P(ξ,t) cos(ξx)dξ, (4)

where we used that P(ξ,t) is even in ξ . At long times t � tBD,
P is strongly exponentially dampened, and the integral (4)
is completely dominated by small wave numbers ξ 	 ξBD.
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FIG. 1. (Color online) Stochastic energy transport in solid media. (a) Exemplary random walk trajectories with 10 000 steps each.
(b) Normalized source response for 1D truncated Lévy heat flow in infinite medium. The regime transition from pure Lévy superdiffusion to
regular Fourier diffusion is clearly visible. (c) Dimensionless energy pulse response for 3D heat flow in semi-infinite medium. Each square
shows a thermal map over a region measuring 10�(t) × 10�(t) centered around the point heat source, with �(t) = √

2Dt the Fourier thermal
penetration length. (d) Ratio of truncated Lévy and Fourier 3D single pulse responses on semi-infinite InGaAs at room temperature. Listed
parameters were determined from TDTR experiments presented below.

Series expansion of (3) for this regime yields

ξ 	 ξBD : lnP(ξ,t) → −ξ 2t

[
πAξα−2

BD (1 − α)

	(α) sin(απ )

]
. (5)

The proportionality to ξ 2 signals recovery of regular Fourier
diffusion lnPF = −Dξ 2t . Comparison of the latter to (5) sets
the prefactor in (3):

πA�

	(α)α sin(απ )
= ξ 2−α

BD D

α(1 − α)
(6)

such that we finally have

1 < α < 2 : lnP(ξ,t)

= − 2ξ 2
BDDt

α(1 − α)

[
(ξ̃ 2 + 1)α/2

× cos
(
α arctan(|ξ̃ |−1) − απ

2

)
− 1

]
(7)

with ξ̃ = ξ/ξBD. For the sake of completeness, we note that
the solution for special case α = 1 does not simply follow
by taking the α → 1 limit of (7) but instead must be derived

directly from (2) which eventually yields

α = 1 : lnP(ξ,t) = −ξ 2
BDDt ×

[
πξ̃H (ξ − 1)

− ln(1 + ξ̃ 2) − ξ̃ arctan

(
2ξ̃

ξ̃ 2 − 1

)]
(8)

with H the Heaviside function. At short times t 	 tBD , the
behavior of the TL process is dominated by large spatial
frequencies ξ̃ � 1. According series expansion of (7) or (8)
shows this corresponds to a pure Lévy regime lnPL =
−Dα|ξ |αt with fractional diffusivity

1 < α < 2 : Dα = 2D cos [(1 − α/2)π ]

α(α − 1)u2−α
BD

, (9)

α = 1 : Dα = πD

uBD
. (10)

This expression lends a deeper, microscopic meaning to
uBD that goes beyond the intuitive macroscopic notion of
characteristic transition length scale.
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Once numerical evaluation of P1D(x,t) is performed, the
formalism can be easily extended to 3D heat flows based
on isotropy and symmetry arguments. The single pulse
temperature response for a point source on a semi-infinite
medium becomes

T3D(r,t) = 2

C
P 3

1D(x = r/
√

3,t) (11)

with r the distance from the source. From this we then obtain
the Green’s function G(h,f ) of the semiconductor surface for
truncated Lévy transport in the Fourier-Hankel domain:

G(h,f ) =
∞∫

0

∞∫
0

T3D(r,t) exp(−j2πf t)J0(hr)rdrdt. (12)

These operations must be performed numerically since
T3D(r,t) is not known in closed form. A simple quadrature
scheme

G(h,t) ≈ 1

2h

∑
n

[T3D(rn,t) + T3D(rn+1,t)] K(rn,rn+1),

K(a,b) = bJ1(hb) − aJ1(ha) (13)

suffices for the Hankel transform. For the subsequent transform
to the frequency domain we use a collocation scheme [25]
with logarithmic time grid. The resulting G(h,f ) then simply
replaces the conventional Fourier diffusion kernel GF(h,f ) =
(2πκ

√
j2πf

D
+ h2)−1 in standard models [26,27] that account

for the heat diffusion in the metal transducer, thermal contact
resistivity rms of the metal/semiconductor interface, and
Gaussian shape of the laser beams for analysis of the sample
structures employed in pulsed laser experiments.

We have validated the stability and accuracy of the various
numerical operations employed in the formalism by running
our truncated Lévy simulator in quasidiffusive regime (setting
α = 1.999 and uBD = 10 nm) for a semi-infinte InGaAs
substrate with a 50-nm Al transducer. Both magnitude and
phase of the numerically obtained single pulse responses
at the transducer top surface stayed within ±0.3% of ana-
lytical Fourier solutions anywhere over the 100-kHz–1-THz
frequency band.

III. SINGLE PULSE RESPONSE CHARACTERISTICS

As could be expected, pure Lévy behavior dominates
truncated Lévy flights at early times t 	 tBD. One-dimensional
single pulse responses exhibit an elevated energy density at the
heat source that drops as t−1/α [Fig. 1(b)]. This corresponds to
the quasiballistic regime in the BTE solutions, which exhibit
the same t−1/α trend at the heat source and superdiffusive
thermal energy displacement σ 2(t) ∼ t3−α inside the medium.
Both anomalous fractional time exponents signal a complex
interplay between ballistic jumps and random scatterings. This
offers a perspective that is quite different from recent literature.
In some experimental configurations, quasiballistic transport
can be interpreted as a lack of scattering at short distances
followed by regular Fourier diffusion from a heat source
whose effective dimension is inflated by the dominant phonon
MFP [8]. For the problem studied here this is clearly not the
case: the transport dynamics gradually evolve in space and time

from fractal Lévy superdiffusion to regular Fourier diffusion.
The transition is virtually complete at t = tBD [Fig. 1(b)].
Similar evolutions are visible in 3D heat flow configurations
[Fig. 1(c)].

Quasiballistic effects can be mostly attributed to phonon
modes whose mean free paths extend beyond the characteristic
dimension of the thermal gradient [11,12,28]. We therefore
expect uBD to be situated somewhere between the median and
upper regions of the MFP spectrum. The fractal dimension
α, on the other hand, is directly associated with the order n

of the dominant phonon scattering mechanism τ ∼ ω−n as
demonstrated by our BTE analysis [13].

Figure 1(d) shows the calculated 3D impulse response
inside semi-infinite InGaAs. The temperature at and near the
heat source is significantly larger than Fourier predictions
while at intermediate depths in the material the truncated
Lévy thermal field is substantially smaller than the diffusive
counterpart. Deviations persist over 1 μs time and 10-μm
length scales and can therefore have interesting implications
for the thermal performance and monitoring of nanoscale
devices. Details will be investigated elsewhere. The formalism
provides valuable predictions about how the Lévy dynamics
of the quasiballistic transport influence the internal heat flow
inside the medium. Currently, there are no measurement results
available with sufficient resolution to enable direct comparison
with Fig. 1(d), but these and related effects may be further
verified with future experiments.

IV. RESULTS

We apply our formalism to TDTR observations of quasi-
ballistic effects in semiconductor alloys. This measurement
technique employs modulated femtosecond laser pulse trains
to perform thermal characterization [11,27]. A pump beam,
modulated at frequency fmod, heats a metal transducer de-
posited on the semiconductor sample. Lock-in detection at
fmod of the reflected probe beam records the thermal decay
of the transducer surface. A mechanical delay line allows
us to vary the relative arrival times of the pump and probe
pulses at the sample surface with picosecond resolution. Ad-
ditional details and a schematic drawing of our measurement
system are available elsewhere [29]. Standard mathematical
manipulations of the single pulse response [27,30] provide
theoretical model expressions for the in-phase Vin(tpp) and
out-of-phase Vout(tpp) lock-in signal components at a given
modulation frequency as a function of pump-probe delay tpp.
These are then fitted to the measured counterparts to identify
the thermal properties of the sample. The actual identification
process is typically performed on the ratio −Vin/Vout. This
acts as signal normalization and reduces the influence of
experimental artifacts [11]. Conventional Fourier analysis first
extracts the thermal resistivity rms of the metal-semiconductor
interface from data at high modulation frequency, where the
sensitivity to rms is highest, and then identifies effective thermal
conductivities keff(fmod) [11]. Our truncated Lévy approach
collectively identifies two quasiballistic parameters (α, uBD)
and bulk thermal properties (κbulk, rms) by minimizing the
cumulative fitting error between measured and theoretical
ratio curves over full pump-probe delay and all modulation
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FIG. 2. (Color online) Time domain thermoreflectance characterization of various thin films at room temperature. (a) Apparent modulation
frequency dependence of thermal conductivity. (b) Experimental and theoretical raw transient data for InGaAs at four modulation frequencies.
(c) Material heat capacities and identified model parameters. Entries marked “—” signify diffusive regime (the raw measurement data can
be fitted by a Fourier model with constant conductivity). (d) Modified Fourier theory, i.e., a regular diffusive model with adjusted thermal
conductivity, is unable to properly describe the quasiballistic regime. While such an approach may appear adequate based on fittings of the
transducer response, it does not give a good representation of the intricate dynamics at the semiconductor surface. Similar trends are observed
at all modulation frequencies.

frequencies. Results of the TDTR analysis of several semicon-
ductor films at room temperature are presented in Fig. 2.

The effective conductivity of SiGe and InGaAs drops
strongly with modulation frequency [Fig. 2(a)], consistent with
earlier reports [11]. Single-crystal semiconductors such as Si
and GaAs and amorphous materials like SiO2, by contrast,
exhibit an essentially constant conductivity. The distinction
can be understood by noting that in alloys, Rayleigh scat-
tering increases the relative importance of long-wavelength
phonons [11]. Theoretical calculations indicate the median
MFP to be ≈ 5 μm in SiGe [2] versus ≈ 500 nm in Si and
GaAs [2,3]. The combination of low diffusivity and long MFPs
in alloys facilitates overlap of the dominant experimental
thermal penetration depth � = √

D/(πfmod) with the phonon
spectrum over the achievable fmod range, inducing notable
quasiballistic effects.

Crucially, the truncated Lévy model provides an accurate
match with raw measurement data [Fig. 2(b)], and outperforms
the best fitting modified Fourier approaches in which both

κeff and rms,eff are suitably varied with modulation frequency
(Fig. 3). Note that the improved fitting performance is achieved
with fewer fitting parameters. The TL model collectively
fits the raw measurement data across all modulation fre-
quencies with just four numbers (α,uBD,κbulk,rms) while a
modified Fourier analysis requires two parameters (κeff,rms,eff)
per modulation frequency. Our experiments on InGaAs, for
example, consist of seven ratio curves. The best fitting
Fourier interpretation (in which both effective conductivity
and interface resistance must drop by over 40% from lowest
to highest modulation frequency) requires 14 parameters to
describe the data yet provides an inferior fit compared to TL
at every single frequency. We validated the Lévy parameter
extraction, listed in Fig. 2(c), by verifying that the cumulative
fitting error attains a global minimum for a well defined
(α,uBD) combination. The experimentally identified fractal
dimensions, α = 1.67 for InGaAs and α = 1.69 for SiGe,
are in near perfect agreement with ab initio BTE predictions
(1.67 and 1.65 respectively). Meanwhile, uBD values around
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FIG. 3. (Color online) Raw measurement data fitting perfor-
mance over full pump-probe delay for several theoretical models.
The dashed lines indicate the overall average fitting error across all
modulation frequencies.

a few microns are found, on the order of the median
MFPs.

Conventional analysis with modified Fourier theory leaves
some discrepancies at short and long pump-probe delays
[Fig. 2(b)] but achieves an otherwise reasonable fit of the
thermal response at the transducer surface. This has led to the
notion that this approach provides an adequate characterization
of the quasiballistic transport. Recent analysis of thermal
transient grating experiments has shown that most of such
measurements probe a weakly quasiballistic regime in which
the use of modified Fourier theory is formally justified by the
BTE [31]. In the thermoreflectance configurations considered
here, however, this is not the case. Fourier theory with
adjusted conductivity still maintains the Gaussian shape of the
energy density and underlying Brownian energy motion, which

inherently differ from Lévy superdiffusion. As a result, this
approach provides a poor representation of the quasiballistic
dynamics at the semiconductor surface [Fig. 2(d)].

V. PROBING FRACTAL LÉVY DYNAMICS

The superior fitting performance observed above indicates
that the truncated Lévy formalism incorporates all essential
physics required to gain a good understanding of nondiffusive
heat flow in thermoreflectance experiments. In addition,
the obtained results offer experimental validation for the
fractal Lévy nature of the quasiballistic thermal dynamics in
semiconductor alloys, as theoretically predicted by our BTE
analysis.

Interestingly, the frequency dependence of effective thermal
conductivity as observed by conventional Fourier analysis
offers another direct manifestation of Lévy superdiffusion.
Simple 1D relations suggest that κeff ∼ D

2/α
α f

1−2/α

mod , and the
experimental results shown in Fig. 2(a) can indeed be fitted
quite well with a power law [13]. The resulting α and Dα

values, together with those obtained independently through
full 3D TL fitting of the raw measurement data and 1D
ab initio BTE modeling, are summarized in Table I. The good
agreement between the values is testament to the capabilities
of the TL formalism, and demonstrates that the presence of
fractal Lévy superdiffusion offers a consistent explanation of
quasiballistic heat effects in semiconductor alloys.

VI. FURTHER APPLICATIONS

The presence of quasiballistic effects raises challenges for
the metrology of thermal boundary (Kapitza) resistances. It is
striking that truncated Lévy identification results for rms are
up to three times smaller than those obtained through conven-
tional Fourier characterization [Fig. 2(c)]. This suggests that
metal/semiconductor interfaces could be far more conductive
than currently believed. Intuitively, we can argue that Fourier
models will mistakenly interpret part of the quasiballistic heat
flux suppression in the upper regions of the semiconductor
as a poorer performance of the nearby metal/semiconductor
interface. Closer inspection shows that the best fitting
Fourier models depicted in Fig. 3 exhibit rms,eff values that
vary monotonically with fmod by almost a factor of 2.
This itself hints at a problematic aspect of modified Fourier
theory, as physically the thermal boundary resistance should
remain constant over the considered modulation frequency
range [9,12]. Frequency by frequency truncated Lévy identi-
fication of the measurement data, on the other hand, produces
rms values that remain virtually stable. Detailed results are
available elsewhere [32]. Despite seven decades of extensive

TABLE I. Identified fractal properties of quasiballistic thermal transport in semiconductor alloys.

In0.53Ga0.47As Si0.82Ge0.18

α Dα (×10−4 mα/s) α Dα (×10−4 mα/s)

3D TL fit of raw meas. dataa 1.67 3.92 1.69 2.17
Power-law fit of κeff (fmod) [13] 1.67 5.98 1.71 2.17
Ab initio 1D BTE prediction [13] 1.67 4.28 1.65 4.00

aDα values can be identified through TL raw data fitting by inserting the measured α, uBD and D = κbulk/C into Eq. (9).
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research since Kapitza’s pioneering work [33], comprehensive
understanding of heat flow across interfaces has remained
a mostly open problem [34]. We believe the framework
presented here offers interesting potential in this context, given
its ability to properly distinguish between intrinsic interface
phenomena (rms) and adjacent quasiballistic effects (α and
uBD).

VII. CONCLUSIONS

In this work, we introduced a formalism for experimental
analysis of quasiballistic heat flow. The approach describes
the thermal energy motion in terms of a truncated Lévy
stochastic process. This way, the formalism captures all
essential physics of the transition between quasiballistic and
regular diffusive transport contained within the 1D BTE
framework while enabling full 3D analysis of experimental
observations. Excellent agreement with raw thermoreflectance
data is observed, and corresponding experimental values of
the fractal dimension of the Lévy process match ab initio

BTE predictions within a few percent. Our findings confirm
that quasiballistic thermal transport in semiconductor alloys is
distinctly different from conventional Brownian motion, and
will lead to a better understanding of heat flow in nanoscale
devices and across metal/semiconductor interfaces.
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