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Quantum phases of a one-dimensional dipolar Fermi gas
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We quantitatively obtain the quantum ground-state phases of a Fermi system with on-site and dipole-dipole
interactions in one-dimensional lattice chains within the density matrix renormalization group. We show, at a given
spin polarization, the existence of six phases in the phase diagram and find that the phases are highly dependent
on the spin degree of freedom. These phases can be constructed using available experimental techniques.
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I. INTRODUCTION

Cold dipolar atom gas systems have attracted a lot of
attention due to the novel anisotropic and long-range character
of the dipole-dipole interactions [1]. For high enough densities,
the atomic de Broglie wavelength becomes larger than the typ-
ical interparticle distance and thus quantum statistics governs
the many-body dynamics of cold atom systems. Moreover,
for strong fermion-fermion interactions, when the average
interaction energy becomes larger than the corresponding
kinetic energy, one can expect drastic changes in the properties
of the system. Strong correlations are at the center of activity
of various scientific disciplines, such as optical, condensed
matter physics, chemistry, and quantum science, ranging
from high-temperature superconductivity [2], superfluidity
(SF) [3], metal-insulator transitions [4], Fulde-Ferrel-Larkin-
Ovchinkov (FFLO) [5], orbital ordering, and other structural
phase transitions [6].

One of the current challenges of condensed matter physics is
to understand the distinctive exotic paired states and quantum
phases that are realized when particles have different on-site
and long-range interactions. It has been predicted that in Bose
lattice systems, the presence of finite interactions gives rise
to novel quantum phases in two-dimensional [7] and one-
dimensional (1D) [8,9] systems. A quantum phase diagram of
fermionic dipolar gases in a planar array of one-dimensional
tubes has been studied [10] and the elementary excitations and
the Luttinger components for various correlation functions
were found. Unconventional SF in two coupled fermionic
chains has been proposed [11] in which an admixture of spin
singlet and triplet SF pairings occurs with purely repulsive
interactions. The recent experimental investigations [12—14]
in creating degenerate cold polar molecules, relying on the
dipole-dipole interaction and using the many internal degrees
of freedom in molecules to engineer effective spin-spin
interactions, offer promising orientations for exploring novel
and strong correlated many-body physics. More importantly,
dipolar interactions can enrich considerably the physics
of quantum gases with internal degrees of freedom. The
experimental observation of dipolar systems started with
reporting the realization of a chromium Bose-Einstein con-
densate with strong dipolar interactions. By using a Feshbach
resonance, Lahaye er al. [12] reduced the usual isotropic
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contact interaction such that the anisotropic magnetic dipole-
dipole interaction between >2Cr atoms becomes comparable
in strength. Afterwards, the creation of an ultracold dense gas
of potassium rubidium polar molecules was reported [13] and
the authors coherently transferred extremely weakly bound
potassium rubidium molecules to the vibrational ground state
of either the triplet or the singlet electronic ground molecular
potential. The range of the dipolar-dipolar interactions can
be much larger than the typical optical lattice spacing for
systems in which molecules with permanent electric or atomic
magnetic dipolar moments have been used [15].

In this paper, we employ the density matrix renormalization
group (DMRG) [16], which is one of the sophisticated methods
for investigating 1D many-body systems, and finite-size scal-
ing to study the phase diagram of 1D dipolar Fermi systems.
Numerical simulations based on DMRG have been used to
investigate the quantum phases of a 1D Bose lattice [17], but
an accurate phase diagram for a 1D dipolar Fermi system is still
missing. We find that paired states near the vanishing on-site
energy of a quarter-filling state (one fermion per two sites,
n = 1/2) are significantly different from those paired states of
a half-filling state (one fermion per site, n = 1). The resulting
phase diagram shows the existence of six phases, illustrated in
Fig. 1 for the unpolarized case, which have rich exotic phases
of 1D dipolar Fermi gas. The weak coupling phase diagram
incorporates spin-density wave (SDW), charge-density wave
(CDW), and singlet and triplet superfluidity phases (SSF or
TSF, respectively). In the strong coupling regime, bond order
wave (BOW) and phase separation (PS) phases are obtained.
Below we explain the whole states by computing at their
ordered parameters and Luttinger parameters and exploring
phase diagrams for polarized phase diagrams within DMRG.
Notice that the experiments on polar atoms or molecules fall
outside the range of validity of the Hubbard model and it is
necessary to consider a long-range interaction as a dipolar-
dipolar interaction. We also examine the phase diagrams at
finite spin polarization and find that phases are sensitive
to the spin degree of freedom, & = (N4 — N|)/N, where
N = N; + N, and N, is the number of fermions with spin .

The paper is organized as follows. We introduce the
model Hamiltonian and some physical correlation functions
in Sec. II. The numerical results and discussions regarding
phase diagrams, the charge and spin gaps, and the density
profiles are reported and discussions regarding different phases
at given spin degrees of freedom are provided in Sec. III. A
brief summary of results is given in Sec. I'V.
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FIG. 1. (Color online) DMRG phase diagrams of the fermion
atoms with dipolar interactions in the unpolarized 1D lattice chain.
At half filling (top panel), a quantum TSF phase occurs mainly for
all0 < U/t <3and —0.5 < V/t < 0 whereas the SSF phase mostly
takes place for —0.5 < V/t < Oand U/t < 0. The BOW is located in
anarrow strip between the spin- and charge-density wave phases. The
PS phase occurs for the region where V /¢t < —0.75 and the boundary
disperses as a function of U. For the attractive dipolar interaction
values, an inhomogeneous cluster type phase occurs. For the case
at quarter filling (bottom panel), rich quantum phases including a
large area of the charge-density fluctuation (CDF) for 0 < V /¢ and
U < V /6, the SSF phase mainly for U < 0 and —1 < V/t < 0.25,
spin-density fluctuation phase (SDF) for the positive U and V, and a
large area of PS occur. In addition, the TSF phase is located around
small negative V and U > 0 next to the spin-density fluctuation phase.
A SDW phase occurs for large U/t > 6 and V/t > 6 values. The
mesh in the horizontal axisis AV = 0.05¢ and the different phases are
separated by lines where their thickness is much larger than numerical
erTors.

II. THEORY AND MODEL

The fermionic particles interact with other fermionic par-
ticles with an on-site Coulomb repulsion when two fermions
occupy the same orbital. The Hamiltonian of such interacting
ultracold systems on a lattice is given by the Hubbard
model [18], which serves as one of the most prominent
models for a solid. The extended Hubbard model [19,20]
whose particle interaction is modeled by an on-site interaction
with a constant interaction potential describing the low-energy
physics of the interacting dipolar spin-1/2 fermionic in a 1D
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lattice is given by
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f
1o
i, Nig = cjacig is the density operator, and n; = n;y + n;,.
Here N is the cut of the dipolar interaction and we consider
N =7 such that the physical quantities remain unchanged
by increasing N > 7 and a is a lattice constant (with a
typical chemical interaction distance of 1 nm). ¢ represents
the transfer energy between the nearest-neighbor sites and
Vi = V is the strength of the dipole-dipole interaction that can
change from a positive value to a negative one depending on the
direction of the interacting dipolar. It is worth mentioning that
apurely attractive interaction can be achieved in the metastable
state [21]. The dipole-dipole interaction, in general, has two
important features, namely, it is anisotropic and long ranged,
i.e.,itdecaysas 1/ r3at large distances. Therefore, it is natural
to expect intriguing properties in dipolar gas systems [22].

We accurately investigate the ground states and phase
diagrams of the system described by Eq. (1) at half and quarter
fillings in terms of the positive and negative values of U and V.
The variation of V corresponds to a change in the polarization
direction with respect to the lattice orientation. Meanwhile,
polar molecules are easily manipulated by external electric
fields and thus their dipole moments can be tuned.

DMRG is an algorithm for optimizing a variational wave
function with the structure of a matrix-product state, and it
consists of a systematic truncation of the system Hilbert space,
keeping a small number of important states in a series of
subsystems of increasing size to construct wave functions of
the full system [16]. In DMRG the states retained to construct
a renormalization group transformation are the most probable
eigenstates of a reduced density matrix instead of the lowest-
energy states kept in a standard numerical renormalization
group calculation.

The DMRG with open-end boundary conditions is em-
ployed to obtain the ground-state and low-lying excited-
state energies and expectation values of order parameters in
the thermodynamic limit L — oco. The reason that we use
open-end boundary conditions in the system is to reduce
the truncation error, which is much smaller than with pe-
riodic boundary conditions. In order to keep the boundary
effects small, we add additional terms on the boundaries
to the Hamiltonian [23], Vn(n; 4+ ny), so that a particle on
the boundary on average has the same potential energy as the
rest of the system. In our numerical calculations, we study
chains with up to 160 sites and increase the number of density
matrix eigenstates up to 500 with a sweep number 10 in order
to have the truncation error less than 10~ in the fully polarized
state and 10~ in other states. Therefore, the finite-size scaling
analysis based on the L dependence of quantities is needed,
and we thus perform finite-size scaling for all quantities.

To determine the phase diagrams, several physical expecta-
tion values are calculated. We first obtain the charge and spin

where c; = stands for the creation operator with spin o at site
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gaps as follows:

Ao =[E(Ny +1,N, +1,8.) + E(N; — 1,N; — 1,5.)
—2E(N4,Ny,S8.)1/2, 2

Ay =[ENy +1,N, — 1,5, + 1) = E(N4+,N,,S2)1. (3)

where E(N4,N,,S;) is the ground-state energy for a given
number of atoms with spin-up (spin-down) N4 (V) and total
spin in the z direction, S,.

The single-particle spectral function is of particular interest
in relation to photoemission results. We calculate the charge-
charge and spin-spin correlation functions,

1 o
Say(@) = 7 D€ 1 U £ nj)ouy )
Jl
—((njy Zn; )y £ g, 4)

with ¢ = 27 /L. Notice that the charge-charge and spin-spin
correlation functions can be measured using Bragg scattering
experiments, which provide a clear signature of the phases.
Following the Luttinger-liquid (LL) theory [24,25], the long-
wavelength behavior of the Si4)(g) is governed by the LL
charge and spin exponents, K ) = lim,_o 7 S+(q)/q.

A careful extrapolation of the charge-charge and spin-
spin correlation functions at a large wavelength limit are
necessary to evaluate the correct value of K (5, respectively,
in L — oo. We analyze various lengths of the lattice size and
perform a finite-size scaling analysis stemming from the length
dependence of the correlation functions. Since the limitg — 0
is very difficult to attain strictly in numerical calculations of
finite systems, the values of K, and K, calculated from the
q — 0 limit of Si(g) are in general slightly larger than their
true values [25]. In order to overcome those difficulties, the
number of density matrix eigenstates might be increased and,
in practice, it is computationally time consuming. Therefore,
we use the Tomonaga-Luttinger mode to calculate the values
of K, and K,,. In the Tomonaga-Luttinger phase, K, and K,
are given by [26]

K,

)

7 K e,

Z 5)
K = _nzxvsa

)

where « and x are the charge compressibility and spin

susceptibility and v.,v; are the charge and spin velocities,

respectively. To obtain K,, we calculate the charge and spin

compressibilities from the charge and spin gaps, respectively,

2
K = LA
i (©)
X = m,
where the velocities are given by
ve = [E1(N4,N,0) — Eo(N4,Ny,0)1/2n /L), o

vy = [Ei(Ny + 1N, — 1,1) — Eo(Ny,N,0)]/(2n /L),

in which E(N4,N,,S;) is the lowest excitation energy with
total spin S, for finite system size L.
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III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present our main numerical results based
on the theory presented in the previous section. Our aim is to
explore the phase diagrams of the system in the half- and
quarter-filling cases. We also consider different spin degrees
of freedom & and show that the phase diagrams are sensitive
to the value of &.

A. Unpolarized 1D lattice chain, § = 0

Having calculated the ground-state energy for a given
number of atoms, we can now compute the charge and spin
gaps. A careful extrapolation of these quantities is necessary to
extract the correct values in the thermodynamic limit, namely,
L — oo. We study various lengths of chains and perform
a finite-size scaling analysis based on the L dependence of
the physical quantities. Figure 2 shows the finite-size scaling
analyses for the charge gap [Fig. 2(a)] and the spin gap
[Fig. 2(b)] at U = V for different values of V for the case
with the quarter-filling factor n = 1/2. The value of the gaps
depends on the V and U strengths. The charge gap and spin gap
vanish for V/t < 4, however, the charge gap opens for V /¢ >
4 in the thermodynamic limit. A finite value of the charge gap
or the spin gap indicates different phases, and we will discuss
those phases in detail later. As shown in Fig. 2, both of the gap
quantities are a monotonous function of L~! for all parameters
and can be fitted to Ag(L) = aél)L’1 + a;z)L’z, where § = p
or o denotes the charge or spin channel. We also find that the
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FIG. 2. (Color online) Finite-size scaling analysis for (a) charge
gap and (b) spin gap scaled by # at £ = 0 for U = V and different
values of V (in units of ) for the case of the quarter-filling state, n =
1/2. The lines indicate the polynomial fits to the numerical results.
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charge or spin velocity behaves as a line function of L~! and
can be fitted nicely to a function vs(L) = vél)/27r + vgz)L‘l.

As we mentioned in the previous section, knowing the
Luttinger parameters is vital to understand different phases.
K, vanishes in the spin gapped phase, however, K, = 1
everywhere else, in the thermodynamic limit. In the weak
coupling regime, the metallic phase is a Luttinger liquid [27],
and it is still quite hypothetical to assume that this is the case
for the model Hamiltonian given by Eq. (1). This assumption is
verified by calculating the identity 2K, /(7 v.) = 1’k in which
K, is obtained within the charge-charge correlation function at
q — 0 with a 1% error. Moreover, the LL theory has been used
for bosonic gases with repulsive power-law interactions [28].
Accordingly, the assumption is applicable in our system in
(V,U) space and we are thus able to explore metallic phases
within LL theory.

An exciting phase in 1D systems is a spin-density fluctua-
tion (SDF) or Luther-Emery phase, a statistical fluctuation of
the spin density where the spin and charge gaps vanish. In order
to determine this phase, we compute the LL exponents [29]
where K, > n?, whereas K, < n®. At quarter filling, a SDF
having K, < 1/2 emerges in a wide region of the parameter
space and, furthermore, a small area of spin-density wave takes
place for large V and U values.

Meanwhile, there is a charge-density fluctuation (CDF)
phase in which the density correlation function decays slower
than the spin correlation function, and thus the density
fluctuations are dominant. In this phase, the spin gap is finite
and both K, and K, are smaller than unity. When U < 0
increases, the spin gap opens, whereas the charge gap remains
zero for certain values of V at quarter filling. In other words,
the ground state of the model is the CDF metal for a weak
interacting fermion regime.

After calculating the charge and spin gaps and correspond-
ing As(L) together with vs(L), the Luttinger parameters can
be evaluated by using Eq. (5). The charge compressibility
from the charge gap is k = lim;_, o, k(L) = 4/n*a" and, sim-
ilarly, the spin susceptibility is x = lim; o x(L) = 4/n%a{V.
Furthermore, the velocity in the thermodynamic limit can be
calculated by using vs = limy_, o vs(L) = vél)/271, and thus
we are able to evaluate the Luttinger parameters by using
Ks = vél)/aél). Figure 3 shows K, and K, as a function of
V for different values of the on-site energy and for both
cases of n =1 and 1/2. Those aforementioned phases can
be understood by analyzing K, and K,. It should be noted
that K, = K, = 1 for a noninteracting system and the charge
parameter K, increases with increasing V for the case where
U = 0 due to the effective attraction on the same orbital [27].
Remarkably, K, tends to zero for the insulating phase, such
as the CDW as shown in Fig. 3(a), and it is typically quite
difficult to obtain K, =0 in an insulating phase near the
phase boundary. Having known that K, % 0 on the BOW-
CDW boundary (a continuous phase transition) and vanishes
elsewhere, we can expect a peak in K, as a function of V. As
shown in Fig. 3(a), K, decreases from 1 at U = 0 and shows
a peak at (V,U) = (2.3t,4t). Moreover, K, becomes almost
zero for U > 6t (the first-order phase transition), in agreement
with the results shown in Fig. 1(a). Therefore, this behavior
explains that the transition is first order in the U > 6¢ case.
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FIG. 3. (Color online) LL parameters K (red lines) and K, (blue
lines) as a function of V' (in units of ¢) for different values of the on-site
energy for the case of (a) the half-filling and (b) the quarter-filling
states for £ =0 and in the thermodynamic limit. The results for
U/t =0, 4, and 8 are shown by star, squared, and circled lines,
respectively.

Another state is the PS, and it occurs when the ground state
is inhomogeneous. PS means the possibility of the system to
spontaneously undergo a macroscopic segregation into two
phases with different hole concentrations. In the attractive
interaction, a pair of fermion atoms on the same site cannot
be broken because it is costly from an energy point of view.
The unpaired fermion particles, on the other hand, can move
in the region located between pairs, but they cannot be on
the neighboring sites. In this phase, the charge gap is finite
and K, < n?. The simplest way to get quantitative insight
into the instability region is to calculate the compressibility. It
turns out [30] that the compressibility of a homogenous Fermi
gas becomes negative, signaling the instability of the gas that
leads to a collapse. We calculate the compressibility, and thus
its divergence illustrates the position of the PS transition. Our
accurate calculations (see Fig. 1) show that a wide regime of
the PS phase takes place at both the quarter- and half-filling
phases with an attractive interaction potential.

The competition between the on-site and dipolar energies
gives rise to the stable phase. Recently, by studying the
extended Hubbard model ground-state broken symmetries
using level crossings in excitation spectra obtained by exact
diagonalization, Nakamura [20] has argued for the existence
of a novel bond order wave (BOW) phase for small to
intermediate values of U and V in a narrow strip between the
CDW and the SDW phases. The BOW phase is characterized
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by alternating strengths of the expectation value of the kinetic
energy operator on the bonds. It is predicted to be a state where
the discrete symmetry is broken and should hence exhibit true
long-range order.

At half filling, near the bond order wave [20] and
charge-density wave, which are insulating phases, the spin
gap is suppressed and, moreover, the system is a Mott
insulator phase with a 2kp spin-density wave for V < U/2.
Therefore, we introduce local order parameters for these
two gapful phases as Ocpw = (Zj(—l)jnj) and Opow =
<Zj0(—1)j(6‘;6cj+l,a + H.c.)). The bond order corresponds
to a charge-density wave where the density is located on the
bonds rather than on the sites as in the CDW. For the finite value
of Ocpw or Opow, a long-range order of the charge-density
wave or bond order wave state appears. Notice that both charge
and spin gaps are zero in a region near U = V = 0. In this
region, the system is a gapless Luttinger liquid [24]. In the
bond order wave phase with a Mott type insulating gap, both
charge and spin gaps are finite.

The BOW order parameter is well extrapolated [31] as a
function of L~X». For example, at U/t = 4 and by sweeping
the positive V, the SDW phase occurs with zero K,, and
afterwards we expect K, ~ 1/2 in the BOW phase near
the boundary of the SDW phase, and by increasing V, the
CDW phase takes place where K, becomes zero, as shown
in Fig. 3(a). Similar results have been reported in Ref. [31].
Therefore, since K, >~ 1/2, the BOW order parameter is scaled
betterby 1/ /L than by 1/L. The Opow correlation is shown as
a function of 1/+/L in Fig. 4(a)atn = land U/t = 4. We use
polynomial fits to evaluate the quantity in the thermodynamic
limit. Afterwards, the Ogow correlation in the L — oo as a
function of V is obtained and the results are shown in Fig. 4(b).
The BOW is located in a narrow strip between the spin- and
charge-density wave phases. For a given 2.5 < U/t < 6, we
find that there is a domain around V /¢t = 2 for which the
Ogow of the system is finite in L — oo. Furthermore, as V
increases, the charge fluctuations enhance and thus a transition
from a spin-density wave to a bond order wave occurs. The
boundary is determined where the spin gap begins to develop.
The occurrence of the bond order wave can be understood
as the result of increasing frustration in the spin degree of
freedom.

Our numerical results of the phase diagram at half filling
and for V > 0, apart from the bond order wave phase, are in
good agreement with those results obtained by a bosonization
theory in Ref. [32]. Moreover, the results show that there is a
discrepancy between the quantum phases at half and quarter
fillings due to the difference between the on-site and dipolar
energies for different fillings. Noticeably, the phase diagrams
shown in Fig. 1 are different from those results obtained by
the extended Hubbard model [27,33] due to the impact of the
dipole-dipole interaction. Essentially, the phase diagram of
the 1D dipolar system at n = 1/2 differs with that obtained
within the extended Hubbard model. For instance, an insulator
phase with a charge gap has been predicted within the extended
Hubbard model at quarter filling for the regime in which U /¢ >
6 and V/t > 4, however, it does not exist in a 1D dipolar
system, as shown in the bottom panel of Fig. 1.
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FIG. 4. (Color online) (a) Opow quantity as a function of 1 /«/Z
for different values of V at £ = 0. The lines indicate polynomial fits
to the data. (b) Opow quantity as a function of V (in units of ) for
the case of half filling at U = 4.

B. Polarized 1D lattice chain, & # 0

The FFLO phase [5] has recently attracted a lot of interest
from both experimental and theoretical groups [34] for spin
polarized systems. To obtain the FFLO phase, the pairing
operator A = ¢ 1614 1s no longer useful since a long-range
order is forbidden in 1D, however, the correlation functions
do not decay exponentially but as power laws, which is very
slowly. The correlation functions of the pairing operator

Cyi=(AJA) (8)

for different values of the spin polarization can be evaluated,
and our numerical results for the polarized system & # 0 show
that the pair correlation function decays with a power law
|l —{17V/K: at large distances. As the value of £ increases,
the power law of the correlation function transforms to an
oscillation function at large distances. For V < 0, the form of
the function differs with respect to V > 0. Moreover, the pair
correlation function increases by decreasing the value of U.

We investigate the oscillatory character of the pair correla-
tion function by studying the Fourier transform of the function.
Its Fourier transform is given by

1 L
Gpunk) = - 3 | Cije™ ). )
iJ

The peak of the pair momentum distribution is an indication
of a long-range order pair correlation in the system for
different &.
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FIG. 5. (Color online) DMRG pair momentum distribution as a
function of k for a system with L =40a at (a) U/t = —5 for the
potential energy —2 < V/t < 4 and at (b) V =0 for the on-site
energy —5 < U/t < 5 at half filling and £ = 0. Note that the well-
defined peaks at k = 0 denote the SF phase. By increasing U, the SF
phase disappears, which is in agreement with Fig. 1. (c) and (d) are
the DMRG pair momentum distributions as a function of k for the
same systems as (a) and (b), respectively, but at £ = 0.5. The system
is a spin polarized phase and well-defined peaks occur at kgpo.

The pair momentum distribution can determine the limita-
tion of the SF (for the case where & = 0) or FFLO phase in the
phase diagram. The pair momentum distribution for different
states and different interactions is illustrated in Fig. 5 at half
filling. We obtain a similar structure at quarter filling. For
U < 0and V > 0 the pair momentum distribution has a sharp
peak that disappears at a certain value of the dipole-dipole
interaction V. The value of V, increases with increasing U . For
V < 0, the pair momentum distribution is a constant function
in the Fourier space.

The ground state, for the unpolarized case, is the SF state
characterized by a sharp peak centered at momentum £ = O in
the pair momentum distribution G ;;(k) [Fig. 5(a)]. For & # 0,
the ground state is a 1D FFLO state with k # 0 [Fig. 5(c)].
Then the k value can be understood as an order parameter of
the FFLO phase. The momentum of the FFLO state kgp o,
at which Gp,;; shows a strong peak, is kppro = 7 N§/L. We
notice that, in Fig. 5(d), the value of kppro remains constant
for different interaction strengths, but it increases when the
filling of atoms increases to the half-filling value. The pair
momentum distribution function for quarter filling behaves as
half filling, however, its tail as a function of the momentum is
different.

The SF or FFLO phase in the fermionic system is the result
of the condensation of the pairs of fermions. If the total spin of
the pair is zero, the state of the two fermions will be a singlet
state superfluidity, however, the two fermions may be paired
in a triplet state superfluidity. Both the singlet and triple state
superfluidities extend to a wide range around V = 0 due to the
presence of the hopping term (see Figs. 1 and 6 for £ = 0.5).
For the case of the repulsive interaction, the system undergoes a
quantum phase transition from the SF to an insulator state. This
can be understood by noting that in the strongly interacting
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FIG. 6. (Color online) DMRG phase diagrams of the fermion
atoms with dipolar interactions for a £ = 0.5 1D lattice chain. At
half filling(top panel), a quantum TSF phase is similar to the case
of &£ = 0, however, the spin-density wave expands toward negative
U. The charge-density wave is modified by a mixed state of a
combination of the charge-density wave and narrow domains of the
ferromagnetic state. Moreover, at quarter filling (bottom panel), rich
quantum phases occur and the charge-density fluctuation expands
with larger V' values. The mesh in the horizontal axisis AV = 0.05z,
and the different phases are separated by lines where their thickness
is much larger than numerical errors.

regime, density fluctuations become energetically costly and
are therefore suppressed.

We examine the phase diagram at finite § = 0.5 (Ny > N)
and the results are illustrated in Fig. 6. The quantum TSF phase
is similar to the case of £ = 0 at half filling, however, the spin-
density wave expands toward negative U. A small bond order
wave region has taken place for larger U and V values. The
charge-density wave is modified by a mixed state of a combi-
nation of the charge-density wave and narrow domains of a fer-
romagnetic state (CDW-F), since it is energetically favorable.

In order to explore this phase, we show the density profiles
of the half-filled system for two spin channels at & = 0.5
in Fig. 7 for U/t = 2 [Fig. 7(a)] and U/t = —2 [Fig. 7(b)]
corresponding to CDW-F illustrated in Fig. 6. There are two
major features in these results. First, there is a CDW structure
for each spin channel in which the spin fluctuation is totally
suppressed at a short distance, and, second, there is a phase
shift in their oscillatory structures in such a way thatin U > 0,
the maximum of (n; 4) lies on the minimum of (n; ;) and vice
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FIG. 7. (Color online) Density profile of the particles as a func-
tion of lattice site for a CDW-F mixed state with V/t =4 and
(@) U/t =2 and (b) U/t = —2. A CDW structure for each spin
channel in which the spin fluctuation is totally suppressed at a
short distance is seen for U > 0. On the other hand, for U < 0,
the spin fluctuation does have a noticeable effect at short and close
neighborhoods, but the systems tend to the CDW-F state at larger
distances.

versa. Therefore, it shows a mixed state of the CDW phase
together with the ferromagnetic state. However, for U < 0, the
spin fluctuation does have a noticeable effect at short and close
neighborhoods, but the system tends to the CDW-F state at
larger distances. At quarter filling, on the other hand, there are
large amounts of quantum fluctuations, and the CDF expands
with the larger values of V. These features originate from a
competition between the on-site and the interaction energies
for imbalanced particle densities.

Finally, the system in the half-filling phase and in the fully
polarized case is a ferromagnetic Heisenberg chain model,
however, there is a rich diagram phase at quarter filling, as
shown in Fig. 8. The four stable phases (PS, CDF, CDW,
and TSF) are obtained. To determine the phase diagram in
this case, we calculate K, (=K, ), the charge and spin gaps
given by Eqs. (2)—(7) in the thermodynamic limit. The value
of K, is mostly smaller than unity for the range of the value
of V > 0 shown in Fig. 8(a). The CDF phase for which the
hopping energy is dominated is obtained by conditions in
which A # 0, however, A, = 0. The PS phase has taken
place for a large attractive interaction energy with different
hole concentrations. The density profile of the different phases
is shown in Fig. 8(b). The particle-hole density profile at the
large attractive interaction potential is a constant value n = 0.5
at V = 0 and then emerges to the charge-density wave at the
large repulsive interaction potential.

PHYSICAL REVIEW B 91, 085126 (2015)
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FIG. 8. (Color online) Luttinger parameter K, as a function of
the potential interaction (in units of ) at quarter filling for a fully
polarized case, & = 1, in the thermodynamic limit. The four stable
phases (PS, CDF, CDW, and TSF) are shown. Note that the results do
not depend on the on-site energy value. (b) A density profile of the
particles as a function of lattice site for different phases as shown in
(a)atU = 0.

IV. CONCLUSIONS

We have determined with quite good accuracy the ground-
state phase diagrams of the fermion atoms with on-site and
dipolar interactions in a 1D lattice at half and quarter filling
within the extended Hubbard model by utilizing DMRG
approach and finite-size scaling.

The model presents a rich phase diagram, depicted in Figs. 1
and 6, illustrating most relevant quantum phases in the (U, V)
plane in the 1D lattice of the dipolar system. The competition
between the on-site energy, the dipole-dipole interaction, and
the hopping energy, and, besides their quantum fluctuations,
generates different exotic phases in the system. We have
elaborated a pairing phase in a large area of the repulsive
interaction potential at quarter filling.

We have shown, at a given spin polarization, the existence
of six phases in the phase diagram and found that they are
sensitive to the spin degrees of freedom. In the half-filling
state, we have found the charge- and spin-density waves,
phase separation, and triplet and single superfluid phases in an
unpolarized system, however, the charge-density wave phase
changes qualitatively when the spin degree of freedom is 1/2
and other phases only change quantitatively in the (U, V') plane.
In the quarter-filling case, on the other hand, we have found
the spin-density wave, phase separation, triplet and singlet
superfluid, and charge- and spin-density fluctuation phases at
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finite £ values, whereas we have only found four stable phases
(phase separation, superfluid state, charge-density fluctuation,
and charge-density wave) in the fully spin polarized case. Our
obtained phase diagrams should be verified by experiments.
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