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Quantum entanglement plays a ubiquitous role in theoretical physics, from the characterization of novel phases
of matter to understanding the efficacy of numerical algorithms. As such, there have been extensive studies on the
entanglement spectrum (ES) of free-fermion systems, particularly in the relation between its spectral flow and
topological charge pumping. However, far less has been studied about the spacing between adjacent entanglement
eigenenergies, which affects the truncation error in numerical computations involving matrix product states or
projected entangled pair states. In this paper, we shall hence derive asymptotic bounds for the ES spacings through
an interpolation argument that utilizes known results on Wannier function decay. For translationally invariant
systems, the entanglement energies are shown to decay at a rate monotonically related to the complex gap between
the filled and occupied bands. This interpolation also demonstrates the one-to-one correspondence between the
ES and the edge states. Our results also provide asymptotic bounds for the eigenvalue distribution of certain types
of block Toeplitz matrices common in physics, even for those not arising from entanglement calculations.
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I. INTRODUCTION

Quantum entanglement has attracted intense interest in
recent years. It characterizes the amount by which classically
independent bits are correlated, and has been extensively used
in the study of novel phases and critical phenomena [1–21],
particularly of exotic topological states [22–24]. Information
about the extent of entanglement between two subsystems
is contained in the reduced density matrix (RDM) ρ, which
is obtained by tracing the density matrix over one of the
subsystems. The entanglement entropy (EE) is simply defined
by S = −tr(ρ ln ρ), while the entanglement spectrum (ES)
consists of all the eigenvalues of ρ, and contains more precise
information on the amount of entanglement [7].

Very importantly, the study of quantum entanglement has
also revolutionized the development of numerical computa-
tional methods, particularly those for gapped systems which
exploit the short-range entanglement between matrix product
states (MPS) in one dimension, and projected entangled pair
states (PEPS) in higher dimensions [25–28]. These methods
have a long legacy of triumphs, starting from the now ubiqui-
tous density-matrix renormalization group (DMRG) algorithm
[29]. With them, the physical properties of a large class
of systems are computed with hitherto unattained accuracy
and efficiency [30,31]. In essence, it drastically reduces the
complexity of the calculation by discarding irrelevant degrees
of freedom (DOFs) in a Schmidt decomposition. However,
there is a trade-off between gains in computational efficiency
and the truncation error incurred, the latter of which is bounded
by the decay rate of the entanglement spectrum (ES). Indeed,
it is of practical importance to have an analytic understanding
of the asymptotic properties of the entanglement spectrum.

As such, the main objective of this work will be to
concretely understand the asymptotic decay properties of
the ES of free-fermion systems. Our approach involves an
explicit interpolation between the ES of the system and its
Wannier polarization spectrum [32,33]. This interpolation
gives a physically intuitive picture relating wave function
localization and their entanglement properties, where the

imaginary gap that controls the wave function locality is
shown to also provide a rigorous lower bound for the decay
rate of the ES. It also gives a natural explanation for the
edge-state-entanglement spectrum correspondence that has
already garnered significant interest in the study of topological
condensed matter systems [15,19,34]. While entanglement
studies based on the aforesaid interpolation already exist in
the literature [20,35,36], they were primarily concerned about
similarities between the topological behavior of the Wannier
functions and the ES, and not their decay properties whose
quantitative study is the focus of this work.

The value of our analytic asymptotic bounds on the ES
potentially extend beyond problems on entanglement. This is
because mathematically, the ES of free fermions corresponds
to the eigenspectra of a certain class of matrices known as
block Toeplitz matrices with singular symbols (see Sec. IV
for a definition) which are ubiquitous in various areas of
physics, whenever there are translationally invariant systems
with internal DOFs and abrupt truncations. They appear, for
instance, in various spin chain models [37–39], dimer models
[40], impenetrable Bose gas systems [41], and full counting
statistics pertaining to certain nonequilibrium phenomena
involving quantum noise [42,43]. But due to considerable
mathematical difficulties, there has been no known explicit re-
sult for the asymptotic eigenspectra of such Toeplitz matrices,
except for the simplest few cases [38]. As such, we hope that
our asymptotic results will shed some additional light onto the
solutions of a wealth of physical problems, despite being just
asymptotic bounds. The reader is invited to read Appendix D
for more details on the history of Toeplitz matrices.

In this paper, we shall derive estimates for the asymp-
totic spacing between entanglement energies for generic
free-fermion lattice systems. Despite being asymptotic re-
sults, these estimates are in practice quite accurate beyond
the first one or two eigenenergies. Inspired by the edge
spectrum–entanglement spectrum correspondence suggested
in Refs. [7,10,11,13,15,19,44,45], we constructed an ex-
plicit interpolation between the Wannier operator and the

1098-0121/2015/91(8)/085119(13) 085119-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.085119


CHING HUA LEE AND PENG YE PHYSICAL REVIEW B 91, 085119 (2015)

single-particle correlator. This interpolation, which is the
highlight of this work, provides a physically motivated
explanation of the relation between the decay rate in the ES
and that of the Wannier spectrum. While our main results do
not require the system to be translationally invariant, if the
latter condition holds the essential behavior of the ES can be
directly expressed in terms of the complex-analytic properties
of the lattice Hamiltonian, the same properties that govern the
spatial rate of decay of the Wannier functions.

This paper is organized as follows. In Sec. II, we shall
introduce the entanglement spectrum and Wannier polarization
spectrum of free-fermion systems, and suggest how they may
be related. Following that will be Sec. III, where we present
Eq. (6), our key result for the asymptotic ES spacing. We
shall illustrate it through a toy example involving the Dirac
model, and prove it in detail via an interpolation between the
Wannier operator and the entanglement projector. Finally, we
shall discuss further applications of our results to the study of
block Toeplitz matrices in Sec. IV.

II. THEORETICAL FOUNDATIONS

A. Entanglement spectrum

Consider a free-fermion system described by a Hamiltonian
H =∑i,j f

†
i hij fj , with fi annihilating a fermion at site i. To

study its entanglement properties, we introduce a real-space
partition by defining a subregion A and its complement B = Ā

in the system. With these regions, we can define a reduced
density matrix (RDM) ρA by partially tracing out the degrees
of freedom (DOFs) of region B:

ρA = trB [|G〉 〈G|] , (1)

where |G〉 is the ground state of the system, and ρ =
|G〉 〈G| its full density matrix. For free-fermion systems, a
crucial simplification follows from the fact that all multipoint
correlation functions obey Wick’s theorem. This allows the
following Gaussian form [46] for RDM ρA:

ρA = e−HE , HE =
∑
i,j∈A

f
†
i hEijfj , (2)

where hE , known as the single-particle “entanglement Hamil-
tonian,” has a role superficially resembling that of a physical
Hamiltonian at finite temperature. This is further elaborated
in Appendix A. Furthermore, hE can be determined from the
two-point correlation function Cij = 〈G| f †

i fj |G〉 , i,j ∈ A,
via

hE = ln(C−1 − I), (3)

with I the identity matrix. C, being the correlator within
subsystem A, is obtained by projecting P , the correlation
matrix of the whole system, onto the subsystem A. Writing
R =∑i∈A |i〉 〈i| as the projection operator [35,36,47,48] that
implements the entanglement cut onto A, we obtain

Ĉ = RPR.

Now, P is also a projection operator, since it projects onto
the occupied states via P =∑n θ (−λn) |n〉 〈n|. Here |n〉 and
λn are the eigenstates and eigenvalues of the single-particle
Hamiltonian h, and θ (x) is the step function. For instance,

P =∑k θ (−εk) for a Fermi sea, while P = 1
2 [I − d̂(k) · σ ]

for a two-band free-fermion lattice Hamiltonian H (k) = d(k) ·
σ , where σi , i = 1,2,3, are the Pauli matrices.

Although P and R do not generically commute, the
eigenvalues of the operators RPR and PRP are in fact equal
because both P and R are projectors. This useful little fact
was shown in Refs. [36,47,48], and in fact holds for generic
basis-independent combinations of P and R. To facilitate the
entanglement-Wannier interpolation that we shall introduce
shortly, we shall henceforth identify the correlator C with

Ĉ ′ = PRP, (4)

with the entanglement spectrum, i.e., the eigenspectrum of hE ,
completely determined by the eigenspectrum of Ĉ or Ĉ ′ via
Eq. (3) or Eq. (4).

B. Wannier polarization spectrum

We next define the Wannier polarization spectrum. The
Wannier functions |ψ〉 are defined as the eigenfunctions of the
Wannier operator [49]

Ŵ = PXP, (5)

where P is the projectors onto the occupied bands as before,
and X = x

L
is the position operator that takes values between

0 and 1, where L is the length of the system in the direction
of x. The eigenvalues of Ŵ form the Wannier polarization
spectrum, which physically corresponds to the centers of mass
of the corresponding Wannier functions (WFs) ψ(x) = 〈x|ψ〉,
as plotted in Fig. 1. Essentially, the latter are the “best
possible” localized orbitals formed from the occupied DOFs,
and will reduce to delta function peaks when there are no
unoccupied bands, i.e., when P is trivial. That the WFs
are indeed maximally localized has been shown in various
sources such as Refs. [32,49]. For our purposes, their optimal
localization allows us to uniquely determine their real-space
decay rate which we shall utilize extensively later on. Note that
a periodic version of Ŵ , i.e., with X = e

2πix
L , is often used in

the literature instead [33,50–52], in order to be consistent with
the periodicity of the system. In our case, however, it is more
convenient to use the aperiodic version from Eq. (5) since we
will be studying the physics near the entanglement cut.

C. Comparison of Ĉ ′ and Ŵ

Evidently, the entanglement correlator Ĉ ′ = PRP and the
Wannier polarization operator Ŵ = PXP assume similar
mathematical forms although their physical interpretations are
quite different. Their only difference is that R is a step function
in real space, while X is a linear function. Their spectra are
compared in Fig. 1. In the rest of this paper, we shall explore
in depth the implications of interpolating between these two
operators.

III. MAIN RESULTS OF THE ENTANGLEMENT-WANNIER
CORRESPONDENCE

Here, we consider a generic D-dimensional free-fermion
system, and define the entanglement cut and the Wannier
operator to be along the same direction. For now we shall

085119-2



FREE-FERMION ENTANGLEMENT SPECTRUM THROUGH . . . PHYSICAL REVIEW B 91, 085119 (2015)

0 50

(a) (b) (c)

100
0

2

4

6

8

10

k
y

× 2π/100

si
te

s

0 50 100

0

0.5

1

k
y

× 2π/100

c

0 50 100
−40

−20

0

20

40

k
y

× 2π/100

ε n

FIG. 1. (a) The spectrum (Wannier polarization) of Ŵ for the Dirac model given by Eq. (7) with m = 1. We see a spectral flow of C1 = 1
site per 2π period of ky . (b) The spectrum of Ĉ ′ for the same model. Except for one eigenvalue belonging to the edge state which also exhibits
an analogous spectral flow from c = 0 to 1, the rest stay exponentially close to 0 and 1, i.e., are exponentially contained in one entanglement
partition. (c) Plot of the ES ε = ln(c−1 − 1), which shows the eigenvalues c very near 0 or 1 more clearly. The ES looks suggestively similar
to the Wannier polarization, with the same spectral flow, except that the eigenvalue spacings depend on ky . For clarity, we have used open
boundary conditions (BCs), so that only one edge state appears. Periodic BCs will be used in subsequent plots.

assume that the system is translationally invariant before
the cut, so the crystal momenta are well defined in the
perpendicular directions, and will be collectively denoted as
the k⊥ parameter. The result for broken translational symmetry
will be discussed at the end of this section.

A. The key result

Our key result is that the entanglement spectrum inherits the
spectral flow of the Wannier polarization spectrum, but with
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FIG. 2. Analytical [Eq. (6)] (top) and numerical (bottom) results
for the entanglement spectrum εn for the Dirac model with m = 0.5.
The x axis represents ky ∈ [0,2π ] while the y axis represents the
entanglement energies. Only the first few eigenvalues are plotted.
The spectra agree qualitatively, and in fact exactly at ky = 0 and π .

the gap between eigenvalues related to the imaginary gap of
the system. This will be shown via the interpolation between
Ĉ ′ and Ŵ in Sec. III C. Quantitatively, we write

εn,a(k⊥) ≈ [n + Xa(k⊥)]f (g(k⊥)), f (g) > 2g, (6)

where εn,a is the nth entanglement eigenenergy corresponding
to the band/edge a, and Xa(k⊥) is its Wannier polarization
(center of mass). f (g) is a monotonically increasing function
bounded below by 2g, where g(k⊥) is the decay rate of the
Wannier functions (WFs) that can be rigorously computed.

Let us first briefly comment on the salient features of result
Eq. (6). It states that the ES is approximately equally spaced,
as shown in Fig. 2, with the spacing depending monotonically
only on the Wannier decay rate g. Physically, g characterizes
the maximal possible localization of the wave function
using the available (occupied) states. Since entanglement
measures the corresponding quantum uncertainty behind a
real-space cut, it should depend monotonically on the amount
of the wave function “leaking” through the cut, which is
quantified by g.

The WS inherits a spectral flow from the Wannier po-
larization Xa . This flow arises inevitably due to a topo-
logical charge pumping mechanism, and has already been
thoroughly studied in other works [35,36,47,52]. In Sec. III C,
we shall justify this inheritance of spectral flow through
an interpolation argument between Ĉ ′ and Ŵ . Our simple
interpolation argument provides yet another “proof” of the
edge state–entanglement spectrum correspondence explored
in some other works mentioned in the introduction, together
with important quantitative estimates of the decay properties
of the ES.

B. Example: 2-D Dirac model

To make the above statements more concrete, we shall study
the example of a 2-D Dirac model with band Hamiltonian

HDirac(k) = d(k) · σ, (7)

where σi , i = 1,2,3, are the Pauli matrices, and d(kx,ky) =
(m + cos kx + cos ky, sin kx, sin ky). This is among the sim-
plest model that exhibits a nontrivial 1-parameter spectral flow
[19] due to nontrivial topology when |m| < 2. Without loss of
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generality, we shall assume that the cut be normal to the x

direction, so that k⊥ = ky is a good quantum number.
In Fig. 2, the analytic approximation to the entanglement

eigenvalues εn(ky) from Eq. (6) is compared against exact
numerical results. We see that they agree rather well, especially
for those farther from zero. This is encouraging, because the
decay rate g in Eq. (6) is exact in the asymptotic limit of large
n, which is numerically inaccessible.

To first order, f (g) may be (rather accurately) represented
by a simple linear ansatz

f (g(ky)) = (2 + A)g(ky) + J, (8)

where A and J are parameters that can be exactly determined
by exactly evaluating ES at ky = 0 or π . These are two points
where there exist exact analytic results for the block Toeplitz
matrices corresponding to the ES [37,53]. This will be derived
in detail in Appendix C 1 a. The physical interpretations of
A and J will be discussed in the context of the interpolation
argument in Sec. III C.

We also observe spectra flow of the entanglement eigenval-
ues in Fig. 2, which is present due to the nontrivial topology of
HDirac. The two sets of ES eigenvalues, one advancing by one
site and one receding by one site, represent the ES spectral
flow of the two entanglement cuts. Similar observations are
also discussed at length in Refs. [34,54]. Like the Wannier
polarization, the ES shifts by C1 sites upon one periodic
evolution of ky , where C1 is the Chern number (C1 = 1
here) of the Hamiltonian [35,36,47,52]. As suggested by the
Xa(k⊥) term in Eq. (6), this spectra flow is inherited from the
Wannier polarization, which we shall quantitatively derive in
Appendix C.

C. The entanglement-Wannier interpolation

In this subsection, we shall present the interpolation
between Ĉ ′ and Ŵ in detail, and justify our main result Eq. (6).

1. Definition of the interpolation

The interpolation operator (which is slightly different from
that in Ref. [36]) is given by

Ŵ (s) = PX(s)P = P [ÃXAÃ + B̃XBB̃]P, (9)

where Ã and B̃ are respectively the projectors onto regions A

and B. XA and XB are their position operators given by

XA(s) = s

L
x, (10)

XB(s) = 1 − s

L
(L − x). (11)

Here ÃXAÃ acts on region A which includes sites x =
1, . . . ,LA while B̃XBB̃ acts on region B which includes sites
x = LA + 1, . . . ,Lx . X(s = 1) = X is just the usual equally
spaced position operator linearly assigning values between
x = 0 and 1, while X(s = 0) = R is the coarse-grained
position operator taking only values of 0 and 1 in regions
A and B, respectively. Hence Ŵ (1) is the Wannier operator
while Ŵ (0) is the correlator corresponding to the entanglement
Hamiltonian.

2. Evolution under the interpolation

Now, we study how exactly the Wannier functions morph
into the eigenstates of the entanglement Hamiltonian, so as to
understand the relation between Wannier polarization and the
entanglement spectrum.

First, we note an important property of the maximally
localized WFs, which is that they decay exponentially, i.e.,
ψ(x) ∼ e−g|x| asymptotically. Their decay rate g is related
to the imaginary band gap between the occupied and empty
bands, which will be elaborated later. For most realistic
Hamiltonians, g ∼ O(1), so their WFs have very small
exponential tails within a few sites of their peaks. This implies
that most of the WFs, except for those straddling the cut, will
be mostly contained in one region, with an exponentially small
tail in the other.

As such, we can gain some insight by analyzing the
contributions of the ψ(s) from each region separately, where
ψ(s) is the eigenstate of the operator Ŵ (s):

ψ(s) = ψA(s) ⊕ ψB(s), (12)

where ψA(s) and ψB(s) are nonzero only in regions A and
B, respectively. When s = 1, ψ(s = 1) is just the Wannier
function.

Let us explore what happens when s is interpolated from 1
to 0. For definiteness, suppose that ψ(1) is mostly contained in
region A, i.e., ψA(1) differs by an exponentially small extent
from an eigenstate of PXAP . Then

Ŵ (s)ψ = PXA(s)PψA ⊕ PXB(s)PψB

≈ xA(s)ψA ⊕ PXB (s)PψB

= xA(s)PXB(s)Pψ. (13)

As we tune s → 0, ψA(s) will be modified to an exponentially
small extent. This is because the operator XA(s) remains linear
in x, and variations of s merely correspond to a rescaling
of coordinates [55]. A rescaling just introduces a scalar
multiplier, and does not change the eigenstates.

At the end of the interpolation s = 0, Ŵ (0) is just the
projector onto the occupied states in region B:

〈Ĉ ′〉 = 〈ψ(0)|Ŵ (0)|ψ(0)〉
= 〈ψA(0)|ĀXA(0)Ā|ψA(0)〉 + 〈ψB(0)|B̄XB(0)B̄|ψB(0)〉
= 0 + 〈ψB(0)|B̄XB(0)B̄|ψB(0)〉
= 〈ψB(0)|ψB(0)〉. (14)

While we do not yet understand how ψB(s) evolves with
the interpolation, we know that it should be approximately
proportional to its value ψB(1) at the start of the interpolation,
which can be rigorously computed. Since ψ(s = 1) ∼ e−g|x|
where x is the displacement from its center of mass (COM),
〈ψB(1)|ψB(1)〉 = ∫

B
dx|ψ(s = 1)|2 ∼ e−2gn, where n is num-

ber of sites the COM of ψ is from the entanglement cut. The
error from approximating ψB(0) by ψB(1) also scales like (a
small power of) e−gn. Hence

〈Ĉ ′〉 ≈ 〈ψB(0)|ψB(0)〉
∼ e−f (g)n, (15)
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FIG. 3. (Color online) Top left to bottom right: Plots of ln(w−1
s −

1), where ws are the eigenvalues of Ŵ (s) for s = 1,10−1,10−3, and
10−8. We see how the Wannier spectrum (s = 1) evolves into the ES
(s = 0). As s is decreased, Ŵ (s) tends towards a step function, and ws

tends towards 0 or 1 at a rate dependent on g(ky), the rate of decay of
the WFs. For s > 0, the ws’s are only exponentially spaced beneath
a certain length scale set by the finite gradient of Ŵ (s).

where f (g) > 2g takes into account both the decay rate of 2g

from ψB(1) before the interpolation and an additional error
introduced by the interpolation.

Since the above interpolation is never singular, we expect
a one-to-one correspondence between the Wannier spectrum
and the entanglement spectrum. Since a WF exists above each
site, away from the cut the entanglement energies are, from
Eq. (3),

εn ∼ ln(ef (g)n − 1)

∼ f (g)n. (16)

Although this linear dependence on n strictly holds only for
asymptotically large n, it holds true to better than 99% for
n > 2, as evident in numerical computations (Figs. 1 and
3). Analogous results hold when ψ were mostly localized in
region B instead.

In the above, it was assumed that each WF ψ(1) was exactly
localized n sites away from the cut. In general, this may be not
true, especially for topologically nontrivial systems [52,56].
We then have to replace n by n + Xa , where Xa is the Wannier
polarization (shift of COM) of band a, yielding Eq. (6):

εn,a(k⊥) ≈ [n + Xa(k⊥)]f (g(k⊥)), (17)

where k⊥ contains the momentum components transverse to
the normal of the cut.

D. The Wannier decay rate g elaborated

The decay rate g and hence the lower bound for the spacing
of the ES can be determined precisely. A result in Fourier
analysis, which will be proved in detail in Appendix B, states
that if

ψ(x) =
∫

dkeikxeiθ(k)ψ(k), (18)

then ψ(x) decays like ψ(x) ∼ e−gx , where eiθ(k)ψ(k) has
a singularity at Im(k) = g, but is analytic for Im(k) < g.
When θ (k) is chosen such that ψ(x) is maximally localized,
both θ (k) and ψ(k) depend explicitly [33,50] only on the
projector to occupied bands P (k). Thus g is just the distance
from the real k axis where P (k) ceases to be analytic, i.e.,
when the gap between the occupied and unoccupied bands
closes. Intuitively, a complex momentum entails a real-space
decaying wave function because |ψ(k)| ∼ |ei{Re(k)+i[Im(k)]}x | ∼
e−Im(k)x .

When there are only two bands, H (k) = σ · d(k) and
P (k) = 1

2 (I − d̂ · σ ). So g is simply g = min[|Im(k0)|], where
|d(k0)| = 0. This is explicitly worked out for the Dirac model
in Appendix C. When there are more than two bands, the
projector may not always be expressible in closed form [57].
However, g will always be a well-defined quantity that can be
obtained numerically.

In more than one dimension, a different decay rate g(k⊥)
can exist for each dimension, with k⊥ denoting the momenta
from the other directions.

E. Generalization to systems without translational symmetry

We have previously focused only on translationally invari-
ant systems with a well-defined Wannier decay rate. However,
the gist of the Wannier interpolation argument still holds
true without requiring translation invariance at all. Wannier
functions have well-defined decay rates even in the absence
of translation symmetry, i.e., in a magnetic field where it is
broken down to the magnetic translation subgroup.

In this general setting, Eq. (6) is modified to

εn,a⊥ ≈ f̃ (n + Xa⊥ ), (19)

where f̃ is a generically nonlinear function. Here, a⊥ refers to
the residual collection of good quantum numbers, which can
still include a transverse momentum k⊥ if translation symmetry
is not broken in that direction. From Eq. (16), the form of
f̃ depends precisely on the decay behavior of the Wannier
function at each position n away from the cut. For instance,
the orbitals of a system in a magnetic field possess a Gaussian
profile, so f̃ should be a quadratic function.

IV. RELATION TO EIGENSPECTRA OF BLOCK
TOEPLITZ MATRICES

In this short section, we shall discuss how our key result
Eq. (6) provides insights on the nature of the eigenspectra
of certain kinds of block Toeplitz matrices, even those that
did not originally occur in entanglement calculations. As
foreshadowed in the introduction, such Toeplitz matrices are
ubiquitous in diverse areas of physics. Unfortunately, exact
analytic characterization of their eigenspectra is fraught with
mathematical difficulties.

Block Toeplitz matrices are finite matrices T with transla-
tional invariance along each diagonal, i.e., Tij = Ti−j , where
each Tij is also a matrix which represents the internal DOFs
belonging to each site. A Toeplitz matrix can be characterized
by its symbol, which is defined as the Fourier transform along
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one of its rows (or columns):

g(k) = 1

2π

∫ π

−π

Txe
ikxdx. (20)

Loosely speaking, g(k) is the “momentum-space” representa-
tion of the matrix T , and a singular g contains a momentum-
space branch point which can be interpreted as a momentum-
space projector.

To illustrate how Toeplitz matrices appear in the calculation
of entanglement spectra, we review a simple class of 2-band
Hamiltonians whose ES have been analytically studied [53].
Consider a Hamiltonian given by H = σ · d, so that the
projector to the occupied band P is given by P = 1

2 (I − d̂ · σ ).
If only d1 and d2 are nonzero, the eigenvalues ε̂ of P can be
expressed as the roots of Det(iε̂I + I−	̂′

2 ), where

	̂′ =
⎛⎝ 0 d1−id2√

d2
1 +d2

2−d1−id2√
d2

1 +d2
2

0

⎞⎠ =
⎛⎝ 0

√
d1−id2
d1+id2

−
√

d1+id2
d1−id2

0

⎞⎠ .

(21)

For the purpose of calculating the entanglement spectrum with
a cut parallel to the y direction, we consign k⊥ = ky to an
external parameter and consider the analytic properties of kx .
As kx is periodic, d1 ± id2 will be a function of e∓ikx . We can
analytically continue 	̂′ to complex values of kx by letting
it be a meromorphic function of z = eikx . Since the analytic
continuation is unique, e−ik → 1/z not just on the unit circle
where kx is real, but over the whole complex plane. For local
Hamiltonians, we can write 	̂′ in terms of a polynomial p(z)
and winding function φ(z) via

	̂′ =
⎛⎝ 0

√
p(z)

z2np(1/z)

−
√

p(1/z)
z−2np(z) 0

⎞⎠ =
(

0 φ(z)

− 1
φ(z) 0

)
. (22)

This is exactly the matrix in Eq. (43) of Ref. [53]. If we want
to find the entanglement entropy, we will need to project the
	̂′ onto region A, i.e., find the eigenvalues of R	′R. This
can be done by Fourier-transforming 	̂′ onto real space and
taking open boundary conditions. Mathematically, the real
space 	̂′(x,x ′) is a finite 2LA × 2LA block Toeplitz matrix
generated by the symbol 	̂′(z), i.e.,

	̂′
ij (x,x ′) =

∮
	̂′

ij (z)dz

zx−x ′+1
, (23)

where 2 is the dimension of the internal degrees of freedom
and LA is the number of sites in region A.

Clearly, the ES of generic Hhamiltonians with N bands
must be given by the eigenvalues of analogous block Toeplitz
matrices with N × N blocks. The finite size of the Toeplitz
matrix mathematically implements the entanglement cuts [58].

While the eigenspectrum of Toeplitz matrices without
internal DOFs can be obtained rather easily through methods
such as Wiener-Hopf factorization, those of block Toeplitz
matrices (i.e., with internal DOFs) are much more elusive. In
Appendix C 1 a, we introduce some known results regarding
d1,d2 of certain functional form, and then show how they, with
the help of Eqs. (6) and (C1), can be directly extrapolated to

more general cases involving d1,d2, and d3. Indeed, the physi-
cal intuition that led to these two equations has provided a way
to understand the eigenspectrum of the corresponding more
general block Toeplitz matrices, whose rigorous mathematical
characterization is challenging.

V. CONCLUSION

We have derived asymptotic bounds on the behavior of
the entanglement spectrum of free-fermion lattice systems,
and shown how it is related to the Wannier function decay
rate which is in principle exactly computable. The asymptotic
bound can be made precise when exact results are known
at certain points in parameter (transverse momentum) space,
as demonstrated in our example. Although we have only
explicitly worked out the case with two bands, the general case
follows directly, with the eigenenergies from each occupied
band having their own spectral flow. Similarly, our results can
be extended to higher dimensions by treating the momentum
in each additional transverse direction as a parameter.
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APPENDIX A: RELATION BETWEEN ENTANGLEMENT
SPECTRUM AND SINGLE-PARTICLE

CORRELATION FUNCTION

The relation shown in Eq. (3) is a known result that
first appeared in Ref. [46]. In this Appendix, we present its
derivation in detail.

The equal-time one-particle correlation function of a
fermionic system is defined as Ci,a;j,b = 〈f †

i,afj,b〉, where
i,j, . . . , denote spatial coordinates, and, a,b, . . . denote spinor
(for true relativistic spins) / band indices (for pseudospins).
The average 〈...〉 is taken with respect to the ground state |GS〉
which is a pure state. The second-quantized Hamiltonian H
can be expressed as H =∑i,j,a,b f

†
i,ahi,a;j,bfj,b, where hi,a;j,b

is the single-particle Hamiltonian and fermionic operators
f,f † obey anticommutation relations. In this fermionic basis,
the correlation function is a Hermitian matrix C with row
indices (i,a) and column indices (j,b). Let us first check the
following very useful property:

C2 = C. (A1)

Consider the equal-time four-point correlation function (here,
i,j,k temporarily incorporate internal indices for convenience)∑

k

〈f †
i fkf

†
k fj 〉 =

∑
k

〈f †
i fk〉〈f †

k fj 〉 + 〈f †
i fj 〉

∑
k

〈fkf
†
k 〉

(A2)
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by means of Wick contraction in a Slater-determinant wave
function. Since the total particle number operator N̂ =∑

i,a f †f commutes with H , indicating the |GS〉 has definite
total particle number (different quantum number = different
kind of particles), say N . Consequently,

∑
k〈fkf

†
k 〉 = N0 − N

where N0 is the maximum of single-particle quantum states.
Therefore,∑

k

〈f †
i fkf

†
k fj 〉 =

∑
k

〈f †
i fk〉〈f †

k fj 〉 + 〈f †
i fj 〉 (N0 − N ).

(A3)

On the other hand,∑
k

〈f †
i fkf

†
k fj 〉

=
〈
f

†
i

(∑
k

fkf
†
k

)
fj

〉
= 〈f †

i (N0 − N̂ )fj 〉

= N0〈f †
i fj 〉 − 〈f †

i N̂fj 〉 = N0〈f †
i fj 〉 − (N − 1)〈f †

i fj 〉
= 〈f †

i fj 〉 + 〈f †
i fj 〉 (N0 − N ). (A4)

Therefore,
∑

k〈f †
i fk〉〈f †

k fj 〉 = 〈f †
i fj 〉, indicating that

C2 = C.
Next, let us consider a 2 + 1-D free-fermion system. In

the x-y plane, we spatially partition the system into two
subsystems defined as x > 0, subsystem A; x < 0, subsystem
B. The y direction obeys periodic boundary conditions while
the boundary condition of the x direction is unimportant.
Suppose that the lattice constants in the x direction and y

direction are a and b, respectively. Therefore, C must be a
function of momentum ky ∈ (−π/b,π/b). Hence from now
on, all site indices i,j, . . . denote merely the x coordinates,
and C = {Cky

i,a;j,b}. Schematically, C is decomposed into four
parts:

C =
(

CAA CAB

CBA CBB

)
, (A5)

where CAA = C
†
AA, CBB = C

†
BB , CAB = C

†
BA. Each part is

labeled by a given momentum ky . The requirement C2 = C

leads to

CAA(1 − CAA) = CABC
†
AB, (A6)

CBB(1 − CBB) = C
†
ABCAB, (A7)

CAB(1 − CBB) = CAACAB. (A8)

Suppose CAA is NA × NA and CBB is NB × NB . Then, CAB is
NA × NB while CBA is NB × NA. Let us apply SVD (single-
valued decomposition) on off-diagonal submatrix CAB :

CAB = U†DV, (A9)

whereU andV are NA × NA and NB × NB unitary matrices. D
is a NA × NB matrix with nonnegative real diagonal elements
and zero else. Accordingly,

CBA = C
†
AB = V†DTU , (A10)

with superscript T denoting the “transpose” operation. It
is thus straightforward to obtain CABC

†
AB = UDDTU and

C
†
ABCAB = VDT DV . Then, Eqs. (A6), (A7), and (A8) are

transformed to

UCAA(1 − CAA)U† = DDT , (A11)

VCBB(1 − CBB)V† = DT D, (A12)

DV(1 − CBB)V† = UCAAU†D. (A13)

We define C̃AA ≡ UCAAU†, C̃BB ≡ VCBBV†. Then,

C̃AA(1 − C̃AA) = DDT , (A14)

C̃BB(1 − C̃BB) = DT D, (A15)

D(1 − C̃BB) = C̃AAD. (A16)

Since both DDT and DT D are diagonal, the SVD
operation simultaneously diagonalizes the four parts of
C. That is, C̃AA = diag(λ1, . . . ,λNA

). Furthermore, with-
out loss of generality, we assume NA � NB . According
to Eq. (A14), DDT = diag(λ1(1 − λ1), . . . ,λNA

(1 − λNA
)).

Then, DT D = diag(λ1(1 − λ1), . . . ,λNA
(1 − λNA

),0, · · · ,0),
where there are NB − NA zero diagonal terms in addi-
tion. The NA × NB matrix D has NA diagonal elements
{√λ1(1 − λ1), . . . ,

√
λNA

(1 − λNA
)}. According to Eq. (A16),

the solution to Eq. (A15) is only one case: C̃BB = diag(1 −
λ1, . . . ,1 − λNA

,0, . . . ,0). Therefore,

C =
(
U† 0
0 V†

)(
C̃AA C̃AB

C̃BA C̃BB

)(
U 0
0 V

)
. (A17)

Each column of (U 0
0 V) forms an orthonormal vector in

NA + NB dimensional vector space. Since the off-diagonal
submatrices are zero, U and V independently form two sets of
orthonormal vectors. These two sets are again orthogonal to
each other:

U = {|nA〉} , n = 1,2, . . . ,NA, (A18)

V = {|nB〉} , n = 1,2, . . . ,NB, (A19)

〈nA|n′
B〉 = 0. (A20)

In second-quantized language, each single-particle state |nA〉
(|nB〉) can be created from the single-body vacuum state |0nA〉
(|0nB〉) by a fermionic creation operator 	

†
nA (	†

nB):

|n〉A = 	
†
nA|0nA〉, |n〉B = 	

†
nB |0nB〉. (A21)

Their corresponding eigenvalues “λn” and “1 − λn” are the
probability of occupying the states, respectively. These opera-
tors satisfy the anticommutation relation:

{	nA,	
†
n′A} = δnn′ , {	nB,	

†
n′B} = δnn′ , (A22)

and zero for else.
Let us define the many-body vacuum states:

|0A〉 ≡
⊗

n

|0nA〉, |0B〉 ≡
⊗

n

|0nB〉. (A23)
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Let us also define the many-body cut ground states of
subsystems A and B, respectively:

|�A〉 ≡
⎛⎝∏

n� 1
2

	
†
nA

⎞⎠ |0A〉, |�B〉 ≡
⎛⎝∏

λn<
1
2

	
†
nB

⎞⎠ |0B〉,

(A24)

where the ordering of fermionic operators is presumed to be
“	NA

· · ·	2	1”. From the previous page, the ground state |GS〉

of the whole system is written as

|GS〉 =
[∏

n

(
√

λn	
†
nA +

√
1 − λn	

†
nB)

]
|0A〉 ⊗ |0B〉,

(A25)

which can be reexpressed as

|GS〉 =
∏
n

(√
λn	

†
nA +

√
1 − λn	

†
nB

)
· |0A〉 ⊗ |0B〉

=
∏

λn� 1
2

(√
λn	

†
nA +

√
1 − λn	

†
nB

)
·
∏

λn<
1
2

(√
λn	

†
nA +

√
1 − λn	

†
nB

)
· |0A〉 ⊗ |0B〉

∝
∏

λn� 1
2

(
	
†
nA +

√
1 − λn√

λn

	
†
nB

)
·
∏

λn<
1
2

(
	
†
nB +

√
λn√

1 − λn

	
†
nA

)
· |0A〉 ⊗ |0B〉

=
∏

λn� 1
2

(
	
†
nA +

√
1 − λn√

λn

	
†
nB	nA	

†
nA

)
·
∏

λn<
1
2

(
	
†
nB +

√
λn√

1 − λn

	
†
nA	nB	

†
nB

)
· |0A〉 ⊗ |0B〉 (A26)

=
∏

λn� 1
2

[(
1 +

√
1 − λn√

λn

	
†
nB	nA

)
	
†
nA

]
·
∏

λn<
1
2

[(
1 +

√
λn√

1 − λn

	
†
nA	nB

)
	
†
nB

]
· |0A〉 ⊗ |0B〉

= e

∑
λn� 1

2

√
1−λn√
λn

	
†
nB	nA

⎛⎝∏
λn� 1

2

	
†
nA

⎞⎠ · e

∑
λn< 1

2

√
λn√

1−λn
	
†
nA	nB

⎛⎝∏
λn<

1
2

	
†
nB

⎞⎠ · |0A〉 ⊗ |0B〉

= e

∑
λn� 1

2

√
1−λn√
λn

	
†
nB	nA · e

∑
λn< 1

2

√
λn√

1−λn
	
†
nA	nB

⎛⎝∏
λn� 1

2

	
†
nA

⎞⎠⎛⎝∏
λn<

1
2

	
†
nB

⎞⎠ · |0A〉 ⊗ |0B〉 (A27)

= e

∑
λn� 1

2

√
1−λn√
λn

	
†
nB	nA+∑

λn< 1
2

√
λn√

1−λn
	
†
nA	nB |�A〉 ⊗ |�B〉. (A28)

In line (A26), we have inserted 	nA	
†
nA|0A〉 = (1 − 	

†
nA	nA)|0A〉 = (1 − 0)|0A〉 = |0A〉, and 	nB	

†
nB |0B〉 = (1 −

	
†
nB	nB)|0B〉 = (1 − 0)|0B〉 = |0B〉. In line (A27), the operator (

∏
λn� 1

2
	
†
nA) commutes with e

∑
λn< 1

2

√
λn√

1−λn
	
†
nA	nB . In the last

line, the operator
∑

λn� 1
2

√
1−λn√
λn

	
†
nB	nA commutes with

∑
λn<

1
2

√
λn√

1−λn
	
†
nA	nB .

Since we are on a cylinder, ky is good quantum number. Multiplying the above results for each ky , we obtain the true ground
state of whole system:

|GS〉 =
⊗
ky

∣∣GSky

〉
, (A29)

where |GSky
〉 is given by adding label ky :

	nA → 	nA;ky
, 	nB → 	nB;ky

, |GS〉 → ∣∣GSky

〉
, λn → λ

ky

n , (A30)

so that ∣∣GSky

〉 =∏
n

(√
λ

ky

n 	
†
nA;ky

+
√

1 − λ
ky

n 	
†
nB;ky

)
· |0A〉 ⊗ |0B〉

= exp

⎧⎪⎨⎪⎩
∑

λ
ky
n � 1

2

(
λ

ky

n

−1 − 1
) 1

2
	
†
nB;ky

	nA;ky
+
∑

λ
ky
n < 1

2

(
λ

ky

n

−1 − 1
)− 1

2
	
†
nA;ky

	nB;ky

⎫⎪⎬⎪⎭∣∣�A,ky

〉⊗ ∣∣�B,ky

〉
. (A31)
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Alternatively, we can expand the exponential in Taylor series by considering anticommutation algebra:

∣∣GSky

〉 = ∣∣�A,ky

〉⊗ ∣∣�B,ky

〉+
⎧⎪⎨⎪⎩
∑

λ
ky
n � 1

2

(
λ

ky

n

−1 − 1
) 1

2
	
†
nB	nA;ky

+
∑

λ
ky
n < 1

2

(
λ

ky

n

−1 − 1
)− 1

2
	
†
nA;ky

	nB;ky

⎫⎪⎬⎪⎭∣∣�A,ky

〉⊗ ∣∣�B,ky

〉

= ∣∣�A,ky

〉⊗ ∣∣�B,ky

〉+ ∑
λ

ky
n < 1

2

(
λ

ky

n

−1 − 1
)− 1

2

	
†
nA;ky

∣∣�A,ky

〉⊗ 	nB;ky

∣∣�B,ky

〉

+
∑

λ
ky
n � 1

2

(
λ

ky

n

−1 − 1
) 1

2

	nA;ky

∣∣�A,ky

〉⊗ 	
†
nB;ky

∣∣�B,ky

〉
. (A32)

By definition, the following normalization is satisfied:〈
�A,ky

∣∣�A,ky

〉 = 1,
〈
�B,ky

∣∣�B,ky

〉 = 1, (A33)

such that, for λ
ky

n < 1
2 ,〈

�A,ky

∣∣	nA;ky
	
†
nA;ky

∣∣�A,ky

〉 = 〈�A,ky

∣∣(1 − 	
†
nA;ky

	nA;ky

)∣∣�A,ky

〉 = 〈�A,ky

∣∣(1 − 0)
∣∣�A,ky

〉 = 1,〈
�B,ky

∣∣	†
nB;ky

	nB;ky

∣∣�B,ky

〉 = 〈�B,ky

∣∣1∣∣�B,ky

〉 = 1

and for λ
ky

n � 1
2 , 〈

�B,ky

∣∣	nB;ky
	
†
nB;ky

∣∣�B,ky

〉 = 〈�B,ky

∣∣(1 − 	
†
nB;ky

	nB;ky

)∣∣�B,ky

〉 = 〈�B,ky

∣∣(1 − 0)
∣∣�B,ky

〉 = 1,〈
�A,ky

∣∣	†
nA;ky

	nA;ky

∣∣�A,ky

〉 = 〈�A,ky

∣∣1∣∣�A,ky

〉 = 1.

Therefore, we can read out the entanglement energy
εn(ky) (which forms the entanglement spectrum) directly from
Eq. (A32):

e−εn(ky ) =
(
λ

ky

n

−1 − 1
)−1

, (A34)

which agrees with Eq. (3).

APPENDIX B: EXPONENTIAL DECAY RATE OF THE
WANNIER FUNCTIONS

In this Appendix, we shall show prove that the Fourier
coefficients ψ(x) in Eq. (18), i.e.,

ψ(x) ∝
∫

dkeikxeiθ(k)ψ(k), (B1)

decay like ψ(x) ∼ e−gx , where eiθ(k)ψ(k) has a singularity at
Im(k) = g, but is analytic for Im(k) < g. This is an important
theorem that our key result Eq. (6) prominently relies on. A
similar proof can already be found in for instance Refs. [59]
or [60], though in different contexts. Here, we shall reproduce
it in a way tailored to our context.

Since ψ(k) is an eigenfunction of the Hamiltonian h(k) (up
to a phase factor), it belongs to a degenerate eigenspace when
there the gap closes. Consider the analytic continuation (with
abuse of notation) of ψ(k) into ψ(z) = ψ(eik):

ψ(z) =
∑
x�0

ψ(x)

2

(
zx + 1

zx

)
. (B2)

Due to the theorem of Monera and the fact that h(z) is real on
the unit circle |z| = 1, ψ(z) necessarily has a singularity (pole

or branch point) inside the unit circle. Let z0 be the singularity
of largest magnitude inside the unit circle. We want to show
that

|ψ(x)| ∼ |z0|x = e−gx (B3)

up to a proportionality factor, where |z0| < 1. In particular,
there is a constant C such that |ψx | < C|z0|x . This is a known
result [60,61], and in the next paragraph we sketch a simple
derivation suitable for our context.

Since ψ(z) is analytic for |z| > |z0| within the unit circle,
the series Eq. (B2) must converge in that region. As Eq. (B3)
must hold for some value of |z0| for this series to converge at
all inside the unit circle, for z such that |z0| < |z| < 1,

|ψ(z)| <
∑
x�0

|ψ(x)|
|z|x < C

∑
x�0

∣∣∣∣z0

z

∣∣∣∣x < ∞. (B4)

In addition, ψ(z) fails to be analytic at z0, so the above series
must diverge when |z| = |z0|. This implies that |ψ(x)| must
asymptotically decay like |z0|x , thus proving Eq. (B3).

APPENDIX C: DETAILS ON THE ENTANGLEMENT
SPECTRUM OF THE DIRAC MODEL

There are two main mathematical quantities to determine
in Eq. (6): They are the monotonically increasing function
f (g(ky)), and the Wannier polarization X±(ky), where ± label
the ES corresponding to the two entanglement cuts.
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1. Determination of linear ansatz parameters

To a first approximation, the function f (g) is given by

f (g) = (2 + A)g + J, (C1)

where A and J are parameters. In the case of the Dirac
models, there indeed exist two points ky = 0 and π where
the entanglement spectra can be rigorously solved. A and J

can thus be obtained by fitting Eqs. (6) and (C1) with the exact
results.

At ky = 0 or π , the Hamiltonian is given by H = σ ·
d, where d(k) = (m + cos kx + cos ky, sin kx, sin ky) = (m ±
1 + cos kx, sin kx,0); i.e., only d1 and d2 are nonzero. In such
cases, there exist exact analytic results for the asymptotic
spacing between entanglement eigenvalues:

lim
n→∞(εn+1 − εn)

= [3 − sgn(−m ∓ 1 − 2)]
π

2

I (
√

1 − |(m ± 1)/2|2)

I (|(m ± 1)/2|) ,

(C2)

where the ∓ refers to ky = 0 or ky = π and I (κ) =∫ 1
0

dx√
(1−x2)(1−κ2x2)

is the complete elliptic integral of the first

kind [62,63]. This impressive result from Eq. (C6) will be
explained in more detail later in this Appendix; here we just
mention that A and J can be known by comparing it with
εn+1 − εn ≈ (2 + A)g(ky) + J , where ky = 0 or π .

To find g(0) and g(π ), we solve for h(k0,ky) = d2
1 + d2

2 =
0, and identify g with Im(k0). It is easily shown that the
gap closes at complex k0 = [1 + sgn(P )]π/2 + i cosh−1 |P |,
where

P = 2 + m2 + 2m cos ky

2(cos ky + m)
= 2 + m2 ± 2m

2(m ± 1)
. (C3)

Hence g(0) = cosh−1 1
2 ( 1

m+1 + m + 1) and g(π ) =
cosh−1 1

2 ( 1
m−1 + m − 1), and A,J can be easily obtained.

a. The exact ES for certain 2-band Hamiltonians through
Toeplitz matrices

Here we discuss some known exact results for the eigen-
spectrum of 2-band models, with the goal of obtaining
Eq. (C2). Consider d1(kx),d2(kx) (with ky as a parameter) of
the form

d1(kx) = cos kx − α/2, (C4)

d2(kx) = γ sin kx, (C5)

with γ �= 0 and α > 0 so the system is gapped. For our Dirac
model at ky = 0 or π , α = −2m ∓ 2 and γ = 1. Although the
exact eigenspectrum of block Toeplitz matrices are notoriously
hard to compute, in the current case a brilliant solution was
found by [38]. The asymptotic (large LA) spacing between the
eigenvalues was found to be

lim
n→∞(εn+1 − εn) = [3 − sgn(α − 2)]

π

2

I (
√

1 − κ2)

I (κ)
, (C6)

which tends towards a constant, unlike those of critical 1-D
systems which go like ∝ 1

ln LA
. Here

κ =
√

α2/4 + γ 2 − 1/γ if 4(1 − γ 2) < α2 < 4

κ =
√

(1 − α2/4 − γ 2)/(1 − α2/4) if α2 < 4(1 − γ 2)

κ = γ /
√

α2/4 + γ 2 − 1 if α > 2

with κ ′ = √
1 − κ2. For the Dirac model, the first (third) case

applies when (m ± 1)2 < 1 [(m ± 1)2 > 1]. As a bonus, we
also have exact expression for the entanglement entropy:

SA = 1

6

[
ln

κ2

16κ ′ +
(

1 − κ2

2

)
4I (κ)I (κ ′)

π

]
+ ln 2 (C7)

for α < 2, and

SA = 1

12

[
ln

16

κ2κ ′2 + (κ2 − κ ′2)
4I (κ)I (κ ′)

π

]
(C8)

for α > 2. All these results can be obtained via a detailed
analysis of the pole positions of φ(z) in Eq. (22). Note that SA

tends to a constant asymptotically, unlike in the critical case.
The entanglement entropy of the whole system will then by
proportional to the length of the cut Ly , in agreement with
well-known area laws [4–7,64].

2. Wannier polarization for the entanglement spectrum

For a single occupied band, the Wannier polarization is
given by [33]

X(ky) = 1

2π

∫ 2π

0
ψ†(kx,ky)∂kx

ψ(kx,ky)dkx, (C9)

where ψ(kx,ky) is the occupied (lower energy) eigenstate. For
the Dirac model, we explicitly have

ψ(kx,ky) = 1

N
(−sin kx + i sin ky,m(+ cos kx + cos ky) + λ)T,

(C10)

where the normalization factor is N =√
2λ[(m + cos kx + cos ky) + λ] with λ =√
sin2 kx + sin2 ky + (m + cos kx + cos ky)2. A few simpli-

fications are in order. We write ψ = (a + bi)/N , where a and
b are real vectors. As |ψ |2 = a2 + b2 = 1 is a constant, the
real parts of ψ†∂kx

ψ must disappear. Hence

ψ†∂kx
ψ = i

[
(b/N )∂kx

(a/N ) − (a/N )∂kx
(b/N )

]
= i

N2

(
b∂kx

a − a∂kx
b
)

= i

N2

(− sin ky∂kx
sin kx

)
= −i sin ky cos kx

2λ[(m + cos kx + cos ky) + λ]
. (C11)

085119-10



FREE-FERMION ENTANGLEMENT SPECTRUM THROUGH . . . PHYSICAL REVIEW B 91, 085119 (2015)

Thus the exact integral expression for the polarization is

X(ky) =
∫ 2π

0

− sin ky cos kx

2π
√

sin k2
x + sin k2

y + (m + cos kx + cos ky)2
[√

sin k2
x + sin k2

y + (m + cos kx + cos ky)2 + m + cos kx + cos ky

]
× dkx. (C12)

This is a complicated but tractable integral, and its full form
must be retained to maintain accuracy over all values of m,
especially in the topologically nontrivial regime |m| < 2 where
the polarization has a winding of ±1 upon ky → ky + 2π . In
the ES given by Eq. (6), we use X(ky) and 2π − X(ky) for the
spectra corresponding to the two different edges.

APPENDIX D: PRIMER ON TOEPLITZ MATRICES

Here, we provide an overview of the history and develop-
ment of Toeplitz matrices, so as to put our asymptotic estimates
of the spectra of Toeplitz eigenvalues in better perspective. We
have included it as a separate Appendix so as not to distract
readers from the goal of this work, which is to quantita-
tively understand the asymptotic properties of entanglement
spectra.

Toeplitz matrices are finite-sized matrices that have trans-
lational symmetry along each diagonal. They appear in a
wide variety of applications, from the thermodynamic limit of
the 2D classical Ising model and its generalizations [65–67],
various spin chain models [38,39,53], dimer models [40],
impenetrable Bose gas systems [41], to full counting statistics
and certain nonequilibrium phenomena [42,43]. In a celebrated
result by Potts and Ward [68], the spin-spin correlator of the
2D Ising model is expressed as a Toeplitz determinant. In other
settings, the asymptotic limits of the eigenvalues of Toeplitz
matrices are essential in the calculation of the entanglement
spectrum and entropy, such as the XX and XY quantum spin
chains and their equivalent free-fermion problems [53]. Of
more exigent physical importance is the use of Toeplitz
determinants in computing the correlation functions of dimer
models that arise in high-temperature superconductors [40].
Such models, which are equivalent to certain 2D Ising models
[69–72], have been used to study the possibility of realizing
Anderson’s RVB liquid in valence-bond dominated phases
[73–75]. More recently, Toeplitz matrices have also been
studied in the context of quantum noise, for instance through
the calculation of the full counting statistics of 1-D fermions
[76] or their nonequilibrium interactions via bosonization in
the framework of the Keldysh action formalism [43].

In these above-mentioned applications, quantities of phys-
ical interest are usually computed in the thermodynamic limit,
where the size of the finite Toeplitz matrices tends to infinity.
In this limit, however, the finite Toeplitz matrices do not
converge to truly infinite Toeplitz matrices whose spectra can
be trivially obtained. Intuitively, this is because finite Toeplitz
matrices, no matter how large, will always contain “edges” that
nontrivially modify the original spectrum and eigenvectors.
This fact is prominently illustrated in the exemplary case of
topological insulators, where the Toeplitz matrix is taken to be
the real-space Hamiltonian. When the Toeplitz matrix is made
finite by imposing open boundary conditions, the nontrivial

edge eigenstates that appear have distinct energy dispersions
from those bulk eigenstates belonging to the original infinite
Toeplitz matrix.

As such, there has been much study regarding the asymp-
totic properties of Toeplitz matrices. The Szegö limit theorem
[77] which dates back to 1915 first related the asymptotics of
the determinant of a Toeplitz matrix Tij = Ti−j to its symbol
g(k) = 1

2π

∫ π

−π
Txe

ikxdx, a quantity that has been introduced in
more detail in Sec. IV. Physically, the symbol represents the
Fourier-space operator corresponding to the Toeplitz matrix
representing the truncated real-space version of the same
operator. Subsequently, this fundamental 1915 result was
extended to the so-called strong Szegö limit theorem requiring
much less restrictive assumptions by Kac, Baxter, Hirschman,
and others [78–80]. This result, however, still required the
symbol to be continuous with zero winding number. These
constraints were relaxed by a series of breakthroughs that
follow, thereby opening up the important class of Toeplitz ma-
trices with singular symbols to physical applications [81–86].
Such Toeplitz matrices can physically represent, for instance,
flattened Hamiltonians acting as projectors to eigensubspaces.
In fact, most of the previously mentioned physical applications
rely heavily on a class of singular Toeplitz matrices of the
Fisher-Hartwig type.

However, relatively little is known about the asymptotic
eigenvalue distribution of general block Toeplitz matrices,
i.e., those with matrix-valued symbols gab(k). They are
generalizations of the above-mentioned Toeplitz matrices to
admit “internal degrees of freedom” which, not surprisingly,
will contain vastly richer structure. For instance, block Toeplitz
matrices can represent lattice systems with more than one band,
thereby allowing for the possibility of nontrivial topological
phenomena [87]. Exact results for the asymptotic eigenvalue
distribution only exists for a special class of 2 × 2 block
Toeplitz matrices [38,40], as already reviewed in Sec. IV. No
result on the full asymptotic eigenvalue distribution of general
N × N block Toeplitz matrices exists to our knowledge,
although there have been asymptotic results on the arithmetic
mean of their eigenvalues [88].

Despite their ubiquity, finding the asymptotics of generic
Toeplitz matrices remains a notoriously difficult task. The
the authors’ knowledge, rigorous asymptotic results are not
known for the spectra of generic block Toeplitz matrices with
discontinuous Fourier transforms along the diagonals, i.e.,
those with singular symbols. These are exactly the types of
Toeplitz matrices appearing in the entanglement Hamiltonians
of free-fermion systems.

As such, it is our hope that our asymptotic bounds on
the ES derived via Wannier interpolation will provide some
helpful hints on the spectral properties of generic block
Toeplitz matrices, even those not originally appearing in an
entanglement calculation.
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