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Quasiparticle properties of the superconducting state of the two-dimensional Hubbard model
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Cluster dynamical mean field methods are used to calculate the normal and anomalous components of the
electron self-energy of the two-dimensional Hubbard model. Issues associated with the analytical continuation
of the normal and anomalous parts of the gap function are discussed. Methods of minimizing the uncertainties
associated with the pseudogap-related pole in the self-energy are discussed. From these the evolution of the
superconducting gap and the momentum-dependent electron spectral function across the phase diagram are
determined. In the pseudogap regime, decreasing the temperature into the superconducting state leads to a
decrease in the energy gap and the formation of a “peak-dip-hump” structure in the electronic density of states.
The peak feature disperses very weakly. The calculated spectral functions are in good qualitative agreement with
published data. The mathematical origin of the behavior is found to be the effect of the superconductivity on the
pole structure giving rise to the normal state pseudogap. In particular the “hump” feature is found to arise from
a zero crossing of the real part of the electron self-energy rather than from an onset of scattering. The effect of
superconductivity on the zone diagonal spectra is presented.
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I. OVERVIEW

After more than a quarter century of research, our the-
oretical understanding of the unusual electronic properties of
the high transition temperature superconductivity observed [1]
in layered copper-oxide materials remains incomplete. A
plethora of remarkable dynamical phenomena have been
reported, including a correlation-driven insulating phase oc-
curring when the conduction band is half-filled [2], non-
Fermi-liquid transport properties [3], a “pseudogap” in the
electronic spectrum [4] as well as ordered phases including
“stripe” states with spin and charge order [5], charge or-
der apparently unconnected with spin order [6], “nematic”
(rotational symmetry breaking) states [7], and time reversal
symmetry breaking states also apparently unaccompanied by
conventional spin order [8]. Angle-resolved photoemission
studies report unusual quasiparticle properties at essentially
all carrier concentrations [9–21].

The diversity of reported phenomena has led to debate about
what is the essential physics to include in a minimal theoretical
model, while the apparent strong coupling nature of the prob-
lem suggests that whatever model is adopted, a nonperturbative
treatment is required. Important open questions include the
mechanism for superconductivity, the nature of the minimal
low energy model describing the high-Tc phenomenon [2,22],
and the physics of the pseudogap and its interplay with the
superconducting gap [21,23].

This paper presents a theoretical study of the electron
excitation spectrum of the superconducting and normal states
of the two-dimensional Hubbard model. This model is the
minimal model of the physics of strongly correlated electrons
on a lattice. Although it is not yet known if this model
contains the full panoply of phenomena observed in the high-Tc

materials, it clearly contains some important aspects of the
physics and is accepted as one of the candidate models [2] for
describing the low energy (energies of order 1 eV or less)
physics of the copper-oxide superconductors. Determining
the properties of this model to the level at which a clear

comparison to experiment can be made is an important goal of
theory.

We address this problem using the “dynamical cluster ap-
proximation” (DCA) version [24,25] of the cluster dynamical
mean field method [26]. The method is based on approximating
the full spatial dependence of the electron self-energy in terms
of a finite number Nc of functions of frequency [27], with
the exact properties recovered in the N → ∞ limit [28].
Within this approximation the method provides an unbiased (in
the sense of not preselecting a particular interaction channel
or class of diagrams) numerical approach to the correlated
electron problem and allows comprehensive investigation of
the frequency dependence, and some aspects of the momentum
dependence, of the electronic properties.

Our ability to solve the equations of dynamical mean field
theory [29,30] has reached the point where approximation
sizes Nc that in many aspects are representative [31] of the
Nc → ∞ limit can be studied at the low temperatures required
to stabilize superconductivity [23]. The superconducting state
has been constructed [23] and physical properties including
the superconducting condensation energy [32], the c axis and
Raman response [33], and the structure of the gap function and
pairing potential [34] have been computed and found to be in
remarkable agreement with experiment. Here we use the new
methodologies to study the electronic excitation spectrum of
the normal and superconducting states in detail. While some
of these issues have been previously studied in a cluster size
Nc = 4 approximation [26,35–40], our results, obtained on
larger Nc = 8 clusters, provide a better representation of the
physics including a clear separation of nodal and antinodal
behavior.

The DCA equations are solved in imaginary time, and an
analytical continuation [41] procedure is needed to obtain the
real frequency information needed for the electronic excitation
spectrum. Especially in the pseudogap regime of the model,
the physics we find presents challenges for the analytical
continuation of our computed results. These are discussed at
length below.
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The rest of the paper is organized as follows. In Sec. II
we define the quantities of interest and present the specifics
of the dynamical mean field method. Section III discusses
issues related to the analytic continuation. Section IV displays
the normal and anomalous components of the self-energy,
drawing attention to an unusual pole structure related to
sector-selective Mott nature of the pseudogap phase [42–44].
Section V displays the gap function constructed from the
ratio of anomalous and normal components of the self-energy.
Sections VI and VII display the photoemission and inverse
photoemission spectra predicted by the model, while Sec. VIII
presents our findings on superconductivity-induced changes to
the electron scattering and mass renormalization for states near
the zone diagonal where the superconducting order parameter
vanishes. Section IX presents a summary and conclusions.

II. FORMALISM

A. Model

We study the two-dimensional Hubbard model of electrons
hopping on a square lattice and subject to a local interaction
U which we take to be repulsive. The model may be written
in a mixed momentum (k)/position (i) representation as

H =
∑

k

Tr[�†
kτ3(εk − μ)�k] + U

∑
i

ni↑ni↓. (1)

In the first term we have represented the electronic degrees
of freedom by the Nambu spinor defined in terms of c

†
kσ , the

Fourier transform to momentum space of the operator c
†
iσ ,

which creates an electron of spin σ =↑ , ↓ on lattice site i as

�
†
k = (c†k↑ c−k↓), �k =

(
ck↑
c
†
−k↓

)
. (2)

We set the lattice constant to unity. The momentum index k

runs over the Brillouin zone of the two-dimensional square
lattice −π � kx,ky � π . The trace is over the Nambu indices
and τj denote the Pauli matrices operating in Nambu space.
The chemical potential is μ, εk is the energy dispersion, and
niσ = c

†
iσ ciσ is the operator measuring the density of spin σ

electrons on site i. In the computations presented below we
take εk = −2t(cos kx + cos ky) and present our results in units
of t . A reasonable estimate of the energy scales pertaining to
the physical copper-oxide materials is t ≈ 0.3 eV. At carrier
density n = 1 per site this version of the Hubbard model is
particle-hole symmetric (μ = 0), but particle-hole symmetry
is broken at carrier concentrations n �= 1.

B. Green function and self-energy

Our analysis proceeds from the components of the ma-
trix Nambu Green function defined for imaginary time
β = 1/T > τ > 0 (T is the temperature) as

G(k,τ ) = −〈�k(τ )�†
k (0)〉. (3)

It is useful to Fourier transform G(τ ) to the Matsubara
frequency axis

G(k,iωn) =
∫ β

0
dτG(k,τ )eiωnτ , (4)

with ωn = (2n + 1)πT . The self-energy is defined as

	(k,iωn) =
(

iωn − εk + μ 0
0 iωn + εk − μ

)
− G−1(k,iωn)

(5)

and may be written explicitly in terms of normal (N ) and
anomalous (A) components as (note we have chosen the phase
of the superconducting order parameter to be real)

	(k,iωn) =
(

	N (k,iωn) 	A(k,iωn)
	A(k,iωn) −	N (k, − iωn)

)
. (6)

Under spatial (k) transformations 	N (k,iωn) has the full
symmetry of the lattice, while depending on the supercon-
ducting state 	A(k,iωn) may have lower symmetry. Our
investigations [23], consistent with a large body of previous
work [35,45–59], indicate that for the interesting carrier
concentrations |1 − n| < 0.3 and for temperatures higher than
T = t/60 the only stable superconducting state of this model
is of dx2−y2 symmetry, so that on the square lattice studied
here 	A(k,iωn) changes sign if k is rotated by π/2 or reflected
through one of the axes ky = ±kx that lie at 45◦ to the lattice
vectors, but remains invariant under reflections through the
bond axes kx = 0 or ky = 0 and under rotations by π .

We now discuss the frequency dependence at fixed k. In this
discussion because the wave vector is fixed we do not explicitly
denote it. The anomalous self-energy is an even function of
Matsubara frequency: 	A(iωn) = 	A(−iωn). However, the
normal component at positive Matsubara frequency 	N (iωn)
is not simply related to the normal component at negative
Matsubara frequency 	N (−iωn) except in the special case of
particle-hole symmetry where 	N (iωn) = −	N (−iωn). For
later purposes it is convenient to distinguish components of
	N (iωn) even (e) and odd (o) in Matsubara frequency [34] as

	N
e,o(iωn) = 	N (iωn) ± 	N (−iωn)

2
, (7)

so that in Nambu notation we may write

	(iωn) = 	N
o (iωn)τ0 + 	N

e (iωn)τ3 + 	A(iωn)τ1. (8)

It is convenient also to define the gap function 
(iωn)
as [34,60]


(iωn) = 	A(iωn)

1 − 	o(iωn)
iωn

. (9)

This definition is motivated by the observation that at the low
frequencies of interest here, the even (under sign change of
Matsubara frequency) component of 	N can be absorbed into
a shift of chemical potential.

C. Analytic structure

G(z) and 	(z) are analytic functions of complex frequency
argument z except for a branch cut along the real axis
Im(z) = 0. Apart from a Hartree term in the normal component
of 	 they decay as |z| → ∞. They thus obey a Kramers-
Kronig relation (written here for 	, with 	(2) one-half of the
branch-cut discontinuity)

	(z) =
∫

dx

π

	(2)(x)

z − x
. (10)
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	(2)(ω) is a matrix with eigenvalues that are non-negative and
related by time reversal; thus

	(2)(ω) = R†
ω

(
s(ω) 0

0 s(−ω)

)
Rω, (11)

with s(ω) � 0. Here

Rω = exp

[
i

2
θωτ2

]
(12)

is a rotation matrix in Nambu space parametrized by an angle
θω which in general is frequency dependent and lies in the
range 0 � θω = θ−ω � π

2 . That only τ2 appears in Eq. (12)
follows from our phase convention for the superconducting
state, Eq. (8).

Evaluating Eq. (11) for z approaching the real axis gives
the real-time Green functions. Of particular interest are the
retarded functions obtained by continuation from below to the
real frequency axis: z → ω − iδ with ω real and δ (typically
not explicitly written) a positive infinitesimal. The retarded
real axis functions have real and imaginary parts G = Re[G] +
i Im[G] and 	 = Re[	] + i Im[	], respectively. Our choice
of superconducting phase convention (upper right and lower
left entries in self-energy matrix identical) implies that R is
purely real so that Im	(z → ω − iδ) is identical to the branch-
cut discontinuity 	(2) introduced in Eq. (10).

The Kramers-Kronig relation along with the positivity of
Im	N implies that 	N

e (iωn) and 	A(iωn) are real functions of
ωn while 	N

o (iωn) is a purely imaginary function of ωn. The
symmetry properties of 
(ω) are those of 	A(ω).

The non-negativity of the two eigenvalues of the spectral
function implies that the diagonal components of the imaginary
parts of 	 and G are non-negative so that on the real frequency
axis Im	N

o (ω) > 0 and |Im	N
o (ω)| � |Im	N

e (ω)|.

D. Method

To solve the Hubbard model we employ the dynamical
mean field approximation [61–63] in its DCA cluster [24,26]
form. In this approximation the Brillouin zone is partitioned
into Nc equal area tiles labeled by central momentum K and
the self-energy is approximated as a piecewise continuous
function,

	(k,ω) ≈
Nc∑
K

φK (k)	K (ω), (13)

with φK (k) = 1 if k is in the tile centered on K and
zero otherwise. The functions 	K (ω) are Nambu matrices
with normal (N ) and anomalous (A) components which are
determined from the solution of an auxiliary quantum impurity
model as described in detail in Refs. [23,48,64,65].

The quantum impurity model is solved by the continuous-
time auxiliary field quantum Monte Carlo method introduced
in Ref. [29] and discussed in detail in Ref. [65]. Fast
update techniques [30] are crucial for accessing the range
of interaction strengths and temperatures needed to study
superconductivity and its interplay with the pseudogap. The
quantum Monte Carlo calculations are performed on the
Matsubara axis and maximum-entropy analytical continuation

(0, 0)

(π, π)

(π/2, π/2)

(π, 0)

FIG. 1. (Color online) Left panel: momentum-space tiling used
in the present study. Different colors represent patches on which
the self-energy is constant. Right panel: phase diagram in space
of interaction strength and carrier concentration. A Mott insulating
phase (heavy line, green online) is found at density n = 1 and
interaction strength U � 6.5t . A nonsuperconducting, pseudogapped
phase (diamonds and darker shading, blue online) separates the Mott
insulator from a superconducting phase of dx2−y2 symmetry (circles,
intermediate shading, pink online). At larger doping or weaker corre-
lation strength a nonsuperconducting (at the temperatures accessible
to us) Fermi liquid phase is found (squares, lightest shading, yellow
online). The onset of the normal state pseudogap is indicated by a
light dotted line (purple online) running through the superconducting
phase. In the pseudogapped regime the electronic spectrum is gapped
for momenta near the zone face but is gapless for momenta near the
zone diagonal. Figure reproduced from Ref. [32].

techniques [41,66] are employed to obtain real-frequency
results.

The expense of the computation increases rapidly as
the interaction strength U or number of approximants Nc

increases, or as the temperature T decreases. We present results
for Nc = 8 using the momentum-space tiling shown in the left
panel of Fig. 1. Previous work [23,31] has shown that this
cluster is in many aspects representative of the Nc → ∞ limit;
in particular it is large enough to enable a clear distinction
between zone-diagonal and zone-face electronic properties,
yet small enough to permit calculations in the superconducting
phase of the precision needed for analytical continuation.

The d-wave symmetry of the superconducting state of the
two-dimensional Hubbard model means that in the coarse-
grained momentum resolution available in the Nc = 8 DCA
we have

	A(k,ω) =
⎧⎨
⎩

	A(ω), k ∈ (π,0),
0, k ∈ (±π

2 ,±π
2 ),(0,0)(π,π ),

−	A(ω), k ∈ (0,π ).
(14)

	N has the full point group symmetry of the lattice and thus
is one function of frequency in the (π,0) and (0,π ) sectors,
a different function of frequency in the (±π

2 , ± π
2 ) sectors,

and yet a different function of frequency in the (0,0) and in
the (π,π ) sectors. The main focus of attention in this paper
will be on the K = (π,0) momentum sector but some results
will be presented on superconductivity-induced changes in
the zone-diagonal (±π

2 , ± π
2 ) momentum sectors. Because in

the eight-site DCA the anomalous self-energy is nonzero only
in the K = (0,π )/(π,0) sectors we will typically omit the
momentum argument in our discussions of 	A and 
.

The right panel of Fig. 1 shows the phase diagram in
the plane of interaction strength and carrier concentration

085116-3



E. GULL AND A. J. MILLIS PHYSICAL REVIEW B 91, 085116 (2015)

obtained [23,32] from the solution of the DCA equations
at temperature T = t/60, about half of the maximal com-
puted superconducting transition temperature T max

c ≈ t/30.
The temperature T = t/60 corresponds in physical units to
T ≈ 60 K [31,44].

We study the electronic properties as a function of doping
at U = 6t and as a function of interaction strength at carrier
concentration n = 1. U = 6t is the largest interaction strength
for which high precision data could be obtained with the re-
sources available to us for temperatures substantially below Tc

and general dopings. Simulations at larger interaction strengths
are severely hampered by the fermionic sign problem. As can
be seen from the phase diagram, this interaction strength is
such that the model is conducting (although pseudogapped)
at n = 1. Thus we believe that U = 6t is slightly lower
than the U which is relevant to the real materials, so the
quantitative values for example of the carrier concentrations
at which different behaviors occur will be somewhat lower
than is realistic. The information available to us [23,31–33]
indicates that all of the qualitative features of the doping
dependence are well reproduced by the U = 6t computations.
As we will see, considerable insight can be obtained from
examination of the U dependence of the superconducting
self-energy in the special case n = 1. The actual model also
has an antiferromagnetic state, which competes with the
superconducting state but is not studied here.

III. ANALYTICAL CONTINUATION OF NORMAL
AND ANOMALOUS SELF-ENERGIES

A. Formalism

The main objects of interest in this paper are the real-
frequency normal (N ) and anomalous (A) components of
the Nambu matrix electron self-energy 	(k,z) as well as
the gap function 
(z) defined from Eq. (9). These are
functions of a complex frequency argument z. Our results
for 	 and thus 
 are obtained on the imaginary frequency
(Matsubara) points z = iωn = i(2n + 1)πT . Theorems from
complex variable theory guarantee that knowledge of the
function on the Matsubara points fully determines the function
at all z, but direct inversion of Eq. (10) to obtain 	(2)(ω)
from measurements of 	(iωn) is a mathematically ill-posed
problem. In this paper we invert Eq. (10) using the maximum
entropy method [41] and verify the results with the Padé
method [67].

To continue the diagonal component Im	N (ω) we fol-
low the methods employed for self-energy continuation in
Ref. [66]. While there are no rigorous methods to control errors
in this procedure, our experience is that given sufficiently
accurate input data (relative statistical errors smaller than 10−3

on each Matsubara point) this procedure produces reasonably
reliable results for the lowest frequency features in the real-
axis spectral function at low temperature and qualitatively
reasonable results (estimates of characteristic energy scales
and integrated areas) for the higher frequency features. The
relative statistical errors in our calculations are typically
smaller than 10−4 so we have reasonable confidence in the
qualitative features of the continuations.

A variation of the procedure outlined in [66] is needed to
obtain the off-diagonal component of the self-energy Im	A

because 	A(iωn) = 	A(−iωn) so that the spectral function
Im	A(ω) = −Im	A(−ω) is an odd function of frequency and
is thus not non-negative. We rewrite Eq. (10) as

	A(iωn) =
∫

dx

π

x

iωn − x

(
Im	A(x)

x

)

= 	(A)(iωn = 0) + iωn

∫
dx

π

Im	A(x)
x

iωn − x
(15)

and continue 	A(iωn)−	A(0)
iωn

by standard methods [34]. The

normalization of Im	A(x)
x

is fixed from limiωn→0 	A(iωn): we
obtain 	A(iωn = 0) by fitting (	A)−1 at the three lowest
positive Matsubara frequencies to a parabola. A similar
procedure is used to continue 
.

B. Non-negativity of Im� A(ω)/ω

While the usual maximum entropy analytic continuation
formalism requires a non-negative spectral function, there is no
guarantee that Im	A(ω)/ω is of definite sign. For example, in
Migdal-Eliashberg theory the Coulomb pseudopotential leads
to a negative contribution to Im	A at frequencies of the order
of the plasma frequency [68], while a recent solution of the
Eliashberg equations for a model involving two competing
spin fluctuations also displayed a sign change in the gap
function as frequency was increased above the lower of the
two characteristic frequencies [69].

For the two-dimensional Hubbard model, our data are
consistent with a positive definite Im	A(ω)/ω but we do not
have a rigorous proof that this is always the case. Evidence for a
positive definite Im	A(ω)/ω may be found from consideration
of the particle-hole symmetric (n = 1) situation. In this case
in the (π,0) sector the normal components of the hybridization
function and self-energy are also particle-hole symmetric
and are odd functions of Matsubara frequency, so that θω =
π/2 at all frequencies and there is a frequency-independent
basis choice [the “Majorana combination” c± = (c† ± c)/

√
2]

that diagonalizes the self-energy matrix in the (π,0) sector.
The corresponding “Majorana” self-energy 	M obeys the
Kramers-Kronig relation

	M (z) =
∫

dx

π

s(x)

z − x
. (16)

Thus analytical continuation of the Majorana combination of
self-energies gives direct access to s from which the normal
and anomalous components of the self-energy can easily be
reconstructed from Eqs. (11) and (12) as

Im	N (ω) = s(ω) + s(−ω)

2
, (17)

Im	A(ω) = s(ω) − s(−ω)

2
. (18)

Figure 2 presents a comparison of Im	 obtained by
direction continuation of the normal and anomalous parts
of the Matsubara Green function and reconstructed using
Eqs. (17) and (18) from continuations obtained from the
(1,1) component of 	 in the Majorana basis [continuation
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FIG. 2. (Color online) Upper panels: imaginary part of anoma-
lous component of self-energy computed in the superconducting
state at temperature T = t/60 and carrier concentration n = 1 for
the three interaction values indicated, using three methods: direct
continuation of measured anomalous components of self-energy
	A(iωn) (solid lines, black online), reconstructed using Eq. (18) from
a continuation of 	M (iωn) (dashed lines, blue online) and obtained
from continuations of the gap function 
(iωn), and the normal
component of the self-energy (dotted lines, red online). Lower panels:
imaginary parts of normal component of self-energy computed for
the same parameters using direct continuation of measured normal
components of self-energy 	N (iωn) (solid lines, black online), and
reconstructed using Eq. (17) from a continuation of 	M (iωn) (dashed
lines, blue online).

of the (2,2) component yields values differing by ∼ 10−3]. A
reconstruction of 	A(ω) from the continued 
(ω) and 	o(ω)
using Eq. (9) is also shown.

We see that the methods yield very similar results with
some differences in the height and width of the low frequency
peak (the integrated peak areas, not shown, are the same).
The differences between the curves are an indication of
the continuation errors. In the Im	A obtained from s(ω) a
relatively small amplitude oscillation is present, which leads
to a small negative value in some regions where the directly
continued Im	A = 0 along with an overshoot (relative to the
directly continued 	A) at slightly higher frequencies. Our
experience is that these oscillations do not vary systematically
with input data or details of the maximum entropy procedure,
and we believe they are artifacts of the continuation procedure
related to the requirement that norm of the function is
conserved in the entropy minimization. We thus believe
that Im	A(x)/x is generically non-negative for the dx2−y2

superconducting state of the Hubbard model. This conclusion
is further supported by continuations (not shown) that we have
performed using the Padé method at both n = 1 and n �= 1.
The Padé method makes no assumptions as to the sign of
the spectral function, and in the cases we have studied leads
always to a non-negative Im	A(x)/x. A 	A(ω)/ω which was
non-negative was also found by [37] in Nc = 4 calculations
using an exact diagonalization (ED) solver (we believe that the
small negative excursions are artifacts of the ED method but
the issue deserves further investigation).

C. Pole structure and continuation of gap function

Figure 2 reveals that in certain parameter regimes the
normal and anomalous self-energies exhibit strong peaks at rel-
atively low frequencies. As will be discussed at length below,
these peaks do not correspond to physical excitations of the
system; rather they are the expression in the superconducting
state of the physics of the normal-state pseudogap, which in the
DCA is associated with the formation of a low frequency pole
in the self-energy of the (0,π )/(π,0) momentum sector [70].
It is useful to discuss the pole structure in terms of the
representation in Eq. (11). All of our data are consistent with
the statement that s(ω) for the (0,π )/(π,0) sector is the sum
of a pole and a regular part:

s(ω) = Dδ(ω − ω�) + sreg(ω), (19)

with sreg a smooth function of ω. The pole structure was also
noted in a very recent paper by Sakai and collaborators [40].

Retaining for the moment only the pole term and explicitly
evaluating Eqs. (11) and (12) using the Nambu angle θ�

corresponding to ω� gives

	N
pole(ω) = D

ω + ω� cos θ�

ω2 − (ω�)2
, (20)

	A
pole(ω) = D

ω� sin θ�

ω2 − (ω�)2
. (21)

Thus in general we expect the normal and anomalous
components of the self-energy to have poles at exactly the
same frequencies. In the particle-hole symmetric case, where
θ = π/2, we expect the poles in the normal and anomalous
parts of the self-energy to have exactly the same amplitude.
This is demonstrated in Fig. 3, which shows the imaginary
parts of the continuations of the normal and anomalous
components of the self-energy, along with the continuations
of s(ω) = Im	M (ω) obtained from continuation of the (1,1)
component of the Majorana-basis representation of 	(iωn) and
of s(−ω) obtained from continuation of the (2,2) component of
the Majorana-basis representation of 	(iωn). That s(−ω) = 0
for ω in the vicinity of the pole is strong evidence of the

0 0.1 0.2 0.3
ω [t]

0

2

4

6

8

10

Im
 Σ

(ω
) [

t]

Im ΣN
(ω)

Im ΣA
(ω)

Im ΣM
(ω)

Im ΣM
(-ω)

FIG. 3. (Color online) Imaginary part of normal (	N ) and
anomalous (	A) components of self-energy and of 	M at positive and
negative frequency, computed by analytic continuation of Matsubara
axis self-energies for density n = 1 and interaction U = 5.8t at
temperature T = t/60.
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cancellation. In the general case both normal and anomalous
components of the self-energy have poles at ±ω� but because
cos θ� �= 0 the average of the strengths of the poles in 	N will
in general be greater than the strengths of the poles in 	A.
However, as will be seen in our detailed examination of the
self-energy below, the background contributions are such that
unambiguously identifying the pole strengths is not possible.

It also follows from Eqs. (20), (21), and (9) that the pole
contribution to the gap function 
 is


pole = D sin θ�ω�

ω2 − ((ω�)2 + D)
, (22)

so that 
 does not have poles at ω = ±ω�. All of our
continuations are consistent with this result.

The structure defined by Eq. (19) creates challenges
for analytical continuation. Intrinsic errors in the analytical
continuation process mean that independent continuations of
the different components of 	 may lead to slightly different
estimates of the pole positions, amplitudes, and widths. This
can be seen for example by comparison of the upper and lower
panels of Fig. 2 or by comparing 	N and 	A in Fig. 3. The
difficulties are exacerbated if particle-hole symmetry is broken
because the continuation process may not place the poles in
	N at exactly opposite frequencies. We do not know how
to control the continuation process so as to force the precise
alignment of the poles in the different components of 	. For
studies of the particle-hole symmetric situation, we work with
s defined from continuation of the (1,1) component of 	 in
the Majorana basis. In the doped case, we focus on the gap
function.

IV. NORMAL AND ANOMALOUS SELF-ENERGIES,
(0,π )/(π,0) SECTOR

It has been accepted for many years that the two-
dimensional Hubbard model exhibits a Mott insulating phase at
carrier concentration n = 1 and large interaction, and a Fermi
liquid phase at small interaction or carrier concentration suf-
ficiently different from 1. Work [29,31,42–44,58,70–81] has
established that if superconductivity is neglected then the Mott
and Fermi liquid phases are separated by a pseudogap regime,
in which regions of momentum space near the zone face
are gapped while regions of momentum space near the zone
diagonal are not. Mathematically, within DCA the gapping
is a consequence of the appearance of a pole in the electron
self-energy pertaining to the (0,π ) sector [31,43,44]. If the
Mott insulator is approached by varying interaction strength
in the particle-hole symmetric case (n = 1, εk = −εk+(π,π)) the
pole occurs at ω = 0 [43]; in a non-particle-hole symmetric
situation (for example, if the Mott insulator is approached by
varying doping) the pole appears at a frequency close to, but
slightly different, from zero [44]. In this section we show how
the onset of superconductivity affects this pole structure.

Figure 4 presents the imaginary parts of the analytically
continued self-energies and the gap function for the three
U values at n = 1 presented in Fig. 2. The upper panel
shows results obtained in the normal state at temperature
T = t/30 > Tc (at U = 5.8t Tc is slightly greater than t/30
but superconductivity has been suppressed here for clarity of
presentation, i.e., 	A set to zero). At U = 5.0t the imaginary
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FIG. 4. (Color online) Top panel: imaginary part of normal state
self-energy calculated for carrier concentration n = 1 and U values
indicated, at temperature T = t/30. Middle panels: imaginary part
of normal and anomalous components of self-energy calculated in
superconducting state at T = t/60. Lowest panel: imaginary part of
gap function calculated in superconducting state at T = t/60.

part has the Fermi liquid form, with Im	(ω) exhibiting an
approximately quadratic minimum at zero. As U is increased
a thermally broadened pole appears at ω = 0. The pole
increases rapidly in strength as U is increased. These results are
consistent with our previous analysis of the pseudogap [31,70].
The middle two panels present the imaginary parts of the
normal and anomalous components of the self-energy at a
temperature T = t/60 < Tc. One sees that the pole centered at
ω = 0 has split into two and appears with comparable strength
in both the normal and anomalous components. The pole
frequency weakly decreases as U is increased. The larger width
seen in the U = 5.8t calculation is likely to be an artifact of the
analytical continuation. The lowest panel shows the imaginary
part of the gap function. We see that the gap function is much
smaller in magnitude than the self-energy, that the structure in
the gap function occurs at a higher frequency than the structure
in the self-energy (as also noted by Sakai et al. [40]), and
that the gap function varies less dramatically with interaction
strength than does the self-energy.

Figure 5 shows the analogous plots as a function of doping
at U = 6t . The upper panel (normal state) shows again a pole
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FIG. 5. (Color online) Top panel: imaginary part of normal state
self-energy calculated for interaction strength U = 6t and dopings x

indicated, at temperature T = t/30. Middle panels: imaginary part
of normal and anomalous components of self-energy calculated in
superconducting state at T = t/60. Lowest panel: imaginary part of
gap function calculated in superconducting state at T = t/60.

that appears and grows in strength as doping is decreased.
The particle-hole symmetry breaking provided by the doping
means that the pole is slightly displaced from the origin. In the
superconducting state (middle panels) the pole splits; in 	N

the pole strength is different for the positive frequency than
for the negative frequency pole. The strength of the pole in 	A

is of the order of that in 	N . The detailed line shapes of the
poles depend on the details of the continuation process. The
difference in line shapes and small differences in pole position
can lead to unphysical structures in calculated spectra. As in
the interaction-driven case, there is no structure in 
 at the
pole frequencies of 	.

Poles in the anomalous component of the self-energy were
reported by Civelli [37] and the alignment of poles in 	N and
	A and the cancellation of the 	 poles in 
 were very recently
discussed in the context of four-site CDMFT calculations [40].

V. SUPERCONDUCTING GAP AND THE PSEUDOGAP

In this section we present results for the energy gap in
the superconducting and nonsuperconducting states. The gap
may be estimated from an analytical continuation of the

normal component of the Green function, but the inevitable
broadening associated with continuations means that it is not
clear a priori how to estimate a gap. As discussed in Ref. [66]
for Mott insulators, an alternative approach provides a more
accurate estimate. This approach is based on the argument
that for frequencies less than the gap, all imaginary parts are
zero except for the poles in 	, which do not correspond to
physical excitations. Thus one may determine the gap energy
ωg from the vanishing of the real part of the denominator of
the Green function. For the normal state, this criterion involves
consideration of

ωg(k) = εk − μ + Re	[ωg(k)]. (23)

For a given k this equation will have two solutions, ω±
g (k).

The pseudogap is typically indirect (the k that maximizes ω−
g

is different from the k that minimizes ω+
g ). The direct gap is

determined as


PG = 1
2 min

k
{ω+

g (k) − ω−
g (k)}. (24)

The points of minimum direct gap are found to be the
renormalized Fermi surface points k satisfying ε�

k = εk − μ +
Re	e(ω = 0) = 0 and that at these points ω+ = −ω− = 
PG.

In the superconducting state, these ideas lead to the
consideration of det[G−1(k,ω)]. Rearranging the expression
for G−1 gives

det[G−1(k,ω)] =
(

1 − 	o(ω)

ω

)2

(ω2 − ε�
k(ω)2 − 
2(ω)),

(25)

with 
 defined in Eq. (9) and

ε�
k(ω) = εk − μ + 	N

e (ω)

1 − 	o(ω)
ω

. (26)

We then define the gap frequency ωg(k) in the superconducting
state as the frequency at which the real part of G−1 vanishes,
i.e., as

ωg(k) = ±
√

Re[ε�
k(ωg(k))]2 + Re[
(ωg(k))]2. (27)

We define the Fermi surface as the locus of k points for
which ε�

k(ω = 0) = 0. We will find that the ω dependence
of ε�

k is modest so that we may identify the gap 
SC in
the superconducting state as the value of ωg which solves
ωg = Re(
(ωg)).

In the particle-hole symmetric case where 	N
e = 0 we may

alternatively write the gap equation as the solution of

ωg = Re	M (ωg). (28)

Figure 6 demonstrates this procedure. The upper panel
shows results obtained in the superconducting state at U = 5
(the normal state is not shown because at this U there is
no normal state pseudogap). The figure plots the spectral
function (imaginary part of continued Green function), the
real part of the Majorana combination of the self-energy, and
the real part of the gap function as a function of frequency.
We see by comparing the continued spectral function to the
self-energy and gap curves that the criteria ω = Re
(ω) or
ω = Re	M (ω) identifies a point close to that at which the
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FIG. 6. (Color online) Determination of superconducting and
pseudogaps. Top panel: the real part of the 	M self-energy (solid
line, black online), the sector (0,π ) integrated spectral function
A(ω) = 1

π
ImG(ω) (dashed line, red online, scaled by 0.5), and the

real part of the gap function 
(ω) computed at n = 1, U = 5, and
T = t/60 < Tc. Middle panel: self-energy and spectral function in
the normal state, for n = 1, U = 5.8t , and T = t/30 > Tc. Bottom
panel: same analysis as in top panel, for n = 1, U = 5.8t , and
T = t/60 < Tc. Also shown are the line y = ω (blue online) and
an estimate for the superconducting or pseudogaps obtained from
Re	M (ω) = ω (vertical line, purple online).

spectral function is maximal. We believe that the appearance
of weight at lower frequencies in the spectral function comes
from artificial broadening induced by the continuation process.

The middle panel shows the same analysis in the normal
state at U = 5.8t . The normal state pseudogap is evident, and
again we see that the quasiparticle equation picks out as the
gap the point at which the spectral function is maximal. The
lower panel shows the superconducting state, also at U = 5.8t .
We also see that at this U value the line y = ω is tangent to
(in fact very slightly below) the Re
(ω) curve at the point
that one would naturally identify as the gap. That Re	M (ω)
intersects y = ω while A(ω) is peaked at the point of near
tangency suggests that the absence of an exact intersection is
a continuation artifact and that if all quantities were exactly
and consistently continued the line y = ω would intersect the
Re
(ω) line.

Comparison of the middle and lower panels of Fig. 6 shows
that the superconducting gap is unambiguously smaller than
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0
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0.2
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0 0.05 0.1 0.15
x

0

0.1

0.2

0.3

Δ

ΔPG from G
ΔSC from Δ

FIG. 7. (Color online) Energy of lowest excitation in supercon-
ducting state (temperature T = t/60, dashed lines, red online) and
normal state (temperature T = t/60 but superconductivity sup-
pressed, solid line, black online) computed for different interaction
strengths at carrier concentration n = 1 (upper panel) and different
carrier concentrations at interaction strength U = 6t (lower panel) as
described in the text.

the normal state pseudogap, consistent with results presented
in Ref. [23]. Also, comparison of the lower panel of Fig. 6
to Fig. 2 shows that for this value of U the pole in the self-
energy lies inside the excitation gap of the superconductor,
further confirming that the self-energy pole does not represent
a physical excitation of the system.

The two panels of Fig. 7 show the dependence of the
low-T (T = t/60 ∼ 60 K) gap on interaction strength at
n = 1, computed from Eq. (28) and the dependence of the
low-T gap carrier concentration at U = 6t , computed from
Eq. (27). In the weak interaction or large doping limits, there
is no superconductivity. As the doping decreases or interaction
strength increases the gap increases smoothly down to the low
doping/high interaction end of the phase diagram [note that at
the two endpoints of the superconducting phase, (n = 1,U =
5.9) and (U = 6,x = 0.02), the superconducting state is not
fully formed so the gap values are not meaningful]. Also shown
on the plots is the normal state pseudogap, computed at the
same low temperature T = t/60 by suppressing superconduc-
tivity in the calculation. One sees that in the low doping/strong
interaction regime, turning on superconductivity leads to a
decrease in the energy of the lowest-lying excitation.

Finally, Fig. 8 shows the temperature dependence of the
energy gap at the three U values considered above. We see
that in the moderate coupling regime, there is no normal state
gap and the superconducting gap increases from zero as the
temperature is decreased through the transition temperature.
At intermediate coupling a small but nonzero gap is already
present in the normal state and the gap increases with the
onset of superconductivity, while at stronger coupling the gap
actually decreases as the temperature is decreased into the
superconducting state.
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FIG. 8. (Color online) Temperature dependence of gap size com-
puted as discussed in text for carrier concentration n = 1 and
interaction strengths indicated.

VI. FERMI SURFACE SPECTRA

In this section we present spectra computed at the Fermi
surface using continued self-energies. The issues discussed
above relating to the difficulties of analytical continuation in a
non-particle-hole symmetric case mean that we limit ourselves
here to study of the interaction-driven transition at density
n = 1 but all of the information available to us suggests that
the behavior in the doped case shares the essential features
found at half-filling.

Figure 9 shows the temperature evolution of the electron
spectral function computed for a momentum on the Fermi
surface at the antinode [(π,0)] at carrier density n = 1 and
different interaction strengths. The upper panel shows results
obtained for a moderate interaction U = 5t . We see that
the normal state spectral function is peaked at the chemical
potential ω = 0. The onset of the superconductivity (Tc is
between t/30 and t/40) induces a suppression of the low
frequency density of states. The gap grows and sharpens as
temperature is decreased. For the lower temperatures one sees
that the spectral function has a sharp quasiparticle peak, a
weak minimum at slightly higher frequencies, followed by
a weak maximum at yet higher frequencies. This structure
in the spectral function is frequently observed in photoemis-
sion [9,10,16,82–85] and scanning tunneling microscopy [86]
experiments on copper-oxide high-Tc materials and is referred
to as a “peak-dip-hump” feature. The higher frequency “hump”
is typically interpreted as arising from the interaction of
electrons with some kind of bosonic excitation, with the hump
frequency determined by the boson energy and the minimum
energy to create an electron-hole pair.

The middle panel of Fig. 9 shows results obtained for
an intermediate interaction U = 5.5. We see that a weak
minimum is evident in the density of states even temperature
T = t/30 > Tc; this weak suppression of the density of states
marks the onset of the “pseudogap.” As the temperature is
decreased below the transition temperature the low frequency
intensity drops very rapidly. The gap (peak in the spectral
function) increases and saturates at a value rather greater than
that found in the moderate interaction case. The peak-dip-
hump structure is more evident. In this case the hump energy
increases as T decreases except for the lowest temperature.
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FIG. 9. (Color online) Spectral functions computed at carrier
density n = 1 for momenta on the Fermi surface in the (0,π ) sector
for U = 5.0 (top panel), 5.5 (middle panel), and 5.8 (lower panel) at
temperatures indicated.

The lower panel of Fig. 9 shows results obtained for
the strongest interaction (U = 5.8). In this case the normal
state pseudogap is well established even at T = t/30. The
transition to superconductivity is associated with the formation
of a quasiparticle peak which lies inside the pseudogap and
with a shift outwards of the second peak structure. For
both U = 5.5 and U = 5.8 the energy of the second peak
increases as temperature decreases, with the exception of
U = 5.5 and T = t/60. We believe that at this particular U

and T the continuations are of lower quality than at other
parameter values. For example, the errors associated with back
continuation are slightly larger.

The question of the origin of the peak-dip-hump
structure has been discussed extensively in the liter-
ature on angle-resolved photoemission in the cuprates
[10,16,17,21,85,87–90]. The most widely accepted explana-
tion is that the higher energy hump is evidence for a “shakeoff”
process in which an electron emits a bosonic excitation such as
a spin fluctuation [17,88–90] or a phonon [15], while the peak
feature is the quasiparticle excitation above the gap. In this
picture the onset of the hump feature is determined as the sum
of the energy of the boson and the superconducting gap energy
(structure in the bare dispersion associated with interbilayer
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hopping may also play a role in certain materials) [16,17]. Such
a shakeoff process would appear in the imaginary part of the
self-energy as an upward step, corresponding to the opening
of a scattering channel. However, a quantitative and generally
accepted identification of the boson responsible for the hump
energy is lacking.

Mathematically, structures in the spectral function may be
understood from the fundamental expression

A(k,ω) ∼ Im	(ω)

(ω + μ − εk − Re	(ω))2 + (Im	)2
, (29)

where for clarity we have not explicitly written the change
of basis matrices R [Eq. (12)]. From Eq. (29) we see that
structure can arise from resonance [ω + μ− εk − Re	(ω) ≈ 0]
or, off resonance, from an increase in Im	. The former case
produces the quasiparticle peak of Fermi liquid theory; the
latter is the origin of the shakeoff explanation of the peak-
dip-hump structure [10,16,85,88–90]. Figure 10 investigates
the origin of the hump structure in the present calculation
by comparing the computed spectral function (lower panel,
evaluated at the Fermi surface εk = μ) to the electron self-
energy (heavy lines, upper panel) in the Majorana basis that
diagonalizes the Nambu Greens function at all ω for n = 1.
The real part is presented in the combination ω − Re	(ω).
We see that the location of the hump feature in fact does not
correspond to any significant feature in the imaginary part of
the self-energy (top panel), so that it cannot be interpreted as an
onset of scattering. Instead, inspection of ω − Re	(ω) energy
(middle panel) shows that for the two stronger couplings the
frequency of the hump corresponds to the frequency at which
the real part of the inverse Greens function vanishes, while
for the weaker coupling the hump frequency corresponds to a
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FIG. 10. (Color online) Comparison of real and imaginary parts
(middle and top panel) of the 	M Majorana component of self-
energy to Fermi surface spectral function (lower panel) for carrier
concentration n = 1, temperature T = t/60, and U = 5 (solid lines,
black online), U = 5.5 (dashed lines, red online), and U = 5.8
(dotted lines, blue online). In the middle panel the real part of the
self-energy is presented as ω − Re	(ω).

point where the absolute value of ω − Re	(ω) is minimized.
In other words, the hump is a resonance phenomenon, not a
scattering phenomenon, and its frequency does not correspond
directly to the energy of any excitation of the system.

VII. MOMENTUM-DEPENDENT SPECTRA

In this section we present and discuss the momentum
dependence of spectral functions calculated from the normal
and anomalous components of the self-energy. The left panel of
Fig. 11 shows a sequence of energy distribution curves (EDC)
calculated in the normal state for a sequence of momenta
cutting across the Fermi surface in the (π,0) sector for the
moderate interaction strength U = 5.0. A quasiparticle peak
is visible, which disperses through the Fermi surface. The
right panel shows EDC at the same momenta, this time in
the superconducting state. Comparison of the two panels
reveals the behavior expected of a moderate-coupling BCS-
like superconductor, with the gap having the greatest effect
on the Fermi surface trace and the superconductivity-induced
particle-hole mixing producing a peak dispersing away from
zero as momentum is increased above the Fermi level.

Figure 12 shows the EDC curves obtained for a strong inter-
action U = 5.8. The weakly dispersing and rather broadened
normal state pseudogap is seen in the left panel. The right
panel shows that the onset of superconductivity produces a
very weakly dispersing peak at an energy well inside of the
pseudogap. This essentially nondispersing zone-edge feature is
characteristically observed in photoemission experiments on
high Tc copper-oxide superconductors [10,12,15,21]. In the
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β=30

-0.2 -0.1 0
Binding Energy [t]

β=60

FIG. 11. (Color online) Energy dependence of electron spectra
calculated at density n = 1 and interaction U = 5 for momenta
−0.325π � kx � 0.325π and ky = 0.825π . Inset: illustration of
the momentum cut (horizontal line) through the noninteracting
Fermi surface (dashed line); see also Fig. 1. Left panel: normal
state (T = t/30); right panel: superconducting state (T = t/60).
Dot-dashed curves (red online) correspond to momenta inside the
Fermi surface and solid curves (black online) to momenta outside the
Fermi surface. The dashed curves (blue online) indicate traces with
the momenta set equal to the Fermi momentum.
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FIG. 12. (Color online) Energy dependence of electron spectra
calculated at density n = 1 and interaction U = 5.8 for momenta
−0.325π � kx � 0.325π and ky = 0.825π . Left panel: normal state
(T = t/30); right panel: superconducting state (T = t/60). Dot-
dashed curves (red online) correspond to momenta inside the Fermi
surface and solid curves (black online) to momenta outside the Fermi
surface. The dashed curves (blue online) indicate traces with the
momenta set equal to the Fermi momentum.

present calculation the weak dispersion arises mathematically
from the very strong frequency dependence of the self-energy
caused by the proximity of the pseudogap pole [cf. Eq. (29)].

VIII. SUPERCONDUCTING EFFECTS ON ZONE
DIAGONAL SPECTRA

In the cuprates and in the Hubbard model the dramatic
effects of superconductivity are visible in the electronic states
near the zone face [(0,π )/(π,0)] point, because it is at this point
that the superconducting gap and the pseudogap are maximal.
But in addition to opening, or changing the value of, a gap,
the onset of superconductivity may affect other aspects of the
physics, for example by changing the density of final states
that enter into scattering processes [91] or, more profoundly,
by changing the electronic state itself and thus the nature of the
scattering mechanisms. Some understanding of these effects
may be gleaned from consideration of electronic states with
momentum along the zone diagonal. The superconducting
gap vanishes for these momenta and thus any effects on
electron propagation must arise from changes in scattering
and electronic state.

We find that at all dopings and interaction strengths we
have studied the electronic self-energy in the zone diagonal
momentum sector has approximately the Fermi liquid form.
In particular, the self-energy does not have a low frequency
pole. Its imaginary part is minimal at zero frequency and the
value at zero frequency, �0, decreases as temperature T → 0.
The real part is linear in frequency over a reasonable range
of low frequencies, allowing us to define a zone diagonal
mass enhancement m�

m
= 1 − ∂	/∂ω from the Matsurbara
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FIG. 13. (Color online) Dependence on doping of zone diagonal
mass enhancement m�

m
(upper panel) and Fermi surface scattering rate

�0 (lower panel) extracted from Matsubara-axis data [Eq. (30)] for
temperatures indicated in normal and superconducting state.

data (note also that in DCA, the self-energy is k independent
except at the sector boundaries, so the k-derivative contribution
to the disperson renormalization is not relevant). We extract
estimates of the Fermi level scattering rate �0 and mass en-
hancement m�

m
by fitting the lowest four Matsubara frequencies

to the cubic form

Im	(iωn) = −�0sgn(ωn) −
(

m�

m
− 1

)
iωn + Cω3

n · · · .

(30)

Representative results are shown in Fig. 13. We see that
the mass enhancement has a modest doping dependence, and
decreases markedly as temperature is decreased. Supercon-
ductivity has only a small effect on the mass enhancement. At
low doping the onset of superconductivity leads to a very small
decrease in the mass enhancement; at higher doping the effect
is of opposite sign and is slightly larger. It is interesting to note
that the change in sign of the superconducting contribution
to the mass enhancement occurs at a lower doping than the
change from potential energy-driven to kinetic energy-driven
pairing discussed in Ref. [32]. Thus the change in electronic
state associated with the onset of superconductivity has a

085116-11



E. GULL AND A. J. MILLIS PHYSICAL REVIEW B 91, 085116 (2015)

weaker effect on the nodal quasiparticles than it does on other
properties.

The normal state scattering rate also has a dramatic doping
dependence, especially at the higher temperature, and at all
dopings exhibits a marked temperature dependence. The effect
of superconductivity on the scattering rate is much more
noticeable than the effect on the mass enhancement: the onset
of superconductivity leads to an almost factor of 2 drop in the
Fermi surface scattering rate, except at the very lowest doping
which is right on the boundary of superconducting phase.
These findings are consistent with angle-resolved photoemis-
sion measurements on Bi2Sr 2CaCu 2O 8−δ [92]. Figure 4(c)
of Ref. [92] reveals that the onset of superconductivity leads
to an approximately factor of 2 decrease in the MDC width
(a good proxy for scattering rate) below the extrapolation
of the normal state rate to low temperature, while Fig. 3
of Ref. [92] reveals a much smaller change in the mass
enhancement (albeit of opposite sign to that predicted here).
The more coherent nature of the zone diagonal quasiparticles
is also qualitatively consistent with conclusions drawn from
pump-probe experiments [93], but because our calculations are
restricted to equilibrium a direct comparison cannot be made.

IX. CONCLUSIONS

Two characteristic features of the high transition tempera-
ture copper-oxide superconductors are superconductivity with
dx2−y2 symmetry and a “pseudogap” [4], a suppression of
electronic density of states for momenta near the Brillouin
zone face [(0,π ) point]. The interplay between these two
phenomena has been the focus of considerable attention in
the literature. In this paper we present cluster dynamical mean
field calculations of the electronic self-energy and spectral
function of the normal and superconducting phase of the
two-dimensional Hubbard model.

The correspondence of the results to the essential features of
superconductivity in the cuprates is striking. We find, consis-
tent with a large body of experimental literature, that when
superconductivity emerges from the pseudogap regime the
onset of superconductivity is associated with the appearance of
very weakly dispersing states inside the pseudogap and with
the appearance of a peak-dip-hump structure in the spectral
function. Superconductivity affects the zone-diagonal states
via a significant (∼factor of 2) decrease in the scattering rate.
We have also determined the superconducting and pseudogaps
accurately and have shown that the superconducting gap
systematically increases as doping is decreased or interaction
strength is increased, until it abruptly drops to zero at the
low-doping/high interaction boundary of the superconducting
phase. These results support the notion that the pseudogap and
superconductivity are competing phenomena and strengthen
the case made in prior papers [23,32–34] that as Anderson
predicted in 1987 [2] the Hubbard model contains the essential
physics of the high-Tc observed in layered copper-oxide
materials.

Mathematically, we find (in agreement with previous
work [23,31,43,70]) that the pseudogap is a Mott-transition-
like phenomenon (“sector-selective Mott transition”) asso-
ciated with the appearance of a low frequency pole in the
self-energy in the zone-face self-energy. The interplay between

superconductivity and the pseudogap is controlled by the
superconductivity-induced changes in the pole structure. In
particular, in our calculation the “hump” feature in the spectral
function arises mathematically from a zero crossing in the real
part of the self-energy and not from the onset of a scattering
process, in other words, not from a bosonic excitation at all. On
the technical side we have clarified the mathematical structure
of the pseudogap-induced poles associated with the normal
and anomalous self-energies, showing how the inevitable
analytical continuation errors make it difficult to construct
real-frequency spectra in situations where the pseudogap poles
are important. The pole structure has also been discussed
by [40] who present an interesting alternative interpretation.

It is important to consider the limitations of the methods
used here. The essential technical step is the use of continuous-
time auxiliary field methods [29] and submatrix updates [30].
These methods enable highly accurate simulations at tem-
peratures as low (in physical units) as 60 K, far below the
basic scales of the model and, crucially, well below the
superconducting transition temperature. However, even with
these improvements, obtaining results of the needed precision
at the required low temperatures requires approximations.

The key approximation used in this paper is the cluster
dynamical mean field approximation [64]. In the “DCA” form
used here [24] this amounts to approximating the normal
and anomalous components of the electron self-energy as
piecewise constant functions of momentum, taking different
values in each of Nc momentum sectors that tile the Brillouin
zone. We have adopted the N = 8 approximation. This is
the smallest momentum decomposition that permits a clear
separation between the zone face and zone diagonal regions
of momentum space. Previous work [23,31,55] indicates that
although we do not have quantitative convergence to the
N = ∞ limit, the N = 8 approximation correctly captures
the physics of the normal state pseudogap.

A second approximation is the use of an interaction
U � 6t which is likely to be slightly weaker than needed
to quantitatively capture the physics of the cuprates. This
approximation is needed because computation time increases
rapidly as U increases (as U 3, with additional complications
from the sign problem) and we needed to undertake a broad
survey of parameter space. For similar computational reasons
we restricted attention to the particle-hole symmetric version
of the model (second neighbor hopping t ′ and further neighbor
hoppings set to zero).

Finally, because the basic computations use imaginary time
methods, obtaining spectra of interest requires an analytical
continuation method. Analytical continuation is an ill-posed
problem. We used maximum entropy analytical continuation
methods (which are widely employed but essentially uncon-
trolled) to extract real frequency information. This requires
extremely high quality Monte Carlo data, further constraining
the parameter ranges that could be examined. In this context
the properties of the anomalous self-energy are of particular
importance. With the exception of the Padé method, all
methods known to us require a positive definite spectral
function. While we have presented evidence that in at least
some cases the spectral function associated with the anoma-
lous self-energy has an appropriate positivity property, the
possibility of a sign change at high frequency cannot be ruled
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out. At high frequencies the anomalous part is very small and
the intrinsic limitations of the continuation process mean that
small systematic errors could induce (or mask) a sign change.

A key physical limitation of our work is that we have
not considered other ordered states (for example Néel anti-
ferromagnetic or striped order) that might preempt the phases
considered here. The dynamical mean field method captures
(within the rather coarse momentum resolution of the cluster
dynamical mean field method) fluctuations associated with
these states, but because we have symmetrized over spin
degrees of freedom, long range ordered antiferromagnetic
states are excluded. Also our calculation lacks the momentum
resolution needed to provide a clear account of striped states.
Thus we view the results as providing a reasonable qualitative
account of the properties of the superconducting phase and
pseudogap regime of the two-dimensional Hubbard model,
but not as a quantitatively accurate account of the properties
of the Hubbard model.

For these reasons, extensions of the work presented here
would be desirable. Pushing the calculation on large clusters
to somewhat larger U so that the n = 1 endpoint is well
within the Mott insulating phase should become feasible
as computer power improves. Study of larger U would
provide more insight into the interplay of superconductivity

and Mott physics. Extending the calculations to N = 16
site approximation would similarly be useful. In particular,
examination of differences between gap values and spectra
calculated with N = 8 and N = 16 will provide insight into
the quantitative aspects of the results. If feasible, real-time
calculations and comprehensive Padé continuations that could
investigate the possibility of sign changes in the anomalous
component of the self-energy would be reassuring. On the
conceptual side, a deeper understanding of the pseudogap
state and of the meaning of the self-energy poles would be
desirable. Most importantly, investigation of competing states
such as Néel antiferromagnet and stripe orders is needed.
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