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Photonic crystal and split ring resonator (SRR) metamaterial waveguides with Kerr nonlinear dielectric
impurities are studied. The transmission coefficients for two guided modes of different frequencies scattering from
the Kerr impurities are computed. The systems are shown to exhibit multiple transmission coefficient solutions
arising from the Kerr nonlinearity. Multiple transmission coefficients occur when different input intensities into
a waveguide result in the same transmitted output intensities past its nonlinear impurities. (In the case of a single
incident guided mode the multiplicity of transmission coefficients is known as optical bistability.) The analytical
conditions under which the transmission coefficients are single and multiple valued are determined, and specific
examples of both single and multiple valued transmission coefficient scattering are presented. Both photonic
crystal and split ring resonator systems are studied as the Kerr nonlinearity enters the photonic crystal and SRR
systems in different ways. This allows for an interesting comparison of the differences in behaviors of these two
types of system which are described by distinctly different mathematical structures. Both the photonic crystal and
SRR models used in the calculations are based on a difference equation approach to the system dynamics. The
difference equation approach has been extensively employed in previous papers to model the basic properties of
these systems. The paper is a continuation of work on the optical bistability of single guided modes interacting
with Kerr impurities in photonic crystals originally considered by McGurn [Chaos 13, 754 (2003)] and work on
the resonant scattering from Kerr impurities in photonic crystal waveguides considered by McGurn [J. Phys.:
Condens. Matter 16, S5243 (2004)]. It generalizes this work making the extension to the more complex interaction
of two guided modes at different frequencies. It extends the two guided mode treatment by McGurn [Organ.
Electron. 8, 227 (2007)] which was limited to a special case of one of the photonic crystal systems considered here.
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I. INTRODUCTION

Photonic crystals [1–8], split ring resonator (SRR) meta-
materials [9–20], and their applications in waveguide designs
have been of considerable current interest. Great efforts have
been applied in determining the physical principles behind the
effective operation of these systems and in the extensions of
their applications. Most of the recent focus has been on linear
dynamical systems, but nonlinear properties are important as
many device applications such as optical switching require
nonlinear dynamics [5,6,9,14–33]. Nonlinearity opens the
possibility for new features in these systems as it allows
for the interaction of the modes of the linear limit of the
system and increases the number and types of solutions over
those of linear systems [9,21–25,29–33]. These are necessary
properties for device designs that do more than simply conduct
energy or signals. In this paper some basic properties related
to the nonlinear dynamics of simple waveguides in photonic
crystal and split ring resonator (SRR) systems are investigated
[1–9,14–24,29,30,32,34–36].

In particular, the focus is on waveguides interacting with
nonlinear dielectric impurities and how these impurities
modify the elastic scattering of the guided modes [33–38].
In one case a nonlinear impurity introduced as a replacement
site within the waveguide channel is treated, and in a second
case a nonlinear impurity introduced next to but outside the
waveguide channel is treated. Aside from renormalizing the
impurity scattering from the linear dielectric limit of these

systems, the nonlinearity allows for the guided modes to
interact with one another and to exhibit multiple transmission
solutions for modes incident on the impurities [39,40]. In the
case of a single guided mode in the system the presence of
multiple transmission solutions is known as optical bistability.
In this paper we will consider the more general case of
two guided modes of different frequencies traveling and
interacting in the system. The multiple mode problems for two
guided waves lead to more complex transmission behaviors
in the systems than that found in the single mode problem.
This multiplicity of the transmission coefficients is a feature
which is introduced by the nonlinearity, and understanding the
conditions for its occurrence is the focus of this paper.

Photonic crystal waveguides have been extensively studied
using both numerical and analytical methods [1–9]. A common
method of study is based on numerical computer simulation
techniques [1–3,21]. These have led to important and well
known engineering results for impurities, waveguide branch-
ings, and couplings of general waveguide systems. Analytical
methods can also be applied to some systems, giving insights
into the quantitative and qualitative properties of waveguides
and configurations of waveguides [5–10,21–24,33–38]. In
this paper we focus on the later analytic approach based
on difference equations. The basis of the approach is a
set of difference equations which are developed in a type
of coupled resonator treatment [5,6,21–24,29,30,33–35,41].
The difference equation approach [41] has been applied in a
variety of discussions of the properties of nonlinear systems
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for the transmission of guided modes through impurities
and arrays of impurities and for waveguide branchings
[5,6,21–24,29,30,33–35,41]. Its analytic nature leads to an-
alytical forms that, in the present considerations of the
impurity waveguide systems, give a complete determina-
tion of the transmission solutions in terms of parameters
which can be estimated for any experimental realization of
waveguides.

Another nanosystem with a difference equation approach is
an SRR metamaterial. SRR metamaterials are of interested as
they allow for the design of artificial materials with engineered
optical properties not found in natural, nonengineered, mate-
rials [9,14–16,32,33]. This has given rise to technological and
device applications, e.g., negative refractive index materials
[9–12,42–44], superlenses [13], cloaking devices [42], and
relativistically modeled materials [45,46]. The development
of the linear and nonlinear difference equations for these
systems has been given in a variety of papers and is outlined
later for the nonlinear system [14–16,32,33]. Studies of these
systems have focused on the dynamical properties of both
linear and nonlinear SRR materials, with much work directed
to understanding the nature of the modes occurring in various
systems and their classification. In this paper we extend this
work with a focus on one-dimensional waveguide chains of
SRR interacting with optically nonlinear media.

For both the photonic crystal and SRR systems our
emphasis is on multiple transmission coefficients found in
the scattering of multiple guided modes from the nonlinear
impurity sites. By multiple transmission coefficients we mean
that there are a number of different inputs of incident
guided modes that result in the same output guided mode
past the scattering impurity. Similar types of discussions
in other contexts have been made in the treatment of the
optical bistability of the scattering of a single frequency of
light from a Kerr nonlinear dielectric slab [31,39,40]. Kerr
nonlinearity enters the photonic crystal and SRR systems in
different ways and this allows for an interesting comparison
between the different mathematics and solutions of these
systems [33].

The focus of the paper is to extend the work in
Refs. [34,35,47] to develop general analytical criterion, for the
nonlinear impurity scattering of guided modes of single and
multiple frequencies, that indicate the appearance of multiple
transmission solutions in photonic crystal systems. These con-
siderations are then continued to make similar considerations
for the SRR metamaterials. In order to simplify the discussions
in the present paper, though the general formulation of the two
guided mode scattering problem is treated, results are only
presented for modes with closely spaced frequencies. This
limits the number of cases discussed while still considering
a set which have interesting properties and technological
potential. The order of the paper is as follows: In Sec. II the
models of the waveguides with impurities are presented. The
algebraic solutions of the models are presented in Sec. III along
with the conditions for multiple transmission coefficients. In
Sec. IV the solutions are discussed and illustrated for some
simple cases. In Sec. V are the conclusions. It is hoped that
our results will make a contribution to recent studies that
have focused on optical bistability in nanophotonic systems
[48–52].

II. MODELS

The scattering of two guided modes by nonlinear dielectric
impurities is studied in nanoscience waveguides. Both in-
channel and off-channel impurities are considered, and the
impurities are composed of Kerr nonlinear media so that the
guided modes interact with themselves and with one another.
This introduces an additional complication from the scattering
due to linear dielectric impurities.

In the first study a photonic crystal waveguide modeled in
a difference equation approach is considered [29,30,35,41].
This approach has been used previously on other systems
with a focus on different properties and geometries [22–
24,29,30,34–36,41,47]. The second system studied is a split
ring resonator (SRR) metamaterial, also formulated in a
difference equation approach [9,14–16,32,33]. In the treatment
of the SRR metamaterial the system is modeled as a chain of
inductor-capacitor (LC) resonator circuits that are coupled to
one another through mutual induction. It is a simplification of
more general three-dimensional models of SRR metamaterials.

Aside from their nanoscience applications, the two systems
are of interest because the dielectric nonlinearity enters the
difference equations of the photonic crystal and metamaterials
differently [33]. This allows an interesting comparison of the
dynamical properties of these two nonlinear models.

In the approximation of a Kerr nonlinear dielectric media
the index of refraction is a function of the intensity of the
applied electric field, and various inelastic frequency mixing
effects leading to the generation of higher harmonics are
ignored [26–28,39,40]. This is known as the rotating wave
approximation (RWA). The field dependence of the dielectric
properties of the Kerr media allows two modes of different
frequency to modulate each other’s transmission through
the system. In addition, each mode self-modulates its own
transmission through the system. In the discussions later, the
model of the photonic crystal system is first presented. This is
followed by the presentation of the model of the metamaterial.

A. Photonic crystal

The in-channel scattering geometry is shown in the
schematic of Fig. 1(a). Here we consider a two-dimensional
photonic crystal composed of infinite parallel axis dielectric

(a)

(b)

FIG. 1. Schematic plot of a one-dimensional waveguide of linear
media sites (denoted X) interacting with an impurity site of nonlinear
media (denoted 0) for: (a) the impurity formed as a replacement
site within the waveguide channel, and (b) the impurity formed by
site replacement off the waveguide channel. Only the sites of the
waveguide and impurities are shown. For the photonic crystal studies,
the waveguide and impurities are formed by cylinder replacement in
a square lattice photonic crystal, with the waveguide channel along
the x axis of the square lattice of the photonic crystal.
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cylinders of radii R. The cylinders are arranged on a square
lattice of lattice constant a > 2R in the plane perpendicular
to the common axis of the cylinders. A waveguide is formed
by cylinder replacement of a single row of cylinders along
the x axis with cylinders containing a change in dielectric
permittivity δεl in a region of radius r � R about the axis of
each replacement cylinder. An in-channel impurity is formed
for one of the cylinders in the waveguide channel by taking
the change in dielectric of that cylinder to be in the form
of a Kerr nonlinear optical medium. For a single frequency
mode the permittivity change due to the presence of Kerr
medium is of the form δε(|E|2) = δε(1 + λ|E|2), where λ

characterizes the nonlinearity [29,30]. In the presence of two
different frequency modes labeled by i, j = 1, 2 with i �= j ,
the change in the dielectric permittivities due to the presence
of the added linear medium become δεi

l and the change in the
dielectric permittivities due to the presence of the added Kerr
medium permittivity is δεi(|Ei |2,|Ej |2) = δεi(1 + λii |Ei |2 +
λij |Ej |2) [35]. Here λii and λij , respectively, characterize the
self-interaction of the modes and the interaction between the
modes. For λij = 0 the dielectric form reduces to that of a
single i frequency mode in the system.

Within the coupled resonator approach, the difference equa-
tions for the in-channel system are given by [29,30,35,41,47]

Ei
n = gi

l

[
αiE

i
n + βi

(
Ei

n+1 + Ei
n−1

)]
, (1a)

for n > 1 or n < −1, and

Ei
0 = giαi

[
1 + λii

∣∣Ei
0

∣∣2 + λij

∣∣Ej

0

∣∣2]
Ei

0 + gi
l βi

(
Ei

1 + Ei
−1

)
,

(1b)

Ei
±1 = gi

l

(
αiE

i
±1 + βiE

i
±2

) + giβi

[
1 + λii

∣∣Ei
0

∣∣2

+ λij

∣∣Ej

0

∣∣2]
Ei

0. (1c)

Here i,j = 1,2 with j �= i label the two different frequency
modes sent down the waveguide, and Ei

n is the electric field
at the center of the nth replacement cylinder for the frequency
mode labeled i. The coefficients gi

l = δεi
l and gi = δεi ; and the

on-site and nearest neighbor couplings αi and βi are related to
the on-site site and nearest neighbor site Green’s functions of
the bulk photonic crystal. At each guided mode frequency the
ratio | βi

αi
| � 1 has been shown elsewhere to exhibit a roughly

exponential decay with the separation between sites, and the
ratio is easily adjusted by changing the separation between
neighboring sites chosen to form the waveguide channel [47].
Consequently, the approach in Eq. (1) is for a system with weak
nearest neighbor couplings, and further neighbor couplings are
not and need not be treated.

The off-channel scattering geometry is given in the
schematic of Fig. 1(b). The representation is of a waveguide
channel along the x axis in a two-dimensional photonic crystal
with an off-channel Kerr nonlinear impurity set one lattice
constant away from the waveguide channel along the y axis.
Here one of the off-channel photonic crystal cylinders is
replaced by a channel cylinder containing Kerr nonlinear
optical media.

The difference equations for this system are given
by [29,30,35,41,47]

Ei
n = gi

l

[
αiE

i
n + βi

(
Ei

n+1 + Ei
n−1

)]
, (2a)

for n � 1 or n � −1, and where s labels the off-channel site

Ei
0 = gi

l

[
αiE

i
0 + βi

(
Ei

1 + Ei
−1

)]
+ giβi

[
1 + λii

∣∣Ei
s

∣∣2 + λij

∣∣Ej
s

∣∣2]
Ei

s, (2b)

Ei
s = giαi

[
1 + λii

∣∣Ei
s

∣∣2 + λij

∣∣Ej
s

∣∣2]
Ei

s + gi
l βiE

i
0. (2c)

Here i,j = 1,2, with j �= i, label the two different frequency
modes sent down the waveguide, and the parameters in Eqs. (2)
are the same as those in Eqs. (1).

Solutions to Eqs. (1) and (2) are obtained algebraically for
scattering boundary conditions of the form [22–24]

Ei
n = tie

ikin, (3a)

with real ti for n � 1 and

Ei
n = uie

ikin + vie
−ikin, (3b)

for n � −1. With these boundary conditions the sums of the
transmission and reflection coefficients of each mode are unity.

B. Metamaterial

The system consists of self-inductive metal rings that are
split with a capacitive gap of width d containing dielectric
material. These are the SRR. The dielectric material in the
gaps is optically linear in the waveguide channel and optically
Kerr nonlinear in the impurities. Each SRR forms an LRC
circuit with a time-varying current and capacitive charge.
The metamaterial is composed as a linear chain of SRR
basis elements on a one-dimensional Bravais lattice of lattice
constant a. The SRR along the chain interact with one another
by weak nearest neighbor mutual inductive couplings [14–
16,32,33].

For a single frequency mode the linear medium permittivity
of the gap material is ε0εl , and in the RWA the Kerr dielectric
permittivity of the gap material is ε(|E|2) = ε0(εl + α

|E|2
E2

c
) for

Ec a characteristic (large) electric field, and where α = ±1
indicates the self-focusing or self-defocusing properties of
the Kerr medium [32,33]. In the presence of two frequencies
labeled by i, j = 1, 2, with i �= j , the permittivities of the
linear medium become ε0ε

i
l and the Kerr medium permittivity

in the RWA is εi(|Ei |2,|Ej |2) = ε0(εi
l + α

|Ei |2
(Eii

c )2 + α
|Ej |2
(Eij

c )
2 ),

where Eii
c and E

ij
c are characteristic electric fields at the two

different frequencies [35].
The problem of the in-channel Kerr nonlinear dielectric

impurity in a waveguide chain of SRR is represented schemat-
ically in Fig. 1(a) [14–16,32,33]. The difference equations
describing the dynamics of the system are [32,33]

−ω2
i

[
qi

n + λi

(
qi

n+1 + qi
n−1

)] + qi
n = 0, (4a)

085113-3



BUDDHI RAI AND ARTHUR R. MCGURN PHYSICAL REVIEW B 91, 085113 (2015)

for n � 1 or n � −1, and

−ω2
i

[
qi

0 + λi

(
qi

1 + qi
−1

)] + qi
0

−
[(

3α

εi
l

rii

) ∣∣qi
0

∣∣2 +
(

2α

εi
l

rij

) ∣∣∣qj

0

∣∣∣2
]

qi
0 = 0. (4b)

Here i,j = 1,2, with j �= i, label the two different frequency

modes sent down the waveguide so that qi
n = Qi

n

Qc
, where Qi

n

is the charge on the nth SRR of the ith mode and Qc is a
normalizing constant which is defined later. The couplings
λi = Mi

Li
, where Mi is the mutual inductive couplings between

nearest neighbor SRR and Li is the SRR self-inductance of
the ith mode. (Note that, following previous treatments, in the
systems studied further than nearest neighbor mutual inductive
couplings are assumed to be small. A detailed discussion of this
approximation is given in Refs. [32,33].) Defining a character-
istic linear gap capacitance C = (C1

l + C2
l )/2, where Ci

l is the
linear gap capacitance (i.e., λii = λij = 0) of the ith mode and
a characteristic SRR gap potential Uc = (E1

c + E2
c )d/2, the

normalizing charge Qc = CUc is obtained from the capacitor
formula. In terms of these rii = ( Qc

Ci
l U

ii
c

)2 and rij = ( Qc

C
j

l U
ij
c

)2,

where Uii
c = Eii

c d and U
ij
c = E

ij
c d are characteristic gap

potentials giving the strength of the nonlinear interactions at
frequencies i and j . Finally, the frequency related coefficients
are defined as ω2

i = �2
i

LiCi

LC
, where �i is the frequency of the

ith mode in units of 1√
LC

and where L = (L1 + L2)/2 is a
characteristic self-inductance of the SRR.

The off-channel impurity in the SRR waveguide is shown
schematically in Fig. 1(b). The difference equations describing
the waveguide are given by [32,33]

−ω2
i

[
qi

n + λi

(
qi

n+1 + qi
n−1

)] + qi
n = 0, (5a)

for n � 1 or n � −1,

−ω2
i

[
qi

0 + λi

(
qi

1 + qi
−1

)] + qi
0 − ω2

i λ
′
iq

i
s = 0, (5b)

and

−ω2
i

[
qi

s + λ′
iq

i
0

] + qi
s

−
[(

3α

εi
l

rii

) ∣∣qi
s

∣∣2 +
(

2α

εi
l

rij

) ∣∣qj
s

∣∣2
]

qi
s = 0, (5c)

for the 0 site and the off-channel site labeled s. In these
equations, λ′

i = M ′
i

Li
allows for a difference in the off-channel

mutual inductance, and the notation is otherwise the same as
that in Eqs. (4).

Solutions to Eqs. (4) and (5) are obtained algebraically for
boundary conditions in the form [22–24]

qi
n = tie

ikin, (6a)

with real ti for n � 1 and

qi
n = uie

ikin + vie
−ikin, (6b)

for n � −1. The transmission and reflections coefficients
of each frequency mode sum to unity for these boundary
conditions.

III. SOLUTIONS

In this section solutions of the nonlinear scattering problems
are given for the photonic crystal systems in Eqs. (1) and (2)
and the metamaterials systems in Eqs. (4) and (5). This is
followed by discussions of the origins and nature of the
multiple solution properties of these systems.

A. Photonic crystals

The photonic crystal in-channel and off-channel nonlin-
ear impurity problems for two different interacting guided
frequency modes are solved algebraically. The solutions are
obtained for the boundary conditions given in Eqs. (3).

In both problems two scattering modes (labeled i = 1, 2)
with dispersion relations

1 = gi
l [αi + 2βi cos ki] (7)

propagate in the linear media waveguide and are incident
on impurity sites of nonlinear optical media. The scattering
solutions are written in terms of the normalized variables
ũi = ui

ti
, ṽi = vi

ti
, S̃i = Si

ti
, γii = λii t

2
i , and γij = λij t

2
j , where

i = 1, 2. (Notice that in this notation the couplings γii and
γij depend on the Kerr parameters of the nonlinear dielectric
and on the amplitudes of the transmitted guided modes.) The
two incident modes interact with themselves and one another
through the nonlinearity of the impurity sites.

For both in-channel and off-channel systems

ũi = 1 − ṽi , (8)

where for the in-channel problem

ṽi = 1

2i sin ki

S̃i − 1

gi
l βi

(9)

and for the off-channel problem

ṽi = 1

2i sin ki

gi
l βi − S̃i

αig
i
l

. (10)

The variables S̃i in Eq. (9) for the in-channel problem are
determined as solutions of the nonlinear equations

γii |S̃i |2S̃i + (1 + γij |S̃j |2)S̃i − gi
l

gi
= 0, (11)

for i = 1, 2, and the variables S̃i in Eq. (10) for the off-channel
problem are solutions of the nonlinear equations

γii |S̃i |2S̃i +
(

γij |S̃j |2 + 1 − 1

giαi

)
S̃i + gi

l βi

giαi

= 0, (12)

for i = 1, 2. The effects of nonlinearity in the two problems
enter through the nonlinear Eqs. (11) and (12). Consequently,
the key to explaining the behaviors of the scattering interaction
in these systems is in understanding the solutions of Eqs. (11)
and (12). This will be the focus of the discussions in the
following.

In the considerations of each of the two scattering problems,
the transmission coefficients of the two frequency modes are
obtained by solving Eqs. (7) through (12) for ũi = ui

ti
, ṽi = vi

ti
,

and S̃i = Si

ti
. Specifically, for the in-channel (off-channel)

problem the solutions of the S̃i’s in Eq. (11) [Eq. (12)] are
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determined. Once these S̃i are obtained, they are used in
Eqs. (8) and (9) to determine (ũi , ṽi) of the in-channel problem
or in Eqs. (8) and (10) to determine (ũi , ṽi) of the off-channel,
respectively. The transmission coefficients are then given by
Ti = | 1

ũi
|2 and the reflection coefficients by Ri = | ṽi

ũi
|2. For

both the in-channel and off-channel solutions Ri + Ti = 1 is
separately satisfied for each of the two incident frequency
modes.

B. Metamaterials

The metamaterial in-channel and off-channel nonlinear im-
purity problems for two different interacting guided frequency
modes are solved algebraically. The solutions are generated
for the boundary conditions in Eqs. (6).

For both the in-channel and off-channel problems the
incident guided modes (labeled i = 1, 2) have dispersion
relations

ω2
i = 1

1 + 2λi cos ki

, (13)

for propagation in the linear media waveguides, and in each
problem the modes interact with themselves and each other
at the Kerr nonlinear impurities. The scattering solutions are
written in terms of the normalized variables ũi = ui

ti
, ṽi = vi

ti
,

γii = 3α

εi
l

rii t
2
i , and γij = 2α

εi
l

rij t
2
j , where i = 1, 2, and as with

the photonic crystal problems the coupling coefficients depend
on the amplitudes of the transmitted guided modes. For both
the in-channel and off-channel systems

ṽi = 1 − ũi , (14)

where for the in-channel problem

ũi = 1 + 1

2i sin ki

[
γii + γij

ω2
i λi

]
(15)

and for the off-channel problem

ṽi = − 1

2i sin ki

λi
′

λi

S̃i . (16)

The variables S̃i in Eq. (16) for the off-channel problem are
determined as solutions of the nonlinear equations

|S̃i |2S̃i + ω2
i − 1 + γij |S̃j |2

γii

S̃i + ω2
i λi

′

γii

= 0. (17)

Note that only the off-channel problem has a multiplicity
of solutions arising from the nonlinearity of Eq. (17), and
the solution of the in-channel problem given by Eqs. (14)
and (15) does not exhibit a multiplicity of solutions. For the in-
channel problem the nonlinearity only renormalizes the single
solution for the transmission and reflection coefficients, and,
consequently, the in-channel problem will not be discussed
further.

The transmission coefficients are obtained by Eqs. (14)
through (17) for ũi = ui

ti
, ṽi = vi

ti
, and in the case of the

off-channel problem for S̃i = Si

ti
. For the off-channel problem

the solutions of the S̃i’s are determined from Eq. (17), and
these are used to obtain (ũi , ṽi) from Eqs. (14) and (16). In both
the off- and in-channel problems the transmission coefficients
are given by Ti = | 1

ũi
|2 and the reflection coefficients are

given by Ri = | ṽi

ũi
|2 so that for each guide frequency mode

Ri + Ti = 1.
We now discuss the multiple solution nature of the

transmission coefficients found in both the photonic crystal
and metamaterial systems.

C. Solutions of the set of two nonlinear equations

The multiple solution transmission characteristics of the
photonic crystal waveguide and the SRR metamaterial are
discussed for representative solutions of the two nonlinear
systems. What is meant by optical multiple solutions in the case
of a single frequency mode is that, for a fixed parametrization
of the difference equations and a fixed specification of the
output intensity in the waveguide channel, the solutions for the
input intensity of the scattered wave display multiple values
giving the same output intensity. What is meant by optical
multiple solutions for two frequencies modes is that for a
fixed parametrization of the difference equations and a fixed
specification of the output intensities in the waveguide channel,
the solutions for the input intensities of the scattered waves
display multiple values giving the same output intensities.

The multiplicity of transmission coefficients for the pho-
tonic crystal and metamaterial scattering comes from the mul-
tiple solutions of the S̃i’s obtained from each of Eqs. (11), (12),
or (17). These nonlinear equations for the S̃i’s do not involve
the other ũi = ui

ti
, ṽi = vi

ti
variables that are obtained as linear

functions of the S̃i’s solutions. Consequently, in the following
the focus is on understanding the multiple solutions of the S̃i’s
obtained from Eqs. (11), (12), or (17). In addition, as these
equations all have the same general form it is only necessary
to give discussions about equations of that general form.

The sets of two nonlinear equations which define the
multiple solution properties of the scattering problems are of
a common form given by

a1|x|2x + (b1 + c1|y|2)x − d1 = 0, (18a)

a2|y|2y + (b2 + c2|x|2)y − d2 = 0. (18b)

Here (x,y) = (S̃i ,S̃j ) and the coefficients ai , bi , ci , di are
obtained from Eqs. (11), (12), or (17). The coefficients ai , bi ,
ci , di are real so that the solution sets {(x,y)} of Eqs. (18) must
be real. The solutions of Eqs. (18) are then given as the real
solutions of the polynomial system

a1x
3 + (b1 + c1y

2)x − d1 = 0, (19a)

a2y
3 + (b2 + c2x

2)y − d2 = 0, (19b)

and the focus will be on this system. Even though Eqs. (19a)
and (19b) are coupled in both x and y, they have the underlying
basic form of cubic equations in x and y, respectively. The
multiple solution properties of the systems are then based
on those of the solutions of cubic polynomials, and these
properties are now reviewed.

The regions in which each of Eqs. (19a) and (19b)
exhibit single solution sets in some cases are determined by
considering the solutions of cubic equations. Specifically, for
a cubic polynomial of the form

x3 + ax − b = 0, (20a)
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TABLE I. Conditions under which single-valued solutions are obtained for in- and off-channel photonic crystal and off-channel metamaterial
impurities. Here i, j = 1, 2 and i �= j .

In-channel photonic crystals γii = γjj , γij = γji γii + γij < − 4
27

(
gi

gi
l

)2
or γii + γij > 0

Off-channel photonic crystals γii = γjj , γij = γji and γii + γij < − 4
27

(
giαi

gi
l
βi

)2
Di

3 or γii + γij > 0

Di = 1 − gi
l

gi

[
1 + 2 βi

αi
cos ki

]
> 0

Off-channel photonic crystals γii = γjj , γij = γji and γii + γij > − 4
27

(
giαi

gi
l
βi

)2
Di

3 or γii + γij < 0

Di = 1 − gi
l

gi

[
1 + 2 βi

αi
cos ki

]
< 0

Off-channel metamaterials γii = γjj , γij = γji and γii + γij < − 4
27 (ω2

i λ
′
i)−2Di

3 or γii + γij > 0
Di = (ω2

l − 1) = −2ω2
i λi cos ki > 0

Off-channel metamaterials γii = γjj , γij = γji and γii + γij > − 4
27 (ω2

i λ
′
i)−2Di

3 or γii + γij < 0
Di = (ω2

l − 1) = −2ω2
i λi cos ki < 0

where a, b are real, the polynomial has one real solution for x

under the condition that [53]

D = 1

27
a3 + 1

4
b2 > 0. (20b)

In the following it is shown that under appropriate con-
ditions on the parameters ai and bi Eq. (20b) must be
separately satisfied by each of Eqs. (19a) (considered as
a cubic in x) and (19b) (considered as a cubic in y) in
order that they exhibit a unique (x,y) solution. For these
cases, the simultaneous satisfaction of these conditions by the
solutions of both equations provides a bound on the regions
of single solutions for the transmission coefficient of the
scattering problems. Some examples of this are considered
later.

1. Case illustrations

The parameter space of Eqs. (19) is large for general
considerations of scattering problems involving two guided
modes. However, some special cases of interest for phys-
ical and technological applications can be drawn upon as
a focus of considerations. These give indications of new
behaviors, not observed in the optical bistability of the
single frequency scattering problem, exhibited by these
systems.

(a) Symmetric systems. A simple case of interest is that of
two different frequency modes for which a1 = a2, b1 = b2,
c1 = c2, d1 = d2. The system of two equations in this case
is symmetric in its parametrization. This parametrization is a
reasonable consideration for a model of two guided modes
with closely spaced frequencies such as would be found
in the same pass band of a photonic crystal waveguide or
two closely space modes in a metamaterial. In addition, in
both systems the guided mode dispersion relations should be
relatively flat (i.e., approximately dispersionless), consistent
with our assumptions in both systems of weak couplings
between sites. In most calculations of current interest for
applications of the band structures of photonic crystals and the
dynamics of metamaterials, frequency independent dielectric
and coupling properties of the system are assumed [1–5]. The
proposed assumptions then are not inconsistent with current
practice.

For this case there is a set of solutions of Eqs. (19) with
the property x = y. Under these conditions, following the

discussions of the polynomial forms in Eqs. (20), the system
exhibits a simultaneous unique real solution of both equations
of the system when

D1 = D2 = 1

27

[
b1

a1 + c1

]3

+ 1

4

[
d1

a1 + c1

]2

> 0. (21)

From Eq. (21) the unique solutions are in the regions:
(a) for b1 > 0

a1 + c1 < − 4

27

b3
1

d2
1

or a1 + c1 > 0 (22a)

and
(a) for b1 < 0

a1 + c1 > − 4

27

b3
1

d2
1

or a1 + c1 < 0. (22b)

Note that for the case in Eq. (22a) the region of multiple
solutions is expected in the region a1 + c1 < 0 and for the
case in Eq. (22b) the region of multiple solutions is expected
in the region a1 + c1 > 0. This is seen in the plots and tables
discussed later.

In Table I the conditions in Eqs. (22) for the regions
in which single valued solutions exist are evaluated for the
photonic crystal and metamaterials cases. For the photonic
crystal system the conditions of single valued solutions provide
limitations on the Kerr parameters of the system through
the couplings γii = λii t

2
i and γij = λij t

2
j , where i = 1, 2.

Similarly, for the metamaterial the conditions are written in
terms of mutual inductive and dielectric parameters through
the coupling parameters γii = 3α

εi
l

rii t
2
i and γij = 2α

εi
l

rij t
2
j , where

i = 1, 2. As will be discussed in detail later, multiple solutions
exist in regions of positive or negative γij + γji depending
on the parameters characterizing the dispersion relation of the
linear waveguide and the Kerr media. The results in Table I can
also be used for a comparison of the multiple mode solutions
of the two frequency problem with the optical bistability of a
single frequency guided mode in the waveguide channel. This
follows as the solutions in Table I for γij = γji = 0 revert to
the optical bistability conditions of the system with a single
frequency mode in the waveguide channel.

In addition to the x = y solutions, there are nonsymmetric
solutions to the systems in Eqs. (18) and (19) for which
x �= y. This is a type of symmetry breaking solution arising
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TABLE II. The solution for the system in Eq. (25) for the transmission coefficients.

System Impurity site fields i, j = 1, 2 Transmission of modes i, j = 1, 2

In-channel photonic crystal S̃i = 1
2

gi
l

gi ± 1
2

[( gi
l

gi

)2

− 4
γ

]1/2
Ti = 4sin2ki

4sin2ki+
(

S̃i−1

gi
l
βi

)2

S̃j = 1
2

g
j
l

gj ∓ 1
2

[( g
j
l

gj

)2

− 4
γ

]1/2
Tj = 4sin2kj

4sin2kj +
(

S̃j −1

g
j
l

βj

)2

Off-channel photonic crystal S̃i = 1
2

gi
l
βi

1−giαi
± 1

2

{( gi
l
βi

1−giαi

)2

− 4
γ

(
1 − gi

l

gi

[
1 + 2 βi

αi
cos ki

])}1/2 Ti = 4sin2ki

4sin2ki+
(

S̃i−gi
l
βi

gi
l
αi

)2

S̃j = 1
2

g
j
l
βj

1−gj αj
∓ 1

2

{( g
j
l
βj

1−gj αj

)2

− 4
γ

(
1 − gi

l

gi

[
1 + 2 βi

αi
cos ki

])}1/2 Tj = 4sin2kj

4sin2kj +
(

S̃j −g
j
l

βj

g
j
l

αj

)2

Off-channel metamaterial S̃i = 1
2

ω2
i
λ′

i

1−ω2
i

± 1
2

[( ω2
i
λ′

i

1−ω2
i

)2

− 4
ω2

i
−1

γ

]1/2
Ti = 4sin2ki

4sin2ki+
(

λ′
i

λi
S̃i

)2

S̃j = 1
2

ω2
j
λ′

j

1−ω2
j

∓ 1
2

[( ω2
j
λ′

j

1−ω2
j

)2

− 4
ω2

j
−1

γ

]1/2
Tj = 4sin2kj

4sin2kj +
(

λ′
j

λj
S̃j

)2

from the multiplicity of unknowns and the nonlinearity of the
equations. The resulting solutions do not have a counterpart
in the single frequency guided mode problem and are only
present in multiple mode problems. The additional solutions
are given by

x = 1

2

d

(c − a)r
+ 1

2

[
d2

(c − a)2r2
− 4r

]1/2

, (23a)

y = 1

2

d

(c − a)r
− 1

2

[
d2

(c − a)2r2
− 4r

]1/2

, (23b)

where a1 = a2 = a, b1 = b2 = b, c1 = c2 = c, d1 = d2 = d,
and r is a real root of the cubic polynomial

(a + c) r3 − br2 − ad2

(c − a)2 = 0. (23c)

[Notice that Eqs. (23) are not defined for the case that a = c,
and the additional x �= y solutions do not exist in this limit.]
Only a single real solution for r is needed to yield the additional
x �= y solutions to the system of equations. However, Eq. (23c)
may have multiple real solutions for r , and these would add to
the multiplicity of x �= y solutions.

A limit of Eqs. (23) that is of general interest for systems
with weak nonlinear Kerr coupling parameters is that for
which a,c � b,d. In these systems a,c parametrize the Kerr
nonlinear terms and are typically small compared to b,d

characterizing the linear properties of the waveguide and
impurity. From Eq. (23c) we find for this case that

r ≈
√

− ad2

b(c − a)2 , (24)

and Eqs. (23a) and (23b) with Eq. (24) are valid provided
c �= a �= 0.

An exactly solvable case of the x �= y system is that for
which c �= a = 0 in Eq. (23c). For these systems the x = y

solutions of Table I and the x �= y solutions are both given in

closed analytic forms. In this limit

r = b

c
, (25)

where the x �= y solutions are obtained from Eqs. (23a)
and (23b). The results for the transmission coefficients of the
x �= y solutions for these systems are listed in Table II. They
will be discussed later.

(b) Asymmetric systems. An additional exactly solvable and
experimentally realizable case of interest is that in which one
of the equations is not coupled to the other by the nonlinear
interaction. This is the case of an asymmetric system in which
one frequency mode of the system has a strong interaction with
the other mode and a strong self-interaction, but the other mode
only has a strong self-interaction. Such interactions can be
arranged because the coupling parameters of the nonlinearity
(i.e., the parameters γii = λii t

2
i , γij = λij t

2
j in the photonic

crystal system and γii = 3α

εi
l

rii t
2
i , γij = 2α

εi
l

rij t
2
j in the metama-

terial) are related to the intensity of the transmitted waves. As
an example, consider a system in which the intensity of one
frequency mode is much less than that of the other, i.e., t1 � t2.
In this configuration the t2 system tends to have a smaller
(negligible) interaction with the t1 system than with itself.

For this case the general form of the equations of the system
is approximated by

a1x
3 + (b1 + c1y

2)x − d1 = 0, (26a)

a2y
3 + b2y − d2 = 0. (26b)

In terms of the parameters of the photonic crystal,
Eqs. (26) are obtained if c2 = γ21 = λ21t

2
1 � c1 = γ12 =

λ12t
2
2 , a1 = γ11 = λ11t

2
1 . Likewise for the metamaterial c2 =

γ21 = 2α

ε2
l

r21t
2
1 � c1 = γ12 = 2α

ε1
l

r12t
2
2 , c1 = γ11 = 3α

ε1
l

r11t
2
1 is

required for this limit.
From Eq. (20) the condition for Eq. (26b) to have a single

valued solution is given by

D2 = 1

27

(
b2

a2

)3

+ 1

4

(
d2

a2

)2

> 0 (27a)
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and the condition for Eq. (26a) to have a single valued solution
is given by

D1 = 1

27

(
b1 + c1y

2

a1

)3

+ 1

4

(
d1

a1

)2

> 0. (27b)

A unique solution of the system is obtained provided both
of these inequalities are simultaneously satisfied. An example
of this system and the novelty of its multiple solutions will be
considered later.

We now turn to a presentation and discussion of plots
illustrating the above behaviors in a number of systems.

IV. RESULTS

In this section discussions are presented of typical behaviors
found for guided modes at two different frequencies interacting
with Kerr nonlinear impurities. A focus is on multiple solutions
of the transmission coefficients in the two mode problem and
how the multiple solution effects observed differ from the
optical bistability properties found in the single guided mode
problem. The equations given in Sec. II are completely general
for the waveguide impurity problem for guided modes at two
different frequencies but are restricted here to cases of modes
with closely spaced frequencies. In addition, it is assumed
that the dispersion relations of the modes are relatively flat.
These restrictions facilitate the study of the possible behaviors
in the systems while offering an indication of the qualitative
behaviors expected in more general cases.

A. Photonic crystals

For two guided modes with closely spaced frequencies, the
frequency dependent parameters characterizing the dielectric
properties of the waveguide should be approximately the
same. Under this reasonable assumption the ratios of the
linear parts of the dielectric constants satisfy g1

g1
l

≈ g2

g2
l

, and the

Kerr parameters satisfy λii ≈ λjj and λij ≈ λji , for i,j = 1,2,
where i �= j . In addition, each of the two close frequencies
should have a similar interaction with the system so that it is
expected that λii and λij are the same sign, and the ratios of the
on-site and nearest neighbor couplings are relatively frequency
independent with β1

α1
≈ β2

α2
. As has been shown in previous

work on the properties of photonic crystal waveguides, the ratio
β1

α1
≈ β2

α2
measures the spatial decay rate of electromagnetic

radiation at stop band frequencies in the bulk photonic crystal
so that by adjusting the separation between neighboring sites
chosen to form the waveguide channel | β1

α1
| � 1 can be

assured [47]. This last condition guarantees that the guided
mode dispersion relations are flat and our nearest neighbor
coupling model is correct. Such examples of the choice of
waveguide couplings have been presented in our previous work
on photonic crystal waveguides [22–24,29,30,34,35,47,54].

First consider the system in Fig. 1(a) for the in-channel im-
purity. It is convenient to study the transmission coefficients of
this system in terms of the parameters γii = λii t

2
i , γij = λij t

2
j .

In this parametrization, for fixed values of the Kerr parameters
characterizing the nonlinearity, the multiple solution properties
are represented in terms of the variation of the intensities of
the two transmitted waves. As a further simplification in the
presentation, only the cases for which γii = γjj = γij = γji = γ

and for which γii = γjj = 0, γij = γji = γ are treated. These
represent limiting forms of the system and provide repre-
sentative behaviors of the new physical features in the two
mode systems. The first case displays the limit in which the
system only has symmetric solutions. The second case is an
example of a general solution composed of both symmetric
and nonsymmetric components and, in addition, has a simple
closed form expression for the transmission coefficients.

Figure 2 displays plots of the transmission coefficient versus
γ for the two cases of γii = γjj and γij = γji . In the plots
the ratio of the nearest neighbor to on-site couplings for
our theory of weakly coupled waveguide systems is taken
as β1

α1
= β2

α2
= 0.1. In general, the qualitative and quantitative

behaviors in Fig. 2 are found to be weakly dependent on
these ratios, and the values of the ratios are typical to
our earlier discussions [5,6,22–24,29,30,34–36,41,47,54] of
photonic crystal waveguides. The ratios gi

l

gi involving the linear

and nonlinear channel sites are taken to be g1
l

g1 = g2
l

g2 = 3. This
is a reasonable choice for these ratios, and provides a nice
illustration of the qualitative behavior found in typical systems.
For the plot k1 = k2 = 1.0 is located roughly midway between
the center and edge of the waveguide Brillouin zone.

In Fig. 2(a) the transmission coefficients as a function of
γ for the two guide modes of the purely symmetric γii =
γjj = γij = γji = γ case are presented. The transmission
results are the same for each of the two modes. For each
mode, the system exhibits multiple solutions in the region
− 2

243 < γ < 0, and as seen from Table I only systems with
negative Kerr parameters have a region of multiple solutions.
In the region of multiple solutions, for each of the modes,
three solutions for the transmission coefficients are found. Two
solutions have small values for the transmission coefficient
that decrease to zero as negative γ approaches zero. The
third solution rises rapidly to a transmission coefficient less
than unity as negative γ approaches zero. The nature of the
multiple solutions is understood by changing γ . Beginning in
the linear limit of the system at γ = 0, as γ is decreased into
the region − 2

243 < γ < 0 the transmission coefficients of the
system travel along the upper branch in Fig. 2(a) until they fall
off at γ = − 2

243 . The coefficients then follow with decreasing
γ the single branch of transmission coefficients in the region
γ < − 2

243 . Upon reversing this trajectory, the system begins
on the single lower branch at γ < − 2

243 and moves on the
lower branch of the transmission coefficient curve until at
γ = 0 it switches to the limit of the linear system on the upper
branch. In the region of multiple solutions a form of optical
bistability is then exhibited by each of the two frequencies.
The behavior of each of the two modes is reminiscent of the
optical bistability of the single frequency system observed in
the plot found in Fig. 3 of Ref. [47]. In Fig. 3 of Ref. [47]
as the intensity of the single mode is increased and then
decreased a similar switching is found between three branches
of the system solutions. The region of bistability of the two
mode system, however, is found to be different from that of
the single frequency system. The multiple solution interval of
the two frequency system is half the size in γ of that of the
single modes system.

In Fig. 2(b) the transmission coefficients for the γii =
γjj = 0, γij = γji = γ case are shown as a function of γ .
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FIG. 2. Plots of photonic crystal results for an in-channel impurity
as in Fig. 1(a) for: (a) Plot of the transmission coefficient versus γ

for γii = γjj = γij = γji = γ . The region of multiple transmission
coefficient solutions is − 2

243 < γ < 0. (b) Plot of the transmission
coefficient versus γ for the case γii = γjj = 0 and γij = γji = γ .
(c) An amplified portion of the plot in (b). The region of multiple
transmission coefficient solutions is − 4

243 < γ < 0. For the plots
β1
α1

= β2
α2

= 0.1, k1 = k2 = 1.0, and
g1
l

g1 = g2
l

g2 = 3. In the figures the
solid lines are for the symmetric solutions and the dashed lines are
for the nonsymmetric solutions.

In this limit the system has both symmetric (solid lines)
and nonsymmetric (dashed lines) transmission coefficient

solutions. Figure 2(b) displays a region of symmetric multiple
transmission coefficients for − 4

243 < γ < 0. For the symmet-
ric solutions two of the transmission coefficients go to zero
as negative γ → 0 while the third solution rises rapidly to a
transmission coefficient less than unity as negative γ → 0.
As with Fig. 2(a) the plot of the symmetric transmission
coefficients is a hysteresis type of curve. In addition, a region
of nonsymmetric transmission coefficient solutions is found
to include all of γ < 0, but for γ > 0 nonsymmetric solutions
do not exist. To facilitate the reader the region of the plot
containing nonsymmetric solutions has been amplified and
presented in Fig. 2(c). For γ < 0 the nonsymmetric solutions
exhibit two transmission coefficients that are split between
the frequencies so if one is fixed upon by the frequency
labeled 1 the other is for the frequency labeled 2. For γ → 0
the antisymmetric transmission coefficients have the limiting
forms for the two modes labeled i = 1,2,

T ±
i → − 4γ

(
gi

l βi

)2
sin2ki

1 ∓ 2
√−γ

(
1 − 1

2
gi

l

gi

) (28a)

where for the ± transmission coefficients are split between the
two modes. These are to be compared to the degenerate lowest
branches of the symmetric solutions given by

T ±
i → − 4γ

(
gi

l βi

)2
sin2ki

1 ∓ ( gi
l

gi
+ 2

)√−γ
, (28b)

where both modes take the same ± transmission coefficient.
The nonsymmetric solutions are seen to exhibit a symmetry

breaking between the transmission coefficients of the two
guided modes similar to that found in Jahn-Teller systems. As
with the Jahn-Teller effect the symmetry breaking is a feature
arising from the nonlinearity introduced into the system by the
Kerr nonlinearity of the impurity site media.

Another interesting type of behavior for two frequency
modes interacting with the Kerr impurity is the case of
asymmetric couplings between the two frequencies. This
differs from the results discussed earlier which are for
symmetric couplings between the two modes. Asymmetrically
coupled modes exhibit more complex forms of multiple
transmission solutions. In Fig. 3 results are presented for an
asymmetric system in which γii = γjj = γij = γ and γji = 0.
For these couplings the nonlinear interaction of one frequency
mode is only with itself while the nonlinear interactions of
the other frequency mode involve a self-interaction along
with an interaction with the other frequency mode in the
system. Figure 3(a) presents the transmission coefficients as
functions of γ for the frequency with a self-interaction and
an interaction with the other frequency in the system, while
Fig. 3(b) presents results for the frequency mode with only
a self-interaction. The results in Fig. 3(b) for the mode with
only a self-interaction display a standard optically bistable
transmission. This is due to the lack of influence on this mode
from the other mode in the system. The curves in Fig. 3(b)
are labeled 1, 2, 3 for the different branches of the optical
bistable solutions, and all three curves coexist in the region
− 4

243 < γ < 0 of optical bistability. The results in Fig. 3(a)
display an additional multiplicity of transmissions arising from
its self-interaction and the additional interaction with the other
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FIG. 3. In-channel photonic crystal results for: (a) Plot of the
transmission coefficient versus γ for the frequency with both self-
interaction and interaction with the other frequency mode. The region
of multiple transmission coefficient solutions is − 4

243 < γ < 0. (b)
Plot of the transmission coefficient versus γ for the frequency with
only a self-interaction. In these illustrative plots the case in which
β1
α1

= β2
α2

= 0.1, k1 = k2 = 1.0, and
g1
l

g1 = g2
l

g2 = 3 is considered. The
numbering of the curves pairs the solution sets of the transmission
coefficient of the system and is explained in the text.

frequency mode in the system. This gives a more complex
behavior than that observed in optically bistable systems.
Specifically, the transmission coefficients have a region of five
different solutions rather than the three solutions typical of
optical bistability. The curves in Fig. 3(a) are labeled 1, 2, 3
to correlate them with the curves labeled 1, 2, 3 in Fig. 3(b).
The solution labeled i = 1, 2, 3 in Fig. 3(a) is paired with
the solutions labeled i = 1,2,3 in Fig. 3(b) to form pairs (i,i)
of multiple solutions for the two mode system. Considering
all of the modal solutions in the system for each of the two
frequencies, it is found that the absence of multiple solutions is
only on the intersections of the two regions defined separately
from Eq. (20b) for the two frequencies. Consequently, the
region of multiple transmission coefficient solutions, from
Eqs. (11) and (27), is − 4

243 < γ < 0.
The transmission coefficients with the same numerical

labels presented in Figs. 3(a) and 3(b) are paired together
to form the possible observed transmission states of the total
system. These solutions can be understood as follows: Starting

at the γ = 0 linear limit of the system, both frequencies
have transmission coefficients Ti ≈ 0.0057 for i = 1,2, which
are on curves labeled 1 in their respective plots. As |t |2
is increased and the system becomes more nonlinear, the
transmission coefficients of the modes move into regions of
positive or negative γ depending on the signs of the Kerr
couplings. For increasing positive γ there are only a set of
unique transmission coefficient solutions, and this case is
not of interest. For increasing negative γ the transmission
coefficients of the two modes move along the curves labeled
1 upon which they started. Eventually, near γ = −0.011 the
mode in Fig. 3(a) falls off its curve labeled 1. It jumps to
another curve labeled 1 in Fig. 3(a) which is another solution
paired with the solution labeled 1 in Fig. 3(b). The jump in
Fig. 3(a) is to the multiple solution curve labeled 1 with the
lowest transmission coefficients. After this jump, both modes
continue to move on their curves labeled 1 until γ = − 4

243 .
At this point both modes jump to the transmission coefficient
curves labeled 3 as γ becomes increasingly more negative. The
system is no longer in a region of multiple solutions. Trying to
return to the linear limit, both modes begin on the far left of the
plot along the curves labeled 3 in the region without multiple
solutions. As both modes approach the origin at γ ≈ 0 they
both jump to the curves labeled 1 containing the linear limit
Ti ≈ 0.0057 for i = 1, 2.

Next consider the system in Fig. 1(b) for the off-channel
impurity. Under the restriction that γii = γjj and γij =
γji a solution of symmetric form is found which exhibits
significantly different physics from that of the in-channel
impurity problem. While in the case of the in-channel problem
multiple solutions are only present in the case of negative
Kerr parameters, in the off-channel case multiple solutions are
found for both positive and negative Kerr parameters. From
Table I a region of multiple solutions occurs for negative Kerr
interactions when

1 − gi
l

gi

[
1 + 2

βi

αi

cos ki

]
> 0 (29a)

and a region of multiple solutions occurs for positive Kerr
interactions when

1 − gi
l

gi

[
1 + 2

βi

αi

cos ki

]
< 0. (29b)

In both cases the conditions determining the signs of
the Kerr interactions at which multiple solutions occur are
expressed in terms of the dielectric properties of the waveg-
uide channel, the dielectric properties of the impurity site,
the couplings between the fields along the waveguide, and the
wave vector of the guided modes incident on the impurity. For
the case that |γ | � 1 that is of interest here, the nonsymmetric
solutions in Table II also exhibit a region of multiple solutions

for negative Kerr interaction when 1 − gi
l

gi [1 + 2 βi

αi
cos ki] > 0

and a region of multiple solutions for positive Kerr interactions

when 1 − gi
l

gi [1 + 2 βi

αi
cos ki] < 0. An illustration of some

of these regions over a range of γ ’s is now given for
specific examples of the transmission coefficient. To keep the
discussions brief only the γii = γjj = γij = γji = γ case is
treated, showing regions of the Kerr parameters for which
multiple solutions are obtained.
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FIG. 4. Off-channel photonic crystals plot of the transmission
coefficient versus γ for the case in which: (a) γii = γjj = γij = γji =
γ with a region of multiple transmission coefficient −0.025 < γ < 0.
(b) γii = γjj = γij = γji = γ with a region of multiple transmission
coefficient 0.031 > γ > 0. For the illustrative plots in (a) β1

α1
= β2

α2
=

0.0468, k1 = k2 = 2.9, and
g1
l

g1 = g2
l

g2 = 1. For the plots in (b) β1
α1

=
β2
α2

= 0.0572, k1 = k2 = 0.242, and
g1
l

g1 = g2
l

g2 = 1.

In Fig. 4 plots of the transmission coefficient versus γ are
presented for γii = γjj = γij = γji = γ . As noted earlier, in
this case the complication of a nonsymmetric solution of the
type in Table II is not present. For these examples we will

also assume the condition g1
l

g1 = g2
l

g2 = 1 so that the dielectric
contrast between the waveguide and the impurity is determined
by the nonlinear part of the Kerr dielectric constant. This
simplifies the conditions in Eqs. (29) for the sign of the Kerr
parameter so that it now depends on that of the ratio −2 cos ki

αi/βi
. It

is interesting to see that for a fixed ratio of βi

αi
, depending on the

choice made for ki , the system exhibits both multiple solution
regions of positive and negative Kerr parameters. The results
in Fig. 4(a) are an example of a system with multiple solutions
in the region of negative Kerr parameters while the results
in Fig. 4(b) are for a system with positive Kerr parameters. In
particular, the plots in Fig. 4(a) are made for β1

α1
= β2

α2
= 0.0468

and k1 = k2 = 2.9, while the plots in Fig. 4(b) are made
for β1

α1
= β2

α2
= 0.0572 and k1 = k2 = 0.242. For the plot in

Fig. 4(a), Eq. (29a) gives −2 cos ki

αi/βi
= 0.091 and the region

of multiple solutions occurs for negative Kerr parameters
(i.e., γ < 0). For the plot in Fig. 4(b), Eq. (29b) gives
−2 cos ki

αi/βi
= −0.111 and the region of multiple solutions occurs

for positive Kerr parameters (i.e., γ < 0). In both cases the
figures illustrate typical behaviors of the symmetric solutions.

B. Metamaterials

In Eqs. (4) and (5) for the metamaterial systems it will be
assumed that the two frequencies of the guided modes are
close together. As a consequence, it follows that α

εi
l

rii ≈ α

ε
j

l

rjj

and α

εi
l

rij ≈ α

ε
j

l

rji for i,j = 1,2, and the signs of the α

εi
l

rii and
α

εi
l

rij are the same. In addition, it is assumed that the mutual

inductive couplings are weak so that only nearest neighbor
couplings need be considered and these are the same all along
the chain. This can be arranged by adjusting the separation
between the SRR or the radii of the SRR. In the examples
given later the values of the parameters characterizing the
nonlinearity and the self- and mutual inductances are taken
from earlier works on the SRR model of metamaterials [9,14–
16,32,33]. These are known to provide representations of
physically realistic systems.

As noted earlier, for two incident frequency modes the
in-channel system in Fig. 1(a) displays an absence of mul-
tiple transmission coefficient solutions. The Kerr interactions
lead to a renormalization of the transmission and reflection
properties of the system as field intensities are changed
but multiple solutions are not obtained. In addition, in the
problem involving a single incident frequency mode there
is also an absence of optical bistability for the in-channel
case. This is a fundamental difference from the properties
of the photonic crystal and the metamaterial systems with
off-channel impurities and the photonic crystal with in-channel
impurities. These last systems exhibit regions of multiple
solutions and regions of optical bistability for problems
involving a single incident frequency mode.

The nonlinearity of the off-channel impurity problem in
Fig. 1(b) is characterized by the parameters γii = 3 α

εii
l

rii t
2
i

and γij = 2 α

ε
ij

l

rij t
2
j . Under the restriction that γii = γjj and

γij = γji from Table I multiple valued solutions are found in
the region of negative α

εii
l

, α

ε
ij

l

when(
ω2

l − 1
) = −2ω2

i λi cos ki > 0 (30a)

and in the region of positive α

εii
l

, α

ε
ij

l

when(
ω2

l − 1
) = −2ω2

i λi cos ki < 0. (30b)

As in the case of the photonic crystal with an off-channel im-
purity, depending on the parameters characterizing the linear
waveguide channel, multiple solutions occur for either positive
or negative Kerr interactions. The theory of the metamaterial
in Sec. II A is for weak mutual inductive couplings so that
ω2

i ≈ 1 and the conditions in Eqs. (30) are primarily set by the
λi and the wave numbers of the incident guided modes. Some
specific examples illustrating these conditions are now given.

Figure 5 displays example plots of the transmission co-
efficient versus γ ’s. As a simplification in the presentation,
the case for which γii = γjj = γij = γji = γ (with only
symmetric solutions) and for which γii = γjj = 0, γij = γji = γ
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FIG. 5. Plots of off-channel SRR metamaterial transmission
coefficient versus γ for: (a) γii = γjj = γij = γji = γ , k1 = k2 =
2.9, λ1 = λ2 = −0.02, and λ′

1 = λ′
2 = ±0.02. The region of mul-

tiple transmission coefficient solutions is 0.0 < γ < 0.0104. (b)
γii = γjj = γij = γji = γ , k1 = k2 = 2.9, λ1 = λ2 = 0.02, and λ′

1 =
λ′

2 = ±0.02. The region of multiple transmission coefficient so-
lutions is −0.0113 < γ < 0.0. (c) γii = γjj = 0, γij = γji = γ ,
k1 = k2 = 2.9, λ1 = λ2 = −0.02, and λ′

1 = λ′
2 = ±0.02. The sym-

metric transmission solutions are given by the solid lines and
the nonsymmetric transmission solutions are given by the dashed
lines. The region of multiple transmission coefficient solutions is
0.0 < γ < 0.0209 for the symmetric case and 0.0 < γ for the
nonsymmetric case.

(with both symmetric and nonsymmetric solutions) are treated.
In Figs. 5(a) and 5(b) the transmission coefficient of the
γii = γjj = γij = γji = γ case is shown as a function of γ .
The results in Fig. 5(a) are an example of a system in which
ω2

i < 1 for which the multiple solutions occur for positive
nonlinear coupling parameters. The results in Fig. 5(b) are
for a system in which ω2

i > 1 for which the multiple solutions
occur at negative nonlinear coupling parameters. This is unlike
the results in Fig. 2 for the in-channel photonic crystal which
has multiple solutions only in one quadrant, but similar to the
results in Fig. 4 for the off-channel photonic crystal.

In Fig. 5(c) the transmission coefficient of the γii = γjj =
0, γij = γji = γ case is shown as a function of γ for a
ω2

i < 1 system. The results are shown for the symmetric
solutions (solid lines) and the nonsymmetric solutions (dashed
lines) with a region of multiple solutions for positive γ .
Similar results are found for ω2

i > 1 systems, but in this
case the regions of multiple solutions are for negative γ . For
the symmetric transmission coefficients a region of multiple
transmission coefficients is observed for 0 < γ < 0.0209. In
this region the symmetric solution transmission coefficients
exhibit two transmission coefficients going to zero as positive
γ → 0, while the third transmission coefficient rises rapidly
to a value less than unity as positive γ → 0. As with Figs. 2(a)
and 5(a) the plot of the symmetric transmission coefficients is a
hysteresis type of curve. In addition, a region of nonsymmetric
transmission coefficient solutions is found to include all of
γ > 0, but for γ < 0 nonsymmetric solutions do not exist. For
γ > 0 the nonsymmetric solutions exhibit two transmission
coefficients that are split between the frequencies so if one
is fixed upon by the frequency labeled 1 the other is for the
frequency labeled 2.

For γ → 0 the nonsymmetric transmission coefficients
have the limiting forms for the two modes labeled i = 1,2,

T ±
i → 4

(
λi

λ′
i

)2
γ

1 − ω2
i

sin2ki

1 ∓ ω2
i λ

′
i

1−ω2
i

√
γ

1−ω2
i

, (31a)

where for the ± transmission coefficients are split between the
two modes. These are to be compared to the degenerate lowest
branches of the symmetric solutions given by

T ±
i → 4

(
λi

λ′
i

)2
γ

1 − ω2
i

sin2ki

1 ∓ ω2
i λ

′
i

(ω2
i −1)2

√(
1 − ω2

i

)
γ

. (31b)

As with the nonsymmetric modes of the photonic crystal,
the nonsymmetric solutions of the metamaterial exhibit a lack
of symmetry between the transmission coefficients of the two
guided modes similar to that found in Jahn-Teller systems.

V. CONCLUSIONS

The multiple solution properties of photonic crystal and
SRR waveguides for the propagation of two guided modes at
different frequencies in the presence of in- and off-channel
Kerr nonlinear dielectric impurities are discussed for systems
with weak nearest neighbor couplings [35,47]. The photonic
crystal and SRR metamaterial systems are described by
nonlinear difference equations in which the interaction of the
two guided modes with themselves and each other, generated
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by the nonlinearity, is the source of the multiple transmission
coefficient solutions [14–16,22–30,32–36]. The two guided
modes are found to exhibit more complex multiple solution
behaviors in their transmission coefficients than those found
in the optical bistability of the systems of single guided modes.
This arises from the additional interactions of the two modes
with one another.

Both photonic crystals and SRR metamaterials are of
interest because they are the focus of current efforts related to
technological and device applications. In addition, nonlinearity
enters differently in photonic crystal and metamaterial differ-
ence equations giving rise to qualitatively differences in their
nonlinear behaviors. This allows for an interesting comparison
of the qualitative behaviors found between the two systems and
between their different types of difference equations. In the
photonic crystal model the nonlinearity enters through both
on-site and between site couplings [29,30], while the SRR
system has nonlinear on-site couplings from the capacitor gaps
in the SRR but only linear inductive couplings between the
SRRs [14–16]. One consequence of this is that while both
photonic crystals and SRRs exhibit multiple solutions in the
case of off-channel impurities only photonic crystals exhibit
multiple solutions for in-channel impurities.

The regions of multiple solutions come from the solutions
of cubic polynomial forms arising in the sets of nonlinear
difference equations describing the photonic crystal and SRR
systems, and the regions of single and multiple transmission
solutions are determined by the solvability conditions of cubic
equations [35,47,53]. Analytic forms for the conditions under
which multiple transmission coefficient solutions exist are
given for the cases of both single and two guided modes
traveling in the system. In the presence of two frequencies,
single solution regions are determined separately from the
intersection of the regions defined by the condition for single
valued solutions at each frequency. These regions have then
been studied with specific examples of particular solutions
within the regions accessible to the systems and for closely
spaced frequency modes.

The physics exhibited in these impurity problems is
summarized in the following points.

(1) Two different frequency modes propagating in pho-
tonic crystals and metamaterials interacting with Kerr nonlin-
ear impurities exhibit additional solutions above those found
in the optical bistability of single modes propagating in these
systems. This is clearly seen in the increase complexity
of the transmission plots of the two mode systems in
this paper over that of the optical bistability plots for the
single mode photonic crystal given in Fig. 3 of Ref. [47].
These include: (a) For systems with symmetrically coupled
difference equations considered in Figs. 2, 4, and 5, new
symmetric and nonsymmetric modal solutions introduced in
Sec. III C 1 a and presented in Table II. The total number
of modal solutions (eight possible modes) is increased over

those (three possible modes) found in the regions of optical
bistability for a single mode in the system. (b) For the system
with asymmetrically coupled difference equations considered
in Fig. 3, one mode of the system only has self-interacts while
the other mode includes both self-interaction and interaction
with the other mode in the system. A total of seven modal
solutions were observed in Fig. 3 compared to the three
found in the optical bistability of the single mode solutions
of Ref. [47].

(2) Precise analytic conditions are given in Table I for the
conditions needed to observe multiple solutions in regions of
positive and negative Kerr parameters. These are expressed for
the photonic crystal systems in terms of the dielectric proper-
ties of the Kerr media of the impurity, the dielectric properties
and couplings of the linear media of the waveguide, and the
wave number of the guided modes. For the metamaterials the
conditions are given in terms of the dielectric properties of
the Kerr and linear media, the mutual and self-inductance,
and the wave number of the guided modes. It is also found
that for the photonic crystal system in-channel impurities
only exhibit multiple solutions in regions of negative Kerr
parameters.

(3) In-channel impurities in metamaterials are found not to
exhibit multiple solution behaviors while in-channel impurities
in photonic crystals do exhibit multiple solutions. This is
due to the difference in the way nonlinearity enters the
difference equations of photonic crystals and metamaterials.
Unlike photonic crystals, metamaterials do not have nonlinear
coupling between neighboring sites. This weakens the effects
of the nonlinearity on the systems.

(4) Closed form expressions for the transmission coeffi-
cients of all of the systems are listed in the text and in Table II in
terms of the dielectric parameters of the systems, the couplings
in the difference equations, and the wave numbers of the guided
modes. While for the most part these results are for general
system parameters we have restricted the parameters studied
to a number of cases of technological interests.

It is hoped that the analytic results presented will facilitate
an understandings of multiple solutions and their occurrence in
photonic crystal and SRR waveguides. The analytic conditions
should also help in designing experiments for the observation
of the unusual multiple solutions not yet measured and offer a
rough guide in design considerations. Many types of systems
have nonlinear difference equation formulations including
photons, magnons, electrons, and additional novel types of
nanosystems [55,56]. These systems should yield to a similar
type of analysis to that considered here.
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