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Exotic magnetic phases in an Ising-spin Kondo lattice model on a kagome lattice
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Magnetic and electronic states of an Ising-spin Kondo lattice model on a kagome lattice are investigated by a
Monte Carlo simulation. In addition to the conventional ferromagnetic and ferrimagnetic orders, we show that
this model exhibits several thermally induced phases, such as partially disordered, Kosterlitz-Thouless-like, and
loop-liquid states. In the partially disordered state, we show that the magnetic transition is associated with the
charge-gap formation. We find that the density of states shows characteristic peaks reflecting the underlying
spin texture. On the other hand, in the loop-liquid state, the formation of closed loops of the same spin sites
manifests itself in the peaks in the density of states and the optical conductivity. Our results elucidate the peculiar
cooperation between thermal fluctuations and the spin-charge interplay in this frustrated itinerant electron system.
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I. INTRODUCTION

Exotic magnetism in geometrically frustrated systems is
a hot topic in condensed matter physics, powered by the
discovery of many new candidate materials and the devel-
opment of new theoretical techniques [1,2]. A key feature of
frustrated magnets is the suppression of conventional magnetic
ordering. In these systems, competition between magnetic
interactions due to underlying lattice geometry suppresses the
formation of magnetic long-range order (LRO), often leaving
the system disordered down to zero temperature. In classical
spin systems, the disordered ground state is associated with
macroscopic degeneracy comprised of spin states that satisfy
a local constraint [3–5]. Such degenerated ground states are
extremely sensitive to perturbations, such as subdominant
interactions and fluctuations, providing a fertile ground for
exotic magnetism.

A fundamental, interesting example is found in Ising anti-
ferromagnets on geometrically frustrated lattices. For example,
previous studies on the triangular [6–8] and kagome lattice
[9,10] Ising antiferromagnets have reported that Kosterlitz-
Thouless (KT) phases are induced by further-neighbor interac-
tions. Another prominent phenomenon caused by subdominant
interactions is the partial lifting of the ground-state manifold,
such as partially disordered (PD) states [11,12]. The PD states
are peculiar magnetic orders characterized by the coexistence
of magnetically ordered and paramagnetic (PM) sites forming
a periodic structure; an example on the kagome lattice is shown
in Fig. 1(a). Due to the presence of the PM moments, the PD
states retain the residual entropy. Hence they are interpreted
as a partial lifting of the degenerate ground-state manifold.

Another interesting example is in itinerant magnets on
frustrated lattices [13–16]. Some of them are described by
the Kondo lattice model, in which itinerant electrons are
coupled with localized moments via the local exchange
interaction. In this system, the effective interactions be-
tween the localized moments are induced by the kinetic
motion of itinerant electrons, known as the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction [17–19]. Such effective
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interactions are, in general, long-ranged with oscillating sign,
potentially leading to competing interactions. Meanwhile,
in the itinerant electron systems, magnetic LRO may be
stabilized by the formation of energy gap in the electronic
band structure. In the itinerant magnets, these effects may
give rise to frustration and exotic magnetic states. Indeed,
recent numerical studies on a triangular lattice model have
reported a rich phase diagram. In the case of the model with
Ising localized moments, PD and KT-like states were obtained
along with several magnetically LRO states [20,21]. On the
other hand, a peculiar noncoplanar LRO with scalar chirality
ordering was reported in the case of Heisenberg-type localized
moments [22–25]. We also note that a recent experiment on
Ag2CrO 2 reported possibility of a PD state [14].

In addition, it is also interesting to see how the exotic
magnetism affects itinerant electrons. For instance, local
correlations in the onsite potentials are known to induce
delocalization of electrons, e.g., by a dimer correlation in
one dimension [26] and by formation of loops [27] in three
dimensions. Also, charge-gap formation by local correlations
was reported in a kagome lattice model [28,29]. Thus frustrated
itinerant magnets are candidates for exploring novel phenom-
ena induced by the cooperation of spin-charge coupling and
geometrical frustration.

Recently, the authors have reported that the Kondo lattice
model with Ising localized moments on a kagome lattice shows
peculiar magnetic states, such as PD [30] and loop-liquid (LL)
[31] phases. However, detailed investigation on the magnetic
phase diagrams and their electronic properties have not been
reported yet. In this paper, we show comprehensive numerical
results on both the magnetic and electronic properties. By
using a Monte Carlo (MC) simulation, we show that the model
exhibits rich phase diagram with various thermally-induced
magnetic phases: KT-like, partially-ferromagnetic (PFM), PD,
and LL states, along with conventional magnetic orders such
as ferromagnetic (FM) and q = 0 and

√
3 × √

3 ferrimagnetic
(FR) orders. We also show peculiar electronic and transport
properties of the PD and LL states, reflecting the magnetic
textures of the underlying localized spins. These results imply
that the transport measurements can be used as experimental
probes to detect the exotic magnetic states.

The organization of this paper is as follows. In Sec. II,
we introduce the model and method, with the definitions of
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FIG. 1. (Color online) Schematic pictures of (a) partial disorder
(PD), (b) loop liquid (LL), (c) q = 0 ferrimagnetic (FR) order, and
(d)

√
3 × √

3 FR order. The arrows in (a), (c), and (d) indicate ordered
Ising moments, and the filled circles in (a) indicate paramagnetic sites.
In (a), the shaded hexagon shows the crystallographic unit cell of the
kagome lattice (1, 2, and 3 denote the three sublattices), and the
dotted hexagon is the magnetic unit cell for the PD state (A, B, and
C indicates magnetic sublattices); a = 1 is the lattice constant. In
(b)–(d), the thick lines connect sites with up spins; in (b), the dots
denote the sites with down spins and the six site loops are colored in
red.

physical quantities calculated. In Sec. III, we present our
main results on the thermally-induced phases: the magnetic
phase diagram, the detailed results of physical quantities, and
the electronic and transport properties. Section IV is devoted
to discussions and summary. In Appendices A and B, we
present MC results on the conventional magnetic phases to
complement Sec. III.

II. MODEL AND METHOD

In this section, we introduce the model and method we
used. In Sec. II A, the Hamiltonian is given for the Kondo
lattice model we study in this paper. We present the Monte
Carlo (MC) method briefly in Sec. II B and the definitions of
physical quantities in Sec. II C. We describe the variational
method for the ground-state phase diagram in Sec. II D.

A. Model

We consider a single-band Kondo lattice model on a kagome
lattice with localized Ising spin moments. The Hamiltonian is
given by

H = −t
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.) − J

∑
i

σ z
i Si . (1)

Here, the first term represents hopping of itinerant electrons,
where ciσ (c†iσ ) is the annihilation (creation) operator of an

itinerant electron with spin σ = ↑,↓ at ith site, and t is the
transfer integral. The sum 〈i,j 〉 is taken over NN sites on
the kagome lattice. The second term is the on-site interaction
between localized spins and itinerant electrons, where σ z

i =
c
†
i↑ci↑ − c

†
i↓ci↓ corresponds to the z-component of itinerant

electron spin, and Si = ±1 is the localized Ising moment at
ith site; J is the coupling constant (the sign of J does not
matter in the present model). Hereafter, we take t = 1 as the
unit of energy, and the lattice constant a = 1 [see Fig. 1(a)].

B. Monte Carlo method

To investigate thermodynamic properties of the model (1),
we utilized a MC simulation which has been widely applied
to similar models [32]. Although there have already been
numbers of papers which describe this method, here we briefly
review the MC technique to make the paper self-contained.

The model we study in this paper, Eq. (1), belongs to the
class of models in which fermions are coupled to classical
fields. The partition function is given by

Z = Trf Trc exp[−β(H − μN̂e)], (2)

where Trf is the trace over classical degree of freedom (in the
current case, Ising spin configurations), and Trc is the trace over
itinerant fermions. Here, β = 1/T is the inverse temperature
(we set the Boltzmann constant kB = 1), μ is the chemical
potential, and N̂e is the total number operator for fermions.

The key feature of the Hamiltonian in Eq. (1) is that the
Hamiltonian is block diagonal for different spin configurations
{Si}, i.e., the two traces in Eq. (2) are taken separately. Hence,
one can calculate the partition function by estimating the trace
Trf by a classical MC sampling over {Si} using the Markov-
chain MC method. The MC weight for a given {Si} is calculated
by taking the fermion trace Trc in the following form:

PMC({Si}) = exp[−Seff({Si})], (3)

where Seff is the effective action calculated as

Seff({Si}) = −
∑

ν

log[1 + exp{−β(Eν({Si}) − μ)}]. (4)

Here, Eν({Si}) are the energy eigenvalues for the configuration
{Si}, which are readily calculated by the exact diagonalization
as it is a one-body problem in a static potential.

For the MC sampling, we utilized single-spin flip update
with the standard METROPOLIS algorithm. On the other hand,
to overcome the freezing of MC sampling in the LL state,
we also implemented the loop-update method [33–35] in our
calculations. Also, some of the low-temperature data were
calculated starting from a mixed initial spin configuration
of low-temperature ordered and high-temperature disordered
states [36].

The calculations were conducted up to the system size
N = 3 × Ns with Ns = 9 × 9 under the periodic boundary
conditions. Thermal averages of physical quantities were
calculated for typically 15 000–80 000 MC steps after 5000–
18 000 steps for thermalization. The results are shown in
the temperature range where the acceptance ratio is larger
than ∼1%. We divided the MC measurements into five bins
and estimated the statistical errors by the standard deviations
among the bins.
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C. Physical quantities

In this section, we introduce the definitions of physical
quantities we calculated in the MC simulation. In this study,
we calculate both electronic and magnetic properties of the
model in Eq. (1). The electronic properties, such as the density
of states (DOS) and the optical conductivity, are computed for
the itinerant electrons. On the other hand, for the magnetic
properties, we focus on the contribution from the localized
moments, which is simple to compute in the MC simulation,
and ignore that from the itinerant electrons. This is justified
when the magnitude of the localized spins is much larger than
1/2, such as in some of rare-earth magnets. It is also justified
when the coupling J is strong and the itinerant electron spins
are almost fully polarized along the localized moments.

In the Monte Carlo simulation, the formation of a magnetic
long-range order (LRO) is detected by the spin structure factor
for the Ising spins,

S(q) = 1

N

∑
α

∑
i,j∈α

〈SiSj 〉 exp(iq · rij ), (5)

where the bracket denotes the thermal average in the grand
canonical ensemble, and rij is the position vector from i to j th
site. α = 1,2,3 denotes the three sublattices [see Fig. 1(a)],
and the sum of i and j is taken over all the sites belonging to
the same sublattice.

In the following, we show that the model in Eq. (1) exhibits a
variety of phases with different magnetic orders. Among them,
the

√
3 × √

3 ferrimagnetic (FR) order shown in Fig. 1(c)
is signaled by coexisting peaks of S(q) at q = 0 and q =
±(2π/3,−2π/3). The Bragg peaks at q = ±(2π/3, −2π/3)
also appear for the PD state in Fig. 1(a), but the peak at q = 0
is absent in this phase. On the other hand, the simple FM and
q = 0 FR [Fig. 1(d)] orders develop a peak only at q = 0.
These two phases are distinguished by the net magnetization

m = 〈M2〉1/2, (6)

where

M = 1

N

∑
i

Si . (7)

Here, m takes 1 and 1/3 for FM and q = 0 FR states,
respectively. We also calculate the susceptibility of M by the
fluctuation formula

χ = N

T
{m2 − 〈|M|〉2}. (8)

In the KT-like state appearing in our model, in principle, no
Bragg peaks develop as it is a quasi-LRO. However, in finite-
size calculations, it is difficult to distinguish the quasi-LRO
from true LRO solely by the structure factor, as the correlation
length in the KT state is divergent and exceeds the system
size. To discriminate the KT-like state, it is helpful to use the
pseudospin defined for each three-site unit cell [6,7],

S̃l =

⎛
⎜⎝

2√
6

− 1√
6

− 1√
6

0 1√
2

− 1√
2

1√
3

1√
3

1√
3

⎞
⎟⎠

⎛
⎜⎝

Si

Sj

Sk

⎞
⎟⎠ , (9)

where l is the index for the three-site crystalographic unit cells,
and (i,j,k) denotes the three sites in the lth unit cell. Taking
the summation for each magnetic sublattice, we define

M̃a = 3

Ns

∑
l∈a

S̃l , (10)

where a = A,B,C denotes the magnetic sublattices shown in
Fig. 1(a). The quantity M̃a is useful in identifying local spin
correlations.

In the MC simulation, we calculate

Ma
xy = 〈{(

M̃a
x

)2 + (
M̃a

y

)2}1/2〉
, (11)

Ma
z = 〈∣∣M̃a

z

∣∣〉, (12)

and the corresponding susceptibilities,

χa
xy = N

T

{〈(
M̃a

x

)2 + (
M̃a

y

)2〉 − (
Ma

xy

)2}
, (13)

χa
z = N

T

{〈(
M̃a

z

)2〉 − (
Ma

z

)2}
, (14)

where M̃a = (M̃a
x ,M̃a

y ,M̃a
z ).

To distinguish the KT-like state from other LROs, especially
from FR and PD, we use the azimuth parameter of M̃a defined
by [12,20]

ψa = (Ma)3 cos 6φMa , (15)

where φMa is the azimuth of M̃a in the xy plane and
Ma = 3

8 (Ma
xy)2. The parameter ψa has a negative value and

approaches ψa → − 27
64 as T → 0 for the perfect PD ordering,

while it becomes positive and approaches ψa → 1 for the
perfect FR ordering; ψa = 0 for both PM and KT-like phases
in the thermodynamic limit N → ∞. In previous studies for
the models on a triangluar lattice [20,21], it was shown that
a similar parameter to ψa shows much faster convergence to
the value in the thermodynamic limit with increasing system
sizes compared to other quantities, such as the structure factor.
Hence it is useful for distinguishing the PD from the KT-like
state.

In all the states we discuss in the following, the quantities
Ma

xy , Ma
z , χa

xy , χa
z , and ψa are essentially the same for all the

sublattices, a = A, B, and C. Hence we will show the averages
over the sublattices in the following results.

In addition, we measure local spin correlations in each
triangle by

pα′ =
⎧⎨
⎩

1 for two-up one-down,
−1 for one-up two-down,

0 otherwise,
(16)

where α′ is the index for the three-site triangles (both the
upward and downward triangles) in the kagome lattice. In
the MC simulation, we calculate the probability P that the
triangles are in two-up one-down (or one-up two-down)
coherently, which is calculated as

P =
〈(

1

2Ns

∑
α′

pα′

)2〉1/2

. (17)
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As we will show in Sec. III C, this parameter is useful
in distinguishing the LL state, which is characterized by
development of local correlation. The susceptibility of P is
also calculated using the fluctuation formula,

χP = Ns

T

⎛
⎝P 2 −

〈∣∣∣∣∣ 1

2Ns

∑
α′

pα′

∣∣∣∣∣
〉2

⎞
⎠ . (18)

In the MC simulation, we calculate the temperature depen-
dence of these quantities at a fixed electron density in the grand
canonical ensemble. The temperature dependence of chemical
potential μ(T ) for a given electron density is determined by
calculating the electron density

n = 1

N

∑
iσ

〈c†iσ ciσ 〉, (19)

while tuning μ as a function of temperature. In the following
MC results, the error for n is typically ∼0.001.

We also calculate the optical conductivity of itinerant
electrons in this model by the standard Kubo formula. In the
present system, the expectation value of the electric current
operator in the Kubo formula is also diagonal in terms of the
Ising spin configurations, and hence, calculated as〈

ψν
f ,{Si}

∣∣Jn̂
∣∣ψν ′

f ,{Si}′
〉

= δ{Si },{Si }′
〈
ψν

f ,{Si}
∣∣Jn̂

∣∣ψν ′
f ,{Si}

〉
, (20)

where Jn̂ is the current operator in the n̂ direction, n̂ is a
normalized vector in the xy plane, and δ{Si },{Si }′ = 1 if {Si} =
{Si}′, while otherwise 0. Here, |ψ (ν)

f ,{Si}〉 is the νth single-
particle eigenstate with spin configuration {Si}. Using Eq. (20),
the optical conductivity is calculated as

σ (ω) = 〈σ {Si }(ω)〉 =
∑
{Si }

P ({Si})σ {Si }(ω), (21)

where σ {Si }(ω) is the optical conductivity for spin configuration
{Si}, given in the form

σ {Si }(ω) = −i
∑
α,α′

f (εα) − f (εα′ )

εα − εα′

〈α|Jn̂|α′〉〈α′|Jn̂|α〉
ω + εα − εα′ + i/τ

.

(22)

Here, f (ε) is the Fermi distribution function and the indices
of energy and eigenstate are abbreviated for simplicity:
εα = εα({Si}) is the eigenenergy for αth one particle state
|α〉 = |α,{Si}〉. In the results shown below, we calculate
the mean average for the conductivity measured along and
perpendecular to x directions. The axes are defined as shown
in Fig. 1(a). Also, we set e2/h = 1, where e is elementary
charge, h is Planck’s constant and take 1/τ = 0.01. Hence,
the optical conductivity is calculated by taking MC average of
Eq. (22) over different spin configurations.

D. Variational calculation

In addition to the MC simulation, we also investigate the
ground state using a variational calculation, which was used
in the previous study of the triangular lattice model [31].
The ground-state phase diagram is obtained by comparing
the ground-state energy for different LRO spin configurations

J

T

PM

KT

PD PFM

0.00

0.02

0.04

0.06

0.08

0.10

0 1 2 3 4 5

FIG. 2. (Color online) Phase diagram of the model in Eq. (1) at
n = 2/3 obtained by the MC simulation. The symbols shows the
critical temperatures Tc for magnetic states: partial disorder (PD),
partially ferromagnetic (PFM), Kosterlitz-Thouless-like (KT), and
paramagnetic (PM) states. The critical temperature for the KT-like
state is estimated by the extrapolation of the peak of χa

xy , while that
for PD by extrapolation of ψa . Tc for the PFM state shown is estimated
from the Binder analysis of m. The gray zone at J ∼ 3.2 shows the
phase separation. The curves connecting the symbols are guides for
the eye. See Sec. III B and Appendix A for details.

found in the MC simulation. The phase separated regions at
T = 0 are also identified by the variational method from the
jumps of n at the magnetic phase transitions while changing
the chemical potential μ. See Ref. [31] for details.

III. MONTE CARLO RESULTS

In this section, we present our MC results on the model
in Eq. (1). In Sec. III A, we discuss the phase diagram of
the model obtained by the MC simulation focusing on the
thermally-induced phases: the partially disordered and the
loop-liquid phases. Details of these phases and their transport
properties are discussed in Secs. III B and III C. For the
MC results of ferromagnetic and ferrimagnetic phases, see
Appendices A and B, respectively.

A. Phase diagram

We first start from the phase diagram at n = 2/3 calculated
by the MC simulation. Figure 2 shows the phase diagram
at n = 2/3 with varying J . In the low-temperature region,
the phase diagram is dominated by two different magnetic
phases: PD and PFM states. In the PD state, the spins form a
three-sublattice magnetic superstructure as shown in Fig. 1(a).
Here, two out of three spins in the crystallographic unit cell
are antiferromagnetically ordered while the remaining site is
still PM. In the neighboring unit cells, this magnetic unit is
rotated by 2π

3 , forming a magnetic unit cell with nine sites [see
Fig. 1(a)]. On the other hand, in the PFM state, the system ex-
hibits a FM order whose ordered moment saturates at a smaller
value than the full polarization as temperature is lowered.

In our results in Fig. 2, the two phases are separated by a
small region of phase separation, that appears slightly above
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FIG. 3. (Color online) Phase diagram of the model in Eq. (1) at
J = 6 obtained by the MC simulation. The symbols shows the critical
temperatures Tc for magnetic states: ferromagnetic (FM), partially
ferromagnetic (PFM), loop-liquid (LL), q = 0 ferrimagnetic (q = 0),
and

√
3 × √

3 ferrimagnetic (
√

3 × √
3) states. Tc for the

√
3 × √

3
state at n = 8/9 is shown by the diamond, which is determined by the
extrapolation of the peak of χa

xy . Meanwhile, the upper limit for Tc for
the q = 0 state at n = 0.83 is shown by the downward triangle, which
is given by the temperature we reached with Ns = 82 calculations.
The squares (circles) show Tc determined from the Binder analysis
of m (P ), and the upward triangles show Tc determined by the
extrapolation of the peak of χm. The curve connecting the symbols is
a guide for the eye. The strip at the bottom is the ground-state phase
diagram obtained by the variational calculation for three magnetic
orders, FM, q = 0, and

√
3 × √

3. PS is the phase separation between
the neighboring two phases. See Secs. III B, III C, and Appendices A
and B for details.

J = 3; the PD state is found for J � 3.0 and PFM state for
J � 3.4. In the range of 3.0 � J � 3.4, the MC calculation for
n becomes unstable as T → 0: it is hard to tune the chemical
potential μ to fix n at 2/3. This is a signal of phase separation.
The gray point in the phase diagram at J = 3.2 shows the
temperature where the calculation of n becomes unstable for
Ns = 9 × 9.

While increasing temperature, the PFM state shows a
second-order phase transition to the PM state. On the other
hand, for the PD state, another phase appears in between the
PD and high-temperature PM phases. This phase does not show
a clear indication of LRO, but shows characteristic behavior
that resembles the KT phase. Hence we call this phase the
KT-like phase.

We next show the magnetic phase diagram while changing
the electron density n. Figure 3 shows the MC result at J = 6.
When J = 6, at all the values of n < 8/9 we calculated,
the system exhibits a phase transition characterized by the
development of a net magnetization m with no magnetic
superlattice structure. When the electron density is sufficiently
small, the ground state is the FM ordered state and m

approaches 1 as T → 0. However, with increasing n, the
saturation value of m gradually decreases from 1, which is
shown as the PFM in Fig. 3. With further increasing n, it
approaches m = 1/3 around n ∼ 0.8. For 0.8 � n < 8/9, the
system is in the loop-liquid (LL) state, in which all the triangles
in the kagome lattice takes two-up one-down configurations,

as shown in Fig. 1(b). In this phase, the loops of up-spins
separated by down spins are thermally fluctuating between
different loop patterns.

In the vicinity of this LL state, as decreasing temperature or
as further increasing n, the LL state exhibits phase transitions
to ferrimagnetic LROs. In our MC simulation, we identify two
different transitions; one is the transition to the state with q = 0
LRO of two-up one-down spin configurations [Fig. 1(d)], and
the other to the state with

√
3 × √

3 LRO [Fig. 1(c)]. The
former is observed while decreasing temperature at n ∼ 0.83,
and the latter is found by increasing n to a commensurate filling
n = 8/9. In the corresponding density regions, the two phases
are obtained in the variational calculation for the ground state,
as shown in the strip at the bottom of Fig. 3.

These two LRO states can be viewed as the “solidification”
of the emergent loops in the two extreme cases; the former is a
periodic array of one-dimensional chains, while the latter the
shortest six-site hexagons. Interestingly, the LL state extends
in the density region between these two “crystal” phases. In
the phase diagram, in principle, the phase boundary between
the LL state and the two FR states are well defined by the
formation of magnetic LROs. On the other hand, the transition
between FM, PFM, and LL states are crossover.

B. Partially disordered phase

In this section, we present the MC results for the PD state in
the phase diagram in Fig. 2. We discuss the magnetic properties
in Sec. III B 1 and the electronic structure in Sec. III B 2.

1. Magnetic properties

Figure 4 shows the results of the MC calculation at
n = 2/3 and J = 2. As shown in Fig. 4(a), Ma

xy monotoni-
cally increases as temperature is decreased, with showing a
pronounced increase at T ∼ 0.06. In addition, it exhibits a
small shoulder at T ∼ 0.015 before approaching the value at
the lowest temperature. The two anomalies are more clearly
observed in the corresponding susceptibility χa

xy plotted in
Fig. 4(b); χa

xy shows a peak which grows as the system size
increases at T ∼ 0.06 and a hump structure at T ∼ 0.015.
These results imply the presence of two successive transitions.
Indeed, these are phase transitions as discussed below; their
critical temperatures are estimated as TKT = 0.057(3) and
T PD

c = 0.030(2) by the finite-size analyses of χa
xy and the

azimuth parameter ψa , respectively.
Let us first discuss the phase transition at a lower tempera-

ture T PD
c . In the low-temperature region, Ma

xy approaches
√

2
while |Ma

z | is essentially zero in the thermodynamic limit,
as shown in Fig. 4(a). In addition, the azimuth parameter
ψa shows a sharp decrease below T � 0.03, from ψa = 0 to
∼− 0.4, as shown in Fig. 4(c). The nonzero ψa indicates a
spontaneous breaking of sixfold rotational symmetry of Mα ,
and the negative value approaching −27/64 suggests that the
system exhibits an instability toward PD [20,21]. In addition,
we find that the spin structure factor exhibits the peaks corre-
sponding to the

√
3 × √

3 order as shown Fig. 5. From these
results, we conclude that the system exhibits the PD state with
period

√
3 × √

3 below T � 0.03 [see Fig. 1(a)]. The critical
temperature T PD

c for PD ordering is determined by the size
extrapolation of ψa shown in Fig. 6. We obtain the
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FIG. 4. (Color online) MC results for the PD state at n = 2/3 and
J = 2: (a) Ma

xy and |Ma
z |, (b) χa

xy and χa
z , and (c) ψa . The data are

calculated for the system sizes Ns = 6 × 6, 6 × 9, and 9 × 9.

estimate T PD
c = 0.030(2) by the temperature at which the

size-extrapolated value of ψa deviates from zero beyond the
error bars.

We note that χa
z shows a monotonic increase with de-

creasing temperature, as shown in Fig. 4(b). This is distinct
behavior from the conventional antiferromagnetic ordering,
which shows a monotonic decrease below Tc. This behavior is
ascribed to the presence of PM spins, which is consistent with
the PD state.

Next, we discuss the phase transition at a higher temperature
TKT. The transition is signaled by the divergent peak of χa

xy

and corresponding rapid rise of Ma
xy . In the intermediate-

temperature region T PD
c < T < TKT, however, Ma

xy exhibits a
considerable finite-size effect. On the other hand, |Ma

z | and ψa

shows almost no change. Furthermore, ψa is extrapolated to
zero within statistical errors in the limit of N → ∞ (see Fig. 6).
This is in contrast to the PD state and the

√
3 × √

3 long-range
ordered state, where ψa should become negative and positive,
respectively. On the other hand, similar behavior was observed
in the KT phase with quasi-LRO in the Ising antiferromagnets
on triangular and kagome lattices [6–10]. Hence we conclude
that the intermediate phase for T PD

c < T < TKT is a KT-like

S(q)/NS
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0
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2π

2π
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0.1

0.2

0.3

0.4

FIG. 5. (Color online) MC results of the spin structure factor
S(q) divided by Ns at J = 2, n = 2/3, and T = 0.004. The data
are calculated for the system size Ns = 92.

phase. Thus, in the region J � 3, the system shows successive
phase transitions from the high-temperature PM phase to
the KT-like phase, and from the KT-like phase to the PD state.

One point to be noted is that another phase transition is
anticipated from the PD state to the true ground state. Although
we could not detect such a phase transition within the current
MC simulation, it is unlikely that the PD state remains as the
ground state since it retains finite residual entropy due to the
paramagnetic moments. It is more likely that, in the lowest
temperature, the degeneracy will be lifted by the long-range
RKKY interactions induced by the spin-charge coupling
[17–19], driving a transition to an LRO state. If this is the
case, the transition temperature is much lower than we could
approach in the current MC simulation, indicating the energy
scale of the relevant RKKY interaction is extremely small.
We note that a similar feature was also reported recently in an
Ising spin Kondo lattice model on a triangular lattice, where
the PD state survived down to an extremely low temperature
at n = 1/3 [20,21]. On the other hand, another possibility is
that the PD state is taken over by a phase separation at the
lowest temperature.
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FIG. 6. (Color online) System size dependence of ψa at J = 2
and n = 2/3. The solid lines indicate linear fittings of the data at each
temperature.
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FIG. 7. (Color online) MC results for the DOS calculated while
varying temperature at J = 2 and n = 2/3. The typical error bars are
shown at ε ∼ −1.2.

2. Electronic structure

In the previous studies on the PD state in the triangular
lattice case [20,21], it was shown that the energy gap opens
in the DOS with the formation of PD. Namely, a metal-
insulator transition takes place at the phase transition. It was
also argued that the energy gap formation may play a role in
stabilizing the PD state. To see whether such behavior also
takes place in the current kagome case, we calculated the
electronic DOS using the MC calculation. Figure 7 shows
the MC results of the temperature dependence of the DOS
at J = 2. The Fermi level at n = 2/3 is set to be ε = 0, and
typical statistical errors are shown at ε ∼ −1.2.

At T = 0.1 > T PD
c , the DOS shows featureless structure

with a nonzero DOS at the Fermi level. In contrast, the data
at T = 0.004 < T PD

c shows a clear energy gap at the Fermi
level, indicating that the PD state is an insulator. This behavior
resembles that of the PD state in the triangular lattice model.
Hence it is likely that the energy-gap formation contributes to
the stabilization of the PD state also in the current kagome
lattice case.

One difference from the triangular lattice case is that the KT-
like state appears above the PD state. In the present calculation,
the DOS at the Fermi level appears to decrease below T ∼
TKT = 0.057(3). As the KT-like state is an intermediate state
with quasi-LRO, it is natural that the gap opens at T = T PD

c

where the true LRO sets in. Nevertheless, in our calculation,
a precursor of the gap formation is observed in the KT-like
phase. Because of the finite size effect, however, it is not clear
at which temperature a full gap opens in the MC data.

Another notable feature of the DOS is the spikes at
ε ∈ [0,2]. These spikes are likely to originate in the peculiar
magnetic texture of the PD state. In the PD state, the six-site
antiferromagnetic loops of ordered spins are separated from
each other by the paramagnetic sites. Due to the presence of
these six-site spin clusters, in a snapshot of the Ising spin
configuration, the length of same spin chains are restricted to
L = 1,3,5, and 6; L = 3 and 5 are open strings of same spin
sites, L = 6 is a closed loop, and L = 1 is an isolated site.
Hence, if J is sufficiently large and the electrons are confined
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0.8
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FIG. 8. (Color online) (a) The DOS calculated by simple average
over randomly generated PD spin patterns for several values of J . The
chemical potential is set to −J . The typical error bars are shown at
ε = −2.11. (b) J dependence of the position of the peaks in (a).
The solid curves show fitting by ε = a + b/J + c/J 2 and the dotted
lines are peak positions expected in the large J limit. See the text for
details.

into the strings and loops, they form a set of peaks in the DOS
that corresponds to the confined states.

To confirm this scenario, we calculate the DOS for different
J by assuming the PD state. The calculations were done by
randomly generating the spin configurations in the PD state
of Ns = 12 × 12. The DOS was calculated by taking 4 × 4
superlattices of the Ns = 12 × 12 unit cell, and averaging
over 40 different spin patterns. Figure 8(a) shows the MC
result of DOS calculated for different J . The results show four
peaks in the energy range of ε ∈ [0,2] above the n = 2/3
energy gap. The J dependencies of the peak energies are
plotted in Fig. 8(b). The solid curves show fittings by ε = a +
b/J + c/J 2, and the dotted lines indicate the eigenenergies
of the confined states expected for the finite-length strings
and loops at J → ∞ [37]. The result shows that the peak
energies approach the eigenenergies of the confined states with
increasing J . Hence the spikes in Fig. 7 are ascribed to nearly
confined states in the peculiar spin textures appearing in the
PD state on the kagome lattice. This behavior is contrasting to
the case of the triangular lattice [20,21].

C. Loop-liquid state

In this section, we present the MC results for the LL state in
the phase diagram in Fig. 3. We discuss the magnetic properties
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FIG. 9. (Color online) MC results for (a) m and χm, (b) P and
χP , and (c) gm and gP for Ns = 42, 52, 62, 72, and 82 and at n = 0.83.

in Sec. III C 1. We also discuss the electronic structure and the
optical conductivity in Secs. III C 2 and III C 3, respectively.

1. Magnetic properties

For 0.8 � n < 8/9, an exotic state appears in the
intermediate-temperature range, which we call the LL state
as shown in the phase diagram in Fig. 3. Figure 9(a) shows
the temperature dependences of m and χm for n = 0.83 and
J = 6. As shown in the figure, m rapidly increases at T ∼ 0.05
with saturation to 1/3. Accordingly, χm shows a divergent peak
as increasing the system size. At the same time, as shown in
Fig. 9(b), P also increases rapidly to 1 and its susceptibility χP

exhibits a divergent peak, indicating that most of the triangles
become two-up one-down (or one-up two-down) coherently
below T ∼ 0.05.

The Binder parameters for m and P , gm and gP , respec-
tively, are shown in Fig. 9(c). Both show a crossing, indicating
the transition is of second order. The critical temperatures
determined from the two independent Binder analyses are in
good accordance with each other; Tc = 0.051(4). However,

S(q)/NS

qx

qy

0

0

2π

2π

0.00

0.05

0.10

0.15

FIG. 10. (Color online) MC results of S(q)/Ns at n = 0.84 and
J = 6 for T = 0.03. The data are calculated for Ns = 92.

this transition temperature is much higher than the transition
to the q = 0 FR state discussed in Appendix B, which should
be T

(q=0)
c < 0.028. The results indicate that before entering

the q = 0 FR state the system exhibits another phase transition
with a fractional magnetic moment m � 1/3 at Tc.

Figure 10 shows the MC result of S(q)/Ns at T = 0.03
and n = 0.84 calculated with Ns = 92 (Ref. [38]). The result
shows a small Bragg peak at q = 0, which corresponds to
the fractional magnetic moment m � 1/3. However, there are
no other Bragg peaks indicating the formation of magnetic
superstructure; it only shows two small humps and a node
along qx = qy .

These results show that the intermediate state for T
(q=0)
c <

T < Tc is a peculiar state, in which all the triangles in the
kagome lattice follow two-up one-down constraint, but still
fluctuating between different spin configurations that satisfy
the constraint. The spin state can be viewed in terms of the
emergent degrees of freedom, self-avoiding up-spin loops, as
schematically shown in Fig. 1(b). In this state, the up-spin
loops are thermally fluctuating with exhibiting no LRO, and
the down spins are isolated from each other by the fluctuating
up-spin loops. Hence we call this intermediate state the LL
state [31]. In this loop picture, the two successive transitions
at Tc and T

(q=0)
c correspond to the formation of loops and their

crystallization, respectively.

2. Electronic structure

Next, we look into the electronic structure of itinerant
electrons in the LL state. Figure 11 shows the DOS at n = 0.83
and J = 6 with varying temperature calculated by the MC
simulation for the current model for Ns = 9 × 9. The Fermi
level is set at ε = 0. As shown in the figure, when the system
enters into the LL state for T < Tc = 0.051(4), a sharp peak
develops at the upper edge of the band at ε ∼ 0.65. This peak
is ascribed to the confined electronic state associated with the
up-spin loops in the LL state, as discussed below.

In the LL state, a confinement of electrons in the up-spin
loops takes place as the consequence of the quantum phase
interference. This is explicitly seen by considering a wave
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FIG. 11. (Color online) MC results for the DOS calculated while
varying temperature at n = 0.83 and J = 6. The typical error bars
are shown at ε ∼ −1.25. The calculation were done for system size
Ns = 9 × 9.

function ∣∣ψlj ({Si })
〉 =

∑
i∈lj ({Si })

(−1)|i−j | |i〉 . (23)

Here, lj ({Si}) indicates the up-spin loop in the spin configura-
tion {Si}, j is a site included in the loop lj , |i〉 is the electronic
state localized at ith site, and |i − j | is the Manhattan distance
between ith and j th sites. The sum is taken over all the sites
in the loop lj . The state in Eq. (23) is an eigenstate of the
Hamiltonian for the spin configuration {Si}, as

H ({Si})
∣∣ψlj ({Si })

〉 = (2 − J − μ)
∣∣ψlj ({Si })

〉
. (24)

For the results in Fig. 11, the chemical potential is around μ ∼
−4.65 = −J + 1.35. Hence, the development of the sharp
peak in the DOS at ε ∼ 0.65 is ascribed to the loop formation
in the LL state.

3. Optical conductivity

In addition to the peak structure of the DOS, another
characteristic feature appears in the transport phenomena
due to the quantum confinement. Figure 12 shows the result
of optical conductivity σ (ω). Here, to extract the effect of
characteristic spin correlations in the LL state, we calculate
σ (ω) by taking simple average over different spin patterns
in the ideal LL manifold, i.e., all the triangles satisfy the
two-up one-down local constraint. The calculations were done
by using the Kubo formula in Eq. (22) for 24 different spin
patterns. Figure 12(a) is the result of σ (ω) calculated at
n = 0.843 for various J . All the results show a sharp peak
at ω = ωp ∼ 1.0–1.2, which shifts to lower ω for larger J .

The characteristic peak comes from the transition process
between two confined states in the six-site loops. In the
limit of J → ∞, electrons are confined in the up-spin loops
or at isolated down-spin sites as discussed above [37]; the
contribution to σ (ω) comes only from the transition process
between the electronic states in the same loop. Hence, sharp
peaks appear in σ (ω) corresponding to the discrete energy
levels in the finite-length loops. In the current kagome case,
the most dominant loops are the shortest ones with the length
of six sites. In the six-site loops, the energy difference between
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FIG. 12. (Color online) (a) Optical conductivity σ (ω) calculated
by simple average over LL configurations while varying J at n =
0.843 for a 22 supercell of N = 3 × 122 sites. The typical error bars
are shown at ω = 0.5. (b) J dependence of the peak position of σ (ω)
at ω ∼ 1. The curve shows the fitting by ω = 0.995 + 0.558/J −
0.155/J 2.

the unoccupied and occupied levels at this filling (the highest
and second highest levels) is t . Hence we expect a sharp peak
at ωp = 1 in the limit of J → ∞. For large but finite J , as the
highest energy state is the state described by the wave function
in Eq. (23), this state remains the same as that of J = ∞. On
the other hand, for the second highest level, the hybridization
to the localized state at down-spin sites shifts the eigenenergy
to a lower energy. Hence it is expected that the peak in σ (ω)
shifts to a higher ω as decreasing J . This is confirmed by the
fitting shown in Fig. 12(b).

Interestingly, the peak persists in the weak J region where
the exchange splitting 2J is comparable or even smaller
than the bare bandwidth 6t and the above strong-J argument
appears to be no longer valid. In a recent study on a metal-
insulator transition caused by correlated potentials, a LL-type
local correlation induces a metal-insulator transition at a
considerably smaller potential than the bandwidth by confining
the electrons in the loops [27]. The persisting resonant peak in
σ (ω) is likely to be the consequence of this confinement.

Emergence of the characteristic peak is also observed in
the thermodynamic average obtained by the MC simulation.
Figure 13 shows the MC result of σ (ω) while varying n at
T = 0.04 and J = 6. With increasing n from the FM region,
the peak at ω ∼ 1 shows sharp development for n � 0.8. This
shows that the resonant peak in the optical conductivity can be
used as a sensitive signal to detect the LL state.
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FIG. 13. (Color online) Optical conductivity σ (ω) calculated by
MC simulation while varying n at J = 6 for a 42 supercell of N =
3 × 62 sites at T = 0.04. The scattering rate in the Kubo formula is
taken as τ−1 = 0.01. The typical error bars are shown at ω = 0.5.

IV. DISCUSSIONS AND SUMMARY

To summarize, we mapped out the phase diagram of the
Ising-spin Kondo lattice model on a kagome lattice, using
a Monte Carlo simulation at finite temperature, as well as
variational calculations for the ground state. We presented
that this model shows the rich phase diagram with various
magnetic states induced by thermal fluctuations: the partially
disordered, Kosterlitz-Thouless-like, partially ferromagnetic,
and loop-liquid states. We also discussed phase transitions and
crossovers to the competing phases including the conventional
magnetically ordered states, such as the ferromagnetic and
ferrimagnetic states.

In addition, we studied the electronic structure and optical
conductivity in the partially disordered and loop-liquid phases.
In the partially disordered state, we showed that the electronic
density of states exhibits characteristic spikes, which originate
from the confined electronic states on the strings and loops of
the same spin sites. This is related to the geometry of kagome
lattice, and hence, the spikes are a characteristic feature of the
kagome model that is absent in the triangular lattice case. We
also showed that a charge gap opens in the electronic density
of states in the partial disorder; this phase is an insulator. For
the loop-liquid state, we found a sharp peak at the upper edge
of the energy band in the density of states, which originates
from the presence of closed loops in the thermally fluctuating
spin configurations. Also, we showed that a related resonant
peak appears in the optical conductivity. These results imply
that the electronic states of itinerant electrons are strongly
affected by the underlying spin textures in the loop-liquid
state. We also note that the arguments presented in this paper
are based on a simple real-space picture. Hence, though the
electronic structure of the actual materials are often much more
complicated than the model considered here, we believe sim-
ilar behavior can be present in the materials with multiorbital
itinerant electrons. Hence, our results might provide useful
experimental probes for the exotic thermally induced phases.

Among the phases we found, the partially disordered
and loop-liquid states can be viewed as a partial lifting
of the degenerated ground-state manifold, where the spins
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FIG. 14. (Color online) MC results for (a) m and χm, and (b) gm

at n = 0.52 and J = 6. The data are calculated for Ns = 52, 62, 72,
and 82.

fluctuate only in a subspace of the manifold of kagome
Ising antiferromagnet. In the frustrated magnets, subdominant
interactions, e.g., further-neighbor interactions, tend to lift the
ground-state degeneracy, and often believed to drive magnetic
long-range orders. In contrast, the results presented here
are counter examples in which the “cooperation” between
conflicting two factors, thermal fluctuations and degeneracy-
lifting interactions, can give birth to rich phenomena by
partially lifting the degenerated ground states.
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APPENDIX A: RESULTS FOR FERROMAGNETIC PHASES

In this Appendix, we present the MC results of the
ferromagnetic phases in Figs. 2 and 3. We start from the
small n region of Fig. 3. In this region, the FM phase appears
dominantly in the phase diagram, with m approaching its
saturated value 1 in the low-temperature limit. This phase
is connected to the FM state in the small n and weak J limit
stabilized by effective ferromagnetic RKKY interactions, and
also to that in the large J limit stabilized by the ferromagnetic
double-exchange interactions [40,41].
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The typical temperature dependence of m and χm is shown
at n = 0.52 and J = 6 in Fig. 14(a). The result shows a rapid
increase in m with decreasing temperature. Correspondingly,
χm exhibits a peak whose height increases as the system size
increases. These indicate a magnetic transition to the FM
phase. The transition temperature is determined by the Binder
parameter [39] shown in Fig. 14(b).

As the electron density increases, the saturation value of
m decreases. Figure 15(a) shows MC results for m and χm

at n = 0.64. The overall behavior of m looks similar to that
for n = 0.52 in Fig. 14(a). χm also shows divergent behavior
at the onset of the rapid increase in m. Tc is estimated to
be 0.088(6) by the Binder parameter shown in Fig. 14(b).
However, for T  Tc, m appears to saturate at ∼0.8, not 1.0.
A magnetization smaller than 1 suggests the possibility of a
magnetic superlattice structure, such as FR orders. However,
χm increases again at low temperature well below Tc. This
behavior is not expected for FR orders.

The absence of such long-period magnetic structure is also
confirmed by the calculation of the spin structure factor S(q).
Figure 16 shows the result of S(q)/Ns at T = 0.03 and Ns = 92

(Ref. [38]). The result shows a Blagg peak only at q = 0, that
corresponds to the net magnetic moment. There are no other
peaks in S(q), indicating that the low-T phase is the FM state
with a smaller saturation moment than m = 1. We call this
state the PFM state.

For the current model with Ising localized spins, the PFM
state is expected to become unstable in the low-temperature
limit, as the reduction of m should be induced by thermal
fluctuations. In the MC simulation, however, we could not
find any indication of the instability at a lower temperature;
our MC results merely show the freezing of sampling in
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FIG. 15. (Color online) MC results for (a) m and χm, and (b) gm

at n = 0.64 and J = 6. The data are calculated for Ns = 52, 62, 72,
and 82.
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FIG. 16. (Color online) MC results of S(q)/Ns at n = 0.65 and
J = 6 for T = 0.03. The data are calculated for Ns = 92.

the low temperature region. On the other hand, a variational
calculation comparing the ground-state energy for different
magnetic ordered states suggests that the ground state for this
parameter is the phase separation between the FM and q = 0
FR states, as indicated in the bottom strip of Fig. 3. From these
facts, in the low temperature region where our MC simulation
cannot reach, the PFM state is most likely to be taken over by
the phase separation between the FM and q = 0 FR states.

APPENDIX B: RESULTS FOR FERRIMAGNETIC PHASES

In this Appendix, we present the MC results of the
ferrimagnetic phases in 3. In the high density region (n � 0.8)
of Fig. 3, a phase transition to a FR ordered state is found both
in the MC and variational calculations (see Fig. 3). Figure 17
shows the MC result of S(q = 0)/Ns for n = 0.83 at J = 6.
The result shows a rapid increase in S(q = 0)/Ns to 1 for
Ns = 42 and 62. On the other hand, the net magnetization
approaches m = 1/3 at low temperature, as shown in Fig. 9.
These results imply an instability toward the q = 0 FR ordered
state shown in Fig. 1(d).
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FIG. 17. (Color online) The temperature dependence of S(q =
0)/Ns at n = 0.83 and J = 6. The data are calculated for and Ns = 42,
52, 62, 72, and 82.
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FIG. 18. (Color online) MC results for (a) Ma
xy and |Ma

z |, and
(b) χa

xy and χa
z at n = 8/9 and J = 6. The data are calculated for

Ns = 6 × 6, 6 × 9, and 9 × 9.

As shown in Fig. 17, the onset temperature decreases for
larger Ns although the results show strong finite-size effects
with different behavior for even and odd Ns. We could not
observe the upturn of S(q = 0) for larger sizes Ns � 72. Hence,
numerically, we could not determine the critical temperature
for the transition toward the q = 0 FR ordered state. However,
as the instability is consistently seen in the result of variational
calculation as shown in the bottom of Fig. 3, the ground state

S(q)/NS

qx

qy

0

0

2π

2π

0.0

0.1

0.2

0.3

0.4

0.5

FIG. 19. (Color online) MC results of S(q)/Ns at n = 8/9 and
J = 6 for T = 0.03. The data are calculated for Ns = 92.

at n � 0.83 is likely to be the q = 0 FR state with the critical
temperature T

(q=0)
c � 0.028.

On the other hand, at n = 8/9, the system shows phase
transition to a different FR ordered state. Figure 18 shows
MC results for J = 6 and n = 8/9. As shown in Fig. 18(a),
both Ma

xy and |Ma
z | show a rapid increase at T ∼ 0.05.

Correspondingly, the susceptibilities show a divergent increase
with increasing Ns. The transition temperature is estimated
to be around Tc = 0.046(2) from the extrapolation of the
peaks in χa

xy . The behavior indicates the phase transition to

the
√

3 × √
3 FR ordered state [see Fig. 1(c)]. These results

are consistent with the variational phase diagram shown in the
bottom of Fig. 3.

The
√

3 × √
3 FR order is more clearly seen in the spin

structure factor. Figure 19 shows the result of S(q)/Ns at
T = 0.03 [38]. The result shows three Bragg peaks: q = 0
corresponding to the net magnetization, and q = (4π/3,2π/3)
and (2π/3,4π/3) to the three-sublattice magnetic superstruc-
ture.
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