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Superconductivity in the two-band Hubbard model
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We study the two-band Hubbard model in infinite dimensions by solving the dynamical mean-field equations
with a strong coupling continuous-time quantum Monte Carlo method and show that an s-wave superconducting
state can be stabilized in the repulsively interacting case. We discuss how this superconducting state competes
with the metallic and paired Mott states. The effects of the Hund coupling and crystalline electric field are also

addressed.
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I. INTRODUCTION

Strongly correlated electron systems with orbital degrees
of freedom are attracting much interest in condensed matter
physics. A particularly active topic is the study of su-
perconducting (SC) states in transition-metal oxides such
as SrpRuOQy4 [1], La(O;_4Fx)FeAs [2], Na,CoO, [3], and
fullerene-based solids A3;Cgo (A = alkali metal) [4-6]. These
phenomena have been investigated theoretically by taking into
account Coulomb interactions, Hund coupling, the multiband
structure, and the lattice geometry. Electron correlations have
been treated by means of various analytical and numerical
methods such as the random phase approximation, fluctuation-
exchange approximation, and dynamical cluster approxima-
tion. While the relevant diagrams should be included in the
method, it may be difficult to identify which ones are crucial
for stabilizing the SC state. A simple question that naturally
arises is whether or not a SC state can be realized in a model
with repulsive interactions, without any particular properties of
the band structure. Since the onsite Coulomb repulsion usually
prevents the formation of tightly coupled singlet pairs, it is
expected that an unconventional superconducting state with
an anisotropic gap should be realized instead of the s-wave
superconducting state. This simple argument should be valid
in the single band case.

In multiorbital systems, on the other hand, the situation may
be more complicated. Capone et al. have studied the two-band
Hubbard model with intraorbital interaction U, interorbital
interaction U’ and Hund coupling J [7,8]. They showed that
a strongly correlated SC ground state appears under certain
conditions when U = U’ and J < 0. However, in this analysis,
the role of the Hund coupling is not quite clear since it is naively
expected that the interorbital exchange interaction suppresses
intraorbital pairing correlations. Therefore, it is instructive to
clarify which interactions stabilize the superconducting state in
the two-orbital system. Furthermore, it is interesting to explore
whether or not the SC state in the strongly correlated region
is adiabatically connected to the trivial BCS-type SC state
stabilized by weak attractive interactions. This may give us
a simple explanation for the stability of the SC state in the
repulsively interacting system.

To clarify these issues, we consider the two-orbital Hubbard
model. By combined use of dynamical mean-field theory
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(DMFT) [9-12] and the continuous-time quantum Monte
Carlo (CTQMC) method [13,14], we show that if orbital and
magnetic ordering is suppressed, an s-wave SC state is realized
in the model with degenerate orbitals at half-filling, and that
it is adiabatically connected to the simple BCS-type SC state.
The effect of the crystalline electric field is also addressed.

The paper is organized as follows. In Sec. II, we introduce
the two-band Hubbard model and briefly summarize our
theoretical approach. In Sec. III, we demonstrate the existence
of a SC state in the repulsively interacting region of parameter
space. We study the stability of the s-wave SC state at low
temperatures in Sec. IV. A brief summary is given in the last
section.

II. MODEL AND METHOD

We consider a correlated electron system with two orbitals,
which is described by the Hubbard Hamiltonian [15-23]
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where (i, j) denotes the summation over the nearest neighbor

sites, Ciqo (citw) is an annihilation (creation) operator of an
electron with spin o(=%,]) and orbital index a(=1,2) at
the ith site, and n;,y = cjwciw. t;; is the transfer integral,
Acer 18 the crystal field splitting, U (U’) is the intraband
(interband) Coulomb interaction, and J is the Hund coupling.
Here, we neglect translational symmetry breaking phases such
as density waves, antiferromagnetically ordered or antiferro-
orbital ordered states. This para-magnetic/orbital solution
should be essentially the same as that for the Hamiltonian with
next-nearest-neighbor hopping ¢’ equal to the nearest-neighbor
hopping ¢ [24,25]. First, we do not impose any relations
between the interactions, suchas U = U’ + 5/2J. This allows
us to discuss how the SC state, which is realized in the

single band attractive Hubbard model (U < 0,U’ = J = 0) is
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adiabatically connected to the strongly correlated SC state in
model (1). Furthermore, we can discuss how the Hund coupling
affects the SC state. We briefly address the SC state under the
condition U = U’ 4+ 5/2J at the end.

To investigate the stability of the s-wave SC state, we use
DMEFT [9-12]. In DMFT, the original lattice model is mapped
to an effective impurity model, which allows to take into
account dynamical correlations. The lattice Green’s function
is obtained via a self-consistency condition imposed on the
impurity problem. The DMFT treatment allows us to discuss
the stability of the s-wave SC state more quantitatively than the
static BCS mean-field theory [26]. In fact, the DMFT method
has been successfully applied to various strongly correlated
fermion systems with SC and superfluid states [27-34].

When the SC state is treated in the framework of DMFT, the
Green’s function should be described in the Nambu formalism.
When the Cooper pairs are formed only in the same orbital,
the impurity Green’s function can be written as

A Ga?(f) Fa(f)
Gmo(7) = (F:m —Gw(—w)’ @

where Goo(T) = — (T fuo(T) fja(O)) denotes the normal
Green’s function for an electron with spin o and or-
bital o, and F,(t) = —(T; fu1 (1) foy(0)) and Fj(1r) =
—(T, foj (0 fle (0)) denote the anomalous Green’s functions.
In the calculations, we use a semicircular density of states,
p(x) =2/(w D)y/1 — (x/D)?, where D is the half-bandwidth.
The self-consistency equation is given by
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where 6 is the identity matrix and &, is the z component
of the Pauli matrix, w, = 2n + 1)xT is the Matsubara
frequency, and T is the temperature. Qimp and Gimp are the
noninteracting and full Green’s functions for the effective
impurity model. There are various techniques to solve the
effective impurity problem. A particularly powerful method
for exploring finite-temperature properties is the hybridization-
expansion CTQMC method [13,14]. It enables us to study the
Hubbard model in both the weak- and strong-coupling regimes.
The Green’s functions are measured on a grid of more than
one thousand points.

In this paper, we use the half bandwidth D as the unit of
energy. To examine the nature of the low-temperature states,
we calculate the double occupancies d;rq, dp, dq, and the pair
potential A,, which are given by
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We also calculate the quantity Z,, = [1 — ImZq, (i wp)/wo] ™!
to estimate the quasiparticle weight at finite temperatures.
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Here, X,, is the normal self-energy for spin o and
orbital «.

Before we start with discussions, let us mention some
known facts about the Mott transitions in the paramagnetic
system. When U’ = 0, the system reduces to the single band
Hubbard model. At zero temperature, the transition to the Mott
insulating state occurs at U/D ~ 3 [35], while the pairing
transition occurs at U/D ~ —3 [36]. When U = U’, a Fermi
liquid behavior is stabilized up to fairly large interactions
due to orbital fluctuations, and the Mott transition occurs at
U/D ~ 5 [21,37]. On the other hand, the system is driven to
the Mott insulating state away from this condition [21,22]. In
the following, we systematically study the appearance of a
superconducting phase in this model, neglecting translational
symmetry breaking phases. Then, we clarify the role of the
Mott transitions in stabilizing the SC state.

III. RESULTS

In this section, we discuss the stability of the SC state in the
half-filled two-band Hubbard model with J = 0 and A, = 0.
By combining DMFT with the CTQMC impurity solver, we
obtain the pair potentials at 7/D = 0.01, as shown in Fig. 1.
When U’ = 0, the two-band system is decoupled and becomes
equivalent to the single-band Hubbard model. In this model,
the SC ground state is realized only when the intraorbital
interaction is attractive. At the finite temperature 7/D = 0.01,
the SC state is realized in the intermediate coupling region
(Uq1 < U < Uy) due to thermal fluctuations, where U, /D ~
—26.8 and U,/D ~ —0.49. In the weak-coupling region
U, < U < 0, the system is metallic. Increasing the magnitude
of the attractive interaction beyond the critical value U,,,
weakly coupled Cooper pairs are formed and the BCS-type SC
state is realized. In the strong-coupling region, two fermions
are tightly coupled and composite bosons are condensed, so
that a BEC-type SC state is realized at low temperatures. In this
case, the energy scale should be ?/|U|, characteristic of the
hopping for paired bosons. Therefore a further increase in the
attractive interaction effectively increases the temperature of
the system and destabilizes the SC state. At U = U,y, the pair
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FIG. 1. (Color online) Pair potential A as a function of U/D
when T/D =0.01 and J = At =0. The arrows indicate the
existence of a hysteresis in the pair potential. The inset shows the
results for U'/D = 2.0.
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potential vanishes with a second-order phase transition to the
normal state. It is known that the BCS-BEC crossover occurs
between these regions. When U < U,;, the paramagnetic
paired Mott (PM) state is realized, with an equal probability
for doubly-occupied and empty states at half-filling [36].

Turning on the interband interaction U’ does not simply
destabilize the SC state, but leads to a remarkable behavior,
as shown in Fig. 1. When the onsite interaction U decreases
with a fixed U’/D = 0.5, the conventional critical behavior
appears around U, /D ~ —0.10 in the BCS region. Since the
introduction of the interorbital interaction U’ increases the
critical interaction U,,, we conclude that in the BCS region,
the SC state becomes more stable. On the other hand, in the
BEC region, we find a clear jump singularity at U = U’} in
the curve of the pair potential, where U, L(i) /D ~ —0.78. This
suggests the existence of a first-order phase transition to the PM
state. In fact, as the intraorbital interaction U is increased from
the PM state, the phase transition occurs at U = U, C(;") together
with a jump singularity in the curve of the pair potential,
where U C(;") /D ~ —0.53. Therefore the nature of the phase
transition in the BEC region is changed by the introduction
of the interorbital interaction, in contrast to that in the BCS
region. We also find that the first-order phase transition points
are rapidly shifted to larger U, as shown in Fig. 1. This can be
explained by the fact that the interband Coulomb interactions
stabilize the PM state, while they have little effect on the
SC state. When U’/D = 1.0, we obtain the transition points
US ~0.22, U ~0.34 and U, ~ 0.50. We note that the
s-wave SC state is realized even in the repulsively interacting
region (U,U’ > 0) although the magnitude of the pair potential
is rather small, as shown in Fig. 1. A further increase in the
interorbital interaction decreases the pair potential until the SC
state disappears in the large U’ region (there is no SC solution
forU'/D > 3atT/D = 0.01).

By performing similar calculations, we obtain the phase
diagram at 7/D = 0.01 as shown in Fig. 2. In the negative U
region with a small U’, the trivial SC state is stabilized by the

FIG. 2. (Color online) Phase diagram of the two-band Hubbard
model when 7/D = 0.01 and J = A = 0. Squares represent the
second-order phase transition points (U.;). Solid (open) circles
represent the transition points U, C(f) u g")), where the SC (PM) state
disappears. The inset shows the paramagnetic phase diagram of the
model. Solid (open) circles correspond to the transition points where
the metallic (Mott) state disappears. The dotted line indicates the

crossover line between the conventional Mott and PM states.
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intraorbital attractive interaction. The increase in the interband
interaction U’ shifts the phase boundaries to larger U and the
SC state is stabilized in a narrower parameter region. The
critical end point is located around (U/D,U’/D) ~ (1.5,2.0).
An important point is that the s-wave SC state appears
even in the repulsively interacting region with U’ > U > 0.
This suggests that the interorbital interactions as well as the
intraorbital interactions play a crucial role in stabilizing the
SC state in this region. We note that within the SC region,
no singularities appear in physical quantities such as double
occupancies, renormalization factors, or pair potentials. This
implies a crossover between the SC state stabilized by the
on-site attraction U (< 0) and the SC state for U’ > U > 0.

A similar behavior has been found in the three-component
Hubbard model at half-filling [33]. In this case, the SC state
appears along the first-order phase boundary between the
metallic and PM states in the paramagnetic phase. However,
the paramagnetic properties, and in particular the Mott physics,
depend on the number of components for each fermion. For
example, in the three component system, the Mott transition
never occurs in the symmetric case U = U’'(> 0), while
it occurs for the four component system equivalent to the
degenerate Hubbard model (1). Therefore it is necessary to
clarify how the competition between the metallic and Mott
states in the paramagnetic phase affects the stability of the
superconducting state.

For this purpose, we examine the paramagnetic properties
at the temperature 7/D = 0.01, even though the ground-state
phase diagram has already been calculated [21]. Figure 3
shows the renormalization factors and double occupancies.
When we increase the intraorbital interaction U with U’ = 0,
the conventional Mott transition occurs around U/D = 2.5.In
the strong coupling region with U > U’, dipya ~ 0 and d,, =
d, ~ 0.25. This implies that each orbital is occupied by one
fermion and the Mott insulating state is realized. In the strong
coupling region U/D(>2.8) with U’/D = 2.0, a similar
behavior appears. On the other hand, when U/D < 1.6 and
U'/D = 2.0, dinga ~ 0.5 and d, = d, ~ 0.0. This indicates
that at each site we have a tightly coupled singlet (empty) state
in one orbital, and an empty (tightly coupled singlet) state in
the other. Therefore, in this region, the PM state is realized. In
the symmetric case U = U’, it is known that spin and orbital
fluctuations are equally enhanced and the metallic state is
stable up to a fairly large interaction [21]. The Mott transition
occurs at U/ D ~ 4.0, where djyy, = d, = d, ~ 0.167. Since
the Mott phase transitions are of first order, a hysteresis appears
in these quantities in Fig. 3. There is a crossover between two
Mott states in the strong coupling region, as shown in the inset
of Fig. 3.

By performing similar calculations in the (U,U’) plane,
we obtain the paramagnetic phase diagram of the degenerate
Hubbard model, as shown in the inset of Fig. 2, where the
phase transition from the metallic (Mott) state occurs at the
phase boundary shown with solid (dashed) lines. An important
point is that the SC state discussed before is realized along
the first-order phase boundary between the metallic and PM
states (Fig. 2). This is similar to the finding for the three
component system. Therefore we can conclude that charge
fluctuations for the paired particles, which are induced by the
density-density type interorbital interactions, play an essential
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FIG. 3. (Color online) Renormalization factor (a) and double
occupancy (b) as a function of the intraorbital interaction U/D in
the paramagnetic system at 7/D = 0.01 when the interactions are
fixed as J = A, = 0.0 and U’/D = 0.0, 1.0, 2.0, and 3.0. Solid
(open) symbols in (b) represent the double occupancy diy, [diner(=
d, =d,)].

role in stabilizing the SC state. On the other hand, concerning
the critical end point (CEP), there is a difference between these
two systems. In the three component systems, the CEP for the
SC state is located near the CEP for the Mott transitions at
low temperatures [33]. On the other hand, in our model, the
conventional Mott state is adiabatically connected to the PM
state through the crossover. Therefore, at low temperatures,
there is no CEP in the paramagnetic state. This results in
the existence of the first order phase transition between the
metallic and PM states beyond the CEP for the SC state, as
shown in Fig. 2.

This competition leads to interesting finite-temperature
properties. We show the finite-temperature phase diagrams
for U'/D = 0.5, 1.0, and 3.0 in Fig. 4. In our calculations,
it is hard to determine quantitatively the first-order transition
point where the free energies of the competing states cross.
Therefore we show in the figure the coexisting region with
competing solutions delimited by the open and full symbols.
A crossover between the metallic and Mott states occurs
at higher temperatures, which is roughly determined by the
inflection point in the curve of the renormalization factor.
When U’/ D = 0.5, the SC state is realized over a wide U range
at low temperatures due to the strong attractive interaction U.
The maximum of the critical temperature is located around
(U/D,T/D) ~ (—0.5,0.034). In this case, the Mott phase
boundaries for the paramagnetic state are within the SC dome,
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FIG. 4. (Color online) Finite-temperature phase diagrams of the
two-band Hubbard model when J = A,y = 0and U’'/D = 0.5, 1.0,
and 3.0. Squares represent the second-order phase transition points
(Ug). Solid (open) circles represent the transition point Uc(f) u f;"))
and solid (open) triangles represent the transition point, where the
metallic (PM) state disappears.

as shown in Fig. 4(a). Therefore no Mott transition occurs
and the low-temperature properties are similar to those for the
single band Hubbard model [25]. Increasing the interorbital
interaction U’, the SC region shrinks and the maximum of the
critical temperature decreases. On the other hand, the critical
temperature for the Mott phase transition shifts to higher
temperature. This yields a phase diagram with both phase
boundaries for the Mott and superconducting transitions, as
shownin Fig. 4(b). The SC state is realized at low temperatures,
while the Mott transition occurs for higher temperatures. We
find that the Mott transition line appears around the maximum
of the superconducting dome. This is consistent with the
observation discussed above, that the SC state is realized
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along the first-order phase boundary between the metallic
and PM states. A further increase of the interband interaction
destabilizes the SC state, so that only the Mott transition line
appears in the phase diagram, as shown in Fig. 4(c). Note
that the critical temperature for the Mott transition increases
when the system approaches the SU(4) point (U = U’), which
is consistent with the results obtained by the self-energy
functional theory [38].

Here, we have shown that the s-wave SC state can be
realized in the repulsively interacting model with U’ > U > 0.
It has also been found that the SC state appears along the
first-order phase boundary between the metallic and PM
phases. This observation suggests that the SC state should
be stable against small perturbations such as a Hund coupling
and a crystalline electric field. In the following section, we
focus on the SC state in the repulsively interacting region to
discuss its stability.

IV. STABILITY OF THE SUPERCONDUCTING STATE

In this section, we consider the effects of the Hund coupling
and crystalline electric field, which may affect the stability of
the SC state in realistic materials. A positive (negative) Hund
coupling favors the parallel (antiparallel) spin state between
orbitals, while the crystalline electric field favors the doubly
occupied state in the lower orbital. Therefore these terms in
the Hamiltonian may destabilize the SC state.

First, setting A s = 0 and fixing the intra- and interorbital
interactions U and U’ to certain values, we discuss how
the SC state is affected by the Hund coupling. Note that
when the onsite interactions (U,U’, and J) are independently
varied, the pair potential and chemical potential are invariant
under the transformation J — —J. Figure 5 shows the results
for the pair potential at the temperature 7/D = 0.01. When
J =0, the BEC-type (BCS-type) SC state is realized with
a finite pair potential in the system with U/D = 0.3 (0.4)
and U’/D = 1.0, as discussed in the previous section. The
introduction of the Hund coupling monotonically decreases
the pair potential. Finally, the pair potential vanishes and a
phase transition occurs to the normal state. More specifically,
whenU/D = 0.3 (0.4), the phase transition is of first (second)

T T T T T T T

——U/D=0.3]
——U/D=0.4

e
=
T

O 1 1 L | 1 | 1o & A L&

0 0.2 0.4 0.6 0.8
J/D

FIG. 5. (Color online) The pair potentials as a function of the
Hund coupling J in the two-band Hubbard model at 7/D = 0.01.
Circles (triangles) represent the results for the system with U/D =
0.3(0.4)and U'/D = 1.0.
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FIG. 6. (Color online) Pair potential as a function of the Hund
coupling J in the two-band Hubbard model with the condition U =
U +5/2J whenU/D =0.3and T/D = 0.01.

order, which is consistent with the characteristic feature of the
BEC (BCS) state. From the above results, we can say that the
Hund coupling simply suppresses SC fluctuations.

On the other hand, if one considers the degenerate Hubbard
model appropriate for realistic materials, the onsite interac-
tions (U,U’,J) are not independent. Namely, when the Hund
coupling J is varied with a fixed intraorbital interaction U,
the interorbital interaction U’ is changed at the same time,
which may induce the SC state. To clarify this point, we
calculate the pair potential in the system under the condition
U=U'+5/2J. When the Hund coupling J is positive,
the interorbital interaction U’ is always smaller than the
intraorbital one U and the superconductivity is never realized.
On the other hand, a negative Hund coupling may drive the
system to the SC state since U’ > U. The results for the system
with U/D = 0.3 are shown in Fig. 6.

First, we focus on the system without crystalline electric
field. When the Hund coupling is small enough (—0.2 < J/D),
the system is weakly correlated and the metallic state is
realized. Increasing the magnitude of the Hund coupling,
a second-order phase transition occurs to the SC state at
Jeo/D = —0.22. For J below J., the pair potential grows
and a SC state is stabilized. Finally, the first-order phase
transition occurs at Jc(f) /D = —0.30 with a jump singularity
in the pair potential, as shown in Fig. 6. The double occupancy
in each orbital approaches 0.5 and the other occupancies d,

and d, approach zero when J < J, L(f) . Therefore the PM state is
realized in this region. The increase of the Hund coupling from
the PM state induces another first-order phase transition at
J C('l") /D = —0.29. The obtained results are essentially the same
as those discussed in the previous section. Therefore we can
say that the Hund coupling has little effect on the realization
of the superconductivity. The introduction of the crystalline
electric field increases (decreases) the electron number for
the orbital 1 (2), which suppresses SC fluctuations. In fact,
we find the decrease of the pair potential in the intermediate
region (J/D ~ —0.25) in Fig. 6.

By performing similar calculations under the constraint
U =U'+5/2J, we obtain the phase diagram in the space
of J and A, as shown in Fig. 7. One finds that the metallic,
SC, and PM states are stable against a small crystalline electric
field. In the large At case, the lower orbital should be
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FIG. 7. (Color online) Phase diagram in the space of J/D and
Acet/ D. Open (solid) circles represent the transition point J" (J)
and solid squares represent the second-order transition point J.,. Solid
triangles represent the boundaries between the band insulating (BI)
and metallic states. In the shaded area, we could not obtain reliable
results due to an inefficient Monte Carlo sampling.

fully occupied leading to a band insulator. The competition
between the PM and band insulating states in the paramagnetic
region is difficult to pin down since the Monte Carlo sampling
with standard updates becomes inefficient. Therefore, the
boundary between these two states could not be determined
quantitatively. The s-wave SC state appears between the
metallic, PM, and band insulating states. Figure 8 shows the
density of states for the system with U /D = 0.3 and At/ D =
0.2atT/D = 0.01. When J/D = —0.2, the weakly correlated
metallic state is realized and no remarkable peak structures
appear in the density of states. When J/D = —0.25, atiny gap
appears around the Fermi level, which indicates that the BCS-
type SC state is realized. In the PM state (J /D = —0.3), tightly
coupled singlet states are formed with n; > 0.5 and n, < 0.5.
Therefore a large gap appears in the one-particle spectral
function. This contrast with the conventional Mott insulating
state, which is stabilized only at a commensurate filling.
Before closing this section, we briefly comment on the
limitations of our DMFT treatment. Since this method takes
into account local electron correlations, we can only discuss
the stability of the s-wave SC state. Our calculations have
clarified that the s-wave SC state is realized in the degenerate
Hubbard model when U’ > U, at least if magnetic and/or
orbital ordering is suppressed. In transition-metal oxides, the
intra- and interorbital interactions usually satisfy the relation
U > U’, meaning that it is hard to realize the SC state
discussed here. In this case, by taking into account the details
of the band structure and intersite correlations, one has to
discuss low-temperature phenomena such as unconventional
SC with anisotropic gap functions, magnetically ordered or
orbitally ordered states. On the other hand, if one considers
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FIG. 8. (Color online) Density of states for electrons in orbital 1
inthe systemwithU/D = 0.2and A.;/D = 0.2when J/D = —0.2,
—0.25, and —0.3.

low-energy states of systems with a coupling to other degrees
of freedom, the condition U’ > U can be effectively realized.
In the fullerene-based solid A3 Cg, it has been reported that this
relation should be realized due to the strong electron-phonon
coupling [7,8,39,40]. In such a situation, DMFT should capture
the essence of the SC state observed in the material.

V. SUMMARY

We have investigated the low-temperature properties of
the two-band Hubbard model with degenerate orbitals. By
combining dynamical mean-field theory with continuous-time
quantum Monte Carlo simulations, we have clarified that a
SC state can be realized in a repulsively interacting two-
orbital system due to the competition between the intra- and
interorbital Coulomb interactions. In particular, this s-wave
superconducting state appears along the first-order phase
boundary between the metallic and paired Mott states in
the para-magnetic/orbital system. On the other hand, the
Ising-type Hund coupling destabilizes the SC state. Although
we have not investigated the effect of the exchange and pair
hopping parts of the Hund coupling term, we believe that these
have little effect on the stability of the superconductivity. It will
be interesting to clarify this point in a future investigation.
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