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Single-electron shell occupation and effective g factor in few-electron nanowire quantum dots
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Nanowire double quantum dots occupied by an even number of electrons are investigated in the context of
energy level structure revealed by electric dipole spin resonance measurements. We use a numerically exact
configuration interaction approach up to six electrons for systems tuned to a Pauli spin blockade regime. We
point out the differences between the spectra of systems with two and a greater number of electrons. For two
electrons the unequal length of the dots results in a different effective g factor in the dots as observed by the
recent experiments. For an increased number of electrons the g-factor difference between the dots appears already
for symmetric systems and it is greatly amplified when the dots are of unequal length. We find that the energy
splitting defining the resonant electric dipole spin frequency can be quite precisely described by the two electrons
involved in the Pauli blockade with the lower-energy occupied states forming a frozen core.
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I. INTRODUCTION

Few-electron gate-defined quantum dots [1] are exploited
for single spin manipulation that allows for realization of
single-qubit quantum gates [2]. While the desired spin rotation
involves a single spin as a carrier of quantum information,
multielectron systems provide a feasible environment for
readout of the controlled spin. Strong spin-orbit (SO) coupling
that is present in InSb and InAs nanowires [3,4] allows for
electrical spin rotations [5] that are performed by electric
dipole spin resonance (EDSR) [6] which excludes the need for
introduction of local magnetic field gradients [7,8] or usage of
hyperfine interaction [9]. The readout of the spin is realized
via spin to charge conversion that relies on the Pauli spin
blockade [10]. The single-electron current (1,0) → (1,1) →
(2,0) → (1,0) (the numbers in the parentheses correspond to
the number of electrons in a particular dot) is blocked at the
transition from (1,1) triplet to (2,0) singlet. Rotation of one of
the spins of electrons constituting the (1,1) triplet unblocks the
current which serves as proof for the coherent spin control. On
the other hand, strong SO coupling leads to unavoidable spin
relaxation which results in a spontaneous lifting of the Pauli
blockade when one of the (1,1) triplets is close in energy to
the (2,0) singlet [11].

EDSR lifting of the current blockade is observed already for
two electrons bound in the double dot, which indeed is the case
for many of the experiments [12–15]. However, some of the
experimentally studied devices consist of an even number N

of electrons greater than two [16–18]. In this case the system is
biased such that the Pauli blockade is between (N − 1,1) and
(N,0) states. It is assumed that such configuration is equivalent
to the two-electron system [19]. This approximation resembles
the well established concept in chemistry that the valence
electrons are responsible for creation of bonds and the rest
in the deep levels can be treated as the frozen core [20]. This
assumption seems questionable for quantum dots in which the
single-electron shells are separated by much smaller energies
than for the Coulomb potential, nevertheless this problem has
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not been discussed by a theoretical study. The present work
addresses this issue.

We find that for a system with N > 2 all but two
electrons form closed singlet shells. This is in accordance
with predictions of the Hubbard model [21] that appears as
a consequence of Mattis-Lieb theorem [22], and which states
that the lowest energy states possess the lowest spin (S = 0).
As a consequence, in general, the low-energy spectra of mul-
tielectron double quantum dots in the (N − 1,1) configuration
resemble the spectra of quantum dots in (1,1) configuration and
the states have similar total spins. We find that the (N − 1,1)
spectra can be well recreated by a configuration interaction
calculation in which one excludes the single-electron orbitals
that form the singlet shells. This is analogous to the frozen core
approximation regardless of the fact that there are no orbital
shells in quantum dots.

The main finding of the work is that though a general
resemblance of N > 2 and N = 2 spectra is found, the
occupation of excited single-electron orbitals in the N > 2
case leads to lifting of the degeneracy of spin-zero states.
This in turn is translated to different effective g factors in
the dots. Such differences have been observed in recent EDSR
experiments on nanowire quantum dots [12–18] and have been
related to the differences in the confinement as predicted by the
study on self-organized quantum dots [23]. Here we strictly
connect the effective g factors with the number of electrons
in the system and the length of the dots. We find that unequal
effective g factors for N = 2 appear only for an asymmetric
system but for N > 2 they are observed already for the dots of
the same lengths.

II. THEORY

In the present work we follow the common approach
[24] that treats the nanowire quantum dots as quasi-one
dimensional. The N -electron system is described by the
Hamiltonian,

H =
N∑

i=1

hi +
N∑

i=1,j=i+1

√
π/2

4πε0ε�
erfcx

[ |x1 − x2|√
2�

]
. (1)
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The form of the Coulomb interaction term results from the
assumption that the electrons are localized in the ground
state of the lateral quantization along the nanowire cross
section with the wave function of a Gaussian shape with
ψ(y,z) = (π1/2�)−1 exp{−(y2 + z2)/(2�2)}. The integration
of the three-dimensional Coulomb interaction term HC =∑N

i=1,j=i+1
e2

4πεε0

1
|ri−rj | leads [25] to the operator including

erfcx(x) = exp(x2)erfc(x) which is the exponentially scaled
complementary error function [26].

To obtain N -electron spin orbitals we diagonalize the
Hamiltonian (1) in a basis of Slater determinants consisting
of single-electron spin orbitals:

�(ν1,ν2, . . . ,νN ) =
M∑
i=1

ciA
{
ψi1 (ν1)ψi2 (ν2) · · ·ψiN (νN )

}
, (2)

where νi = (xi,σ
i) corresponds to the orbital and spin coordi-

nates, A is the antisymmetrization operator, and ci is obtained
by the diagonalization. We use M = 20 single-electron spin
orbitals which provides accuracy better than 0.1 μeV.

The single-electron orbitals ψ(ν) are described by the
Hamiltonian,

h = �
2k2

x

2m∗ + V (x) − ασykx + 1

2
μBgBσx, (3)

where HSO 1D = −ασykx corresponds to Rashba SO coupling
[27] resulting from the HSO = α(σxky − σykx) Hamiltonian
averaged in the y direction. V (x) describes the potential profile
of the double dot,

V (x) =
⎧⎨
⎩

Vb x < −w/2 and x > −(l1 + w/2),
Vi |x| < w/2,

0 x > w/2 and x < l2 + w/2,

(4)

where l1 and l2 determine the length of each dot, w is the
interdot barrier width, Vi is the barrier height, and Vb is
the bias potential applied to the bottom of the left dot. We
assume a w = 20 nm thin and a Vi = 200 meV high interdot
barrier. The computational box ends at the edges of the defined
potential and the magnetic field is applied along the nanowire
axis. The single-electron eigenstates are obtained by exact
diagonalization of Hamiltonian (3) on a mesh of 201 points
with 
x = 1.095 nm.

We adopt parameters corresponding to InSb nanowires, i.e.,
m∗ = 0.014, ε = 16.5, g = −51, and α = 30 meV nm which
corresponds to spin-orbit length lSO = �/(m∗α) = 182 nm
comparable to the value measured experimentally in Ref. [14].
We take � = 20 nm.

III. RESULTS

A. Two-electron quantum dot

Let us first consider a symmetric system of two quantum
dots of lengths l1 = l2 = 100 nm. We set the bottom of the
left dot to Vb = −3.8 meV. The bias results in the energy
level configuration such that the (2,0) singlet [28] is the
ground state and the lowest-energy excited states are (1,1)
states with different spin polarizations. This configuration is
necessary for observation of the spin Pauli blockade. The inset
to Fig. 1(a) shows the lowest part of the energy spectrum. The

FIG. 1. (Color online) Energy spectra of a two-electron double
dot system. (a) Symmetric system with the dots width equal to 100 nm.
(b) Asymmetric configuration: width of the left dot is 150 nm and
the width of the right one is 50 nm. Inset in (a) shows the energy
spectrum including the ground state (2,0) singlet. The insets in (b)
depict the spin densities with the color curves presented in arbitrary
units. The black contours show the confinement potential.

ground state singlet of (2,0) occupation has a mean value of
〈S2〉 operator 0.12 �

2/4. Figure 1(a) presents energy levels of
(1,1) states. The two Zeeman split energy levels correspond
to a spin-positive triplet T+ (〈S2〉 = 1.98 �

2/4) with spins
oriented approximately along the magnetic field and to a
spin-negative triplet T− (〈S2〉 = 1.97 �

2/4) with spins oriented
against the magnetic field. The horizontal curve corresponds
to a degenerate energy level of a singlet (S) and a triplet
(T0) state with zero spin projection along the direction of the
magnetic field. The degeneracy results from the negligible
overlap between the adjacent electrons and hence nearly zero
exchange interaction. The mean values of the 〈S2〉 operator for
these states are 1.04, 1.01 [�2/4].

In EDSR experiments the spin rotations are performed
from one of the nonzero spin triplets: T+ or T− [11]. When a
resonance to a state with zero spin component along the mag-
netic field occurs the blockade is lifted. The experimentally
measured resonances exhibit a linear dependence of the driving
frequency on the magnetic field, equal to (considering T+ as
the initial state) ω = [E(S) − E(T+)]/�. The corresponding
energy ω� is plotted in Fig. 2 with the red-dashed curve.

Let us now consider the case in which the dots are of
unequal length—l1 = 150 nm and l2 = 50 nm—but we keep
the g factor constant along the structure. Energy levels of
states in which electrons occupy adjacent dots are presented
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FIG. 2. (Color online) Energy difference (the red-dashed curve)
between the energy level of T+ state and the degenerated energy level
from Fig. 1(a) or two levels that correspond to states with opposite
spin configurations from Fig. 1(b) (black curves).

in Fig. 1(b). To keep the energy separation between (2,0)
singlet and four (1,1) states 1.5 meV at B = 0 as in the
case of symmetric system we set Vbias = 5.07 meV in the left
dot. The striking difference between the spectra of Fig. 1(b)
as compared to the symmetric case of Fig. 1(a) is that
for the nonzero magnetic field the degeneracy of horizontal
energy levels is lifted. The spin densities of the states that
correspond to these energy levels calculated as σ

j
x (x) =∑N

i=1〈�j (ν1,ν2, . . . ,νN )|σ i
xδxi ,x |�j (ν1,ν2, . . . ,νN )〉 are de-

picted in the insets to Fig. 1(b). We observe that in the state
with lower energy the spin in the left dot is oriented against the
magnetic field, while in the right dot it is oriented along the
magnetic field. Further on we will address this state as (↓,↑).
The state (↑,↓) with an increasing energy in B has an opposite
spin configuration. The (↓,↑), (↑,↓) states have zero total spins
along the x direction, therefore the EDSR transitions to these
states lift the Pauli blockade and such transition are visible as
resonance lines in EDSR spectra. We calculate corresponding
energy differences 
E1 = ω1� = [E(↓,↑) − E(T+)], 
E2 =
ω2� = [E(↑,↓) − E(T+)] and plot them in Fig. 2 with black
solid lines. We note that this arrangement of resonance lines

is present in every EDSR map registered experimentally (see
Refs. [12–18]) and attributed to different g factors in the dots.
Here it is obtained for a constant g along the structure.

The slopes of the curves in Fig. 2 are connected to an
effective g factor. For the symmetric system we calculate g∗ =
E(S)−E(T+)

μ0B
equal to g∗ = −49.93 for B = 100 mT. In the case

of asymmetric dots the effective g factors are g∗
1 = −48.70,

g∗
2 = −50.71.

To explain the impact of the dots width on the energy spectra
and effective g factors let us inspect the single-electron spin
orbitals that constitute the two-electron orbitals. Figures 3(a)
and 3(e) show the charge densities of the single-electron
states. The densities correspond to the ground states of orbital
quantization of each dot. The black curves correspond to sl,↑
and sl,↓ states [the main letter denotes the orbital excitation,
(l,r) denotes the dot in which the electron is localized, and the
arrows correspond to the average spin polarization direction].
The red-dashed curve shows the charge densities of higher
energy states sr,↑ and sr,↓ in which the electron occupies the
right dot. We extract the squared absolute values of coefficients
|ci |2 for each of the Slater determinants that is used in the
configuration interaction approach. For the symmetric case we
get 0.806 for the determinant consisting of {sl,↑,sr,↓} single-
electron orbitals and 0.194 for consisting of {sl,↓,sr,↑} orbitals
for one of the states from the degenerate pair of spin zero
two-electron states (the coefficients for the second state are
reversed). For the asymmetric case we get 0.992 for {sl,↓,sr,↑}
for the (↓,↑) state and 0.996 for {sl,↑,sr,↓} for the (↑,↓) state.
The lack of the admixture of other Slater determinants is due
to the small size of the dots which results in a considerable
kinetic energy separation of the single-electron orbitals.
The energy spectra displayed in Figs. 3(b) and 3(f) show the
Zeeman splittings of the single-electron energy levels. If we
overlay the energy levels of the states in which the electron is
localized in the left and right dot [solid black and red-dashed
curves in Figs. 3(b) and 3(f), respectively] we observe that
they are exactly the same [Fig. 3(c)] when the dots are of
identical length but they differ when the dots are of unequal
length [Fig. 3(g)]. Now we sum the single-electron energies
accordingly to the way the states enter the configuration
interaction calculation, i.e., the (↓,↑) state corresponds to the

FIG. 3. (Color online) (a) and (e) Single-electron charge densities and the potential profile. (b) and (f) Energy spectrum: The colors of the
curves corresponds to the states from (a) and (e). (c) and (g) Energy levels from (b) and (f) shifted to compare the Zeeman splittings. (d) and
(h) Sum of the single-electron energies as they enter into the configuration interaction approach.
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FIG. 4. (Color online) g∗
1/g

∗
2 versus the length of the dots for (a)

two electrons, (b) four electrons, and (c) six electrons.

occupation of sl,↓, sr,↑ single-electron orbitals with energies
E(sl,↓) and E(sr,↑). The (↑,↓) corresponds to the occupation
of sl,↑, sr,↓ single-electron orbitals with energies E(sl,↑) and
E(sr,↓). The obtained sums are plotted in Fig. 3(d) for the
symmetric and in Fig. 3(h) for the asymmetric case. We find
that the degeneracy is lifted due to different Zeeman splittings
of single-electron energy levels of electrons confined in dots
of different length.

In a single one-dimensional quantum dot SO interaction
impacts the Zeeman splittings according to Ez = gμBBλi ,
where [29]

λi =
∫

|�i(x)|2 cos(2αm∗x/�
2)dx. (5)

Due to a high interdot barrier we can effectively treat the
considered system as two separate dots. For a quantum dot in
the form of an infinite quantum well the term λi that controls
the strength of the Zeeman splitting is

λ1(l) = �
6π2 sin(lαm∗/�

2)

αm∗l(π2�4 − α2m∗2l2)
, (6)

for �i(x) in the form of an s-like orbital. λi changes from 1
for narrow quantum dots to 0 in the limit of infinite dot length.
Accordingly, the Zeeman splittings are the strongest (as strong
as in the absence of SO coupling) for a narrow quantum dot
and become weaker if the length of the dot is increased. The
g∗ factors calculated from 
E1 = ω1� = [E(↓,↑) − E(T+)]
and 
E2 = ω2� = [E(↑,↓) − E(T+)] depend on the Zeeman
splitting of the single-electron energy levels as follows
[taking E0 as the orbital excitation energy of (↓,↑),(↑,↓)
and T+ states]: 
E1 = E0 + E(sl,↓) + E(sr,↑) − E0 −
E(sl,↑) − E(sr,↑) = E(sl,↓) − E(sl,↑) = gμBBλ1(l1) and

E2 = E0 + E(sl,↑) + E(sr,↓) − E0 − E(sl,↑) − E(sr,↑) =
E(sr,↓) − E(sr,↑) = gμBBλ1(l2). Therefore, g∗

1 = gλ1(l1)
and g∗

2 = gλ1(l2). We plot the ratio g∗
1/g

∗
2 = λ1(l1)/λ1(l2) in

Fig. 4(a). For l1 = 150 and l2 = 50 we obtain g∗
1/g

∗
2 = 0.960

which matches well the value obtained in the exact calculation
of Fig. 2, g∗

1/g
∗
2 = 0.961.

It should be noted here that the effect of the SO interaction
on the strength of the Zeeman splittings is influenced also by
the orientation of the magnetic field [29]. For the magnetic field
vector forming a φ angle with the nanowire axis the splitting
becomes Ez = gμBB

√
1 − (1 − λ2

i ) cos2 φ , i.e., the g∗ values
obtained for the magnetic field oriented perpendicular to the
nanowire axis approach the bulk g-factor value.

B. Four- and six-electron case

Figure 5(a) with black solid curves presents energy levels of
a four-electron symmetric system with Vb = −14.21 meV. The
levels correspond to the states with (3,1) occupation. The plot
omits the ground state with (4,0) occupation that is 1.5 meV
lower in energy with respect to presented energy levels for
B = 0. The mean value of the 〈S2〉 operator for the following
(3,1) states are 1.97, 1.04, 1.03, 1.97 [�2/4]. These values
are close to the ones obtained for the two-electron system. The
absence of total spins of two electrons shows that two electrons
form a singlet state with zero total spin.

Let us extract the coefficients for each Slater determinant
that is used to create the configuration interaction basis. For
the subsequent states whose energy levels are depicted in
Fig. 5(a) the only nonzero (and nearly equal to unity, the
other coefficients are less than 0.006) are coefficients for
Slater determinants consisting of the following single-electron
orbitals: {sl,↑sl,↓pl,↑sr,↑}, {sl,↑sl,↓pl,↓sr,↑}, {sl,↑sl,↓pl,↑sr,↓},
and {sl,↑sl,↓pl,↓sr,↓}, respectively. The corresponding orbitals
are depicted in Figs. 6(a)–6(c). Let us assume now that two
electrons of the four-electron system form a singlet closed shell
that does not impact the spin properties of the two remaining
electrons and thus they can be separated away: We exclude
from the configuration interaction basis the sl,↑,sl,↓ orbitals
and limit the number of electrons in the calculation to two.
The obtained energy levels are depicted with the red-dashed
curves in Fig. 5(a). Besides the shift between the energy levels
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FIG. 5. (Color online) (a) Energy levels of the four-electron
symmetric double dot in a (3,1) occupation regime depicted with
black-solid curves. The red-dashed curves are energy levels of
a two-electron system with excluded sl,↑ and sl,↓ single-electron
orbitals that form a singlet closed shell. (b) Energy spectrum for
an asymmetric system with l1 = 150 nm and l2 = 50 nm.

obtained in full four-electron and two-electron calculation with
restricted basis the spectra perfectly match.

The total spins and the Zeeman splittings in the four-
electron energy spectra, resemble the ones obtained for two
electrons. However, the striking feature of the spectrum of
Fig. 5(a) is that the two horizontal energy levels become
separate in a nonzero magnetic field already for a symmetric
system. Let us invoke the two-electron approximation with the
restricted basis to explain this observation. The sl,↑,sl,↓ orbitals
are occupied by two spin-opposite electrons that form the
singlet state and are separated from the basis. The two energy
levels that slightly split in the magnetic field are constructed
from a p-like orbital of an electron localized in the left dot
(pl,↑,pl,↓) [see Fig. 6(b)] and an s-like orbital formed by an
electron localized in the right dot (sr,↑,sr,↓) [see Fig. 6(a)].
The single-electron energy levels are depicted in Fig. 6(d). We
observe that the Zeeman splittings between energy levels of s

states differ from the ones for p orbitals: 0.282 meV compared
to 0.294 meV. Here the dots are symmetric so its the shape of
ψi(x) that is changed. We integrate Eq. (5) for a p-like orbital
and obtain

λ2(l) = 4�
6π2 sin(lαm∗/�

2)

αm∗l(4π2�4 − α2m∗2l2)
. (7)

The effective g factors are obtained from the energy
splittings analogically as in the two-electron case:

E1 = E0 + E(pl,↓) + E(sr,↑) − E0 − E(pl,↑) − E(sr,↑) =
E(pl,↓) − E(pl,↑) = gμBBλ2(l1) and 
E2 = E0 + E(pl,↑) +
E(sl,↓) − E0 − E(pl,↑) − E(sr,↑) = E(sr,↓) − E(sr,↑) =
gμBBλ1(l2). As a result the two states constructed from
{pl,↓,sr,↑} and {pl,↓,sr,↑} single-electron orbitals have
different energies at B 	= 0 for l1 = l2.

Figure 4(b) presents g∗
1/g

∗
2 = λ2(l1)/λ1(l2). The plot sug-

gests that the g-factor ratio can be altered significantly as
compared to the two-electron case for an asymmetric system.
Namely, if one makes the dot that is occupied by three electrons
longer one can amplify the ratio of the g factors in the dots
greater than elongating the dot with a single electron. The
energy spectra for an asymmetric system with l1 = 150 nm and
l2 = 50 nm are presented in Fig. 5(b). The splitting between the
central lines is visibly increased as compared to the symmetric
case of Fig. 5(a). We calculate g∗

1/g
∗
2 = 0.896 which is close

FIG. 6. (Color online) (a)–(c) Charge densities of single-electron states and the potential profile for symmetric quantum dots with Vb =
−14.21 meV. (d) Single-electron energy spectrum.
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FIG. 7. (Color online) (a) Six-electron energy spectrum for a
symmetric system with Vb = −30.125 meV. Black curves correspond
to the exact six-electron calculation. Red-dashed curves are obtained
in the two-electron calculation with the basis excluding the four
lowest energy single-electron spin orbitals. (b) Single-electron energy
spectrum.

to the value obtained in analytical calculation from Fig. 4(b)
equal to 0.910.

Figure 7(a) presents the energy spectrum of (5,1) states
for the six-electron double dot system for the bias Vb =
−30.125 meV. The energy level structure resembles the
spectrum of the four-electron system depicted in Fig. 5(a).
We again obtain the splitting of the central lines already for
a symmetric system. For B = 100 mT it is 7.2 μeV for four
electrons while for six electrons we get 8.6 μeV. Also the
total spins of (5,1) states are similar: 1.97, 1.04, 1.03, 1.97
[�2/4]. The coefficients for Slater determinants extracted from
the configuration interaction calculation show that mainly a
single determinant (with the square of absolute value equal
to 0.987) describes each of the discussed six-electron state.
The single-electron states that constitute the determinants
are {sl,↑,sl,↓,pl,↑,pl,↓,dl,↑,sr,↑}, {sl,↑,sl,↓,pl,↑,pl,↓,dl,↓,sr,↑},
{sl,↑,sl,↓,pl,↑,pl,↓,dl,↑,sr,↓}, {sl,↑,sl,↓,pl,↑,pl,↓,dl,↓,sr,↓} for
the following (5,1) states from Fig. 7(a). The single-electron
energy levels are depicted in Fig. 7(b). The determinants
correspond to the occupation of single-electron orbitals in
which two pairs of electrons occupy closed singlet shells: two
electrons occupy spin opposite s-like orbitals and the next pair
occupies two spin opposite p-like orbitals. The two remaining

TABLE I. g∗
1/g

∗
2 ratio given in the experimental works versus the

number of electrons.

Reference No. Number of electrons g∗
1/g

∗
2

[12] N = 2 0.967
[13] N = 2 0.923
[14] N = 2 0.922
[16] N > 2 0.750
[17] N > 2 0.760
[18] N = 6 0.872

electrons occupy a d-like orbital in the left dot and an s-like
orbital in the right dot. The calculated spectrum for the basis
excluding the four single-electron states that form the two
singlet shells is presented in Fig. 7(a) with the red-dashed
curves. The spectra calculated in the exact calculation and in
the restricted basis agree.

For six electrons we calculate the ratio g∗
1/g

∗
2 =

λ3(l1)/λ1(l2), where

λ3(l) = �
6 sin(lαm∗/�

2)(9π2
�

4 − 2α2m∗2l2)

αm∗l(9π2�4 − α2m∗2l2)
(8)

is determined from integration of Eq. (5) with a d-like orbital
and plot it in Fig. 4(c). We see that it is similar to the four-
electron case of Fig. 4(b) and is strongly altered as compared
to the N = 2 case.

C. Comparison with the experiments

Our work shows that increasing the number of electrons
results in an amplification of the difference between effective
g factors in the dots. Table I shows g∗

1/g
∗
2 values taken from

the experimental works. It is clearly seen that the studies
that considered N > 2 electrons indeed measured ratios that
deviate more from 1 as compared to the N = 2 cases. The
actual experimental values could be affected by a number of
effects omitted in the present modeling: the detailed structure
of the confinement potential, or they can be impacted by
nonzero exchange interaction [30]. Nevertheless, the tendency
drawn by these data is clear and agrees with the result of the
present study.

IV. SUMMARY AND CONCLUSIONS

We investigated nanowire double quantum dots occupied by
an even number of electrons tuned to the Pauli spin blockade
regime. By the exact configuration interaction study we found
that in a system with an even, larger than two, number of
electrons all but two electrons form closed singlet shells.
This allows us to obtain the properties of these structures
by configuration interaction calculation where the number
of electrons is limited to two and where N − 2 lowest
in energy single-electron orbitals forming singlet shells are
excluded. Despite the fact that for N > 2 the properties of
the system are controlled by only two electrons the dots with
such occupation cannot be treated as an exact equivalent of
two-electron systems. We found that the occupation of excited
single-electron orbitals by the valence electrons results in
different effective g factors in the adjacent dots. For N > 2
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the difference is obtained already for a symmetric system,
while for two electrons it results from the dots asymmetry.
The differences of effective g factors present in our results
are observed in recent EDSR experimental studies on double-
quantum dots.
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