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Magnetic impurities embedded in a metal interact via an effective Ruderman-Kittel-Kasuya-Yosida (RKKY)
coupling mediated by the conduction electrons, which is commonly assumed to be long ranged, with an algebraic
decay in the interimpurity distance. However, they can also form a Kondo screened state that is oblivious to
the presence of other impurities. We study the competition mechanisms between both effects on the square and
cubic lattices by introducing an exact mapping onto an effective one-dimensional problem that we can solve with
the density matrix renormalization group method. We show a dramatic departure from the conventional RKKY
theory, that can be attributed to the dimensionality and different densities of states, as well as the quantum nature
of the magnetic moments. In particular, for dimension d > 1, Kondo physics dominates even at short distances,
while the ferromagnetic RKKY state is energetically unfavorable. Our findings can have clear implications in the
interpretation of experiments and for tailoring the magnetic properties of surfaces.
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I. INTRODUCTION

Tailoring magnetic properties of substrates through mag-
netic adatoms is a very active area of research, due to the desire
to design semiconductor devices with novel functionality. In
particular, adatoms on two-dimensional layered materials such
as graphene [1,2], and even superconductors [3], have recently
attracted a great deal of interest. Understanding the dominant
interactions between atoms on surfaces is crucial for describing
larger-scale processes that can lead to surface reconstruction
and self-assembly at interfaces [4]. For instance, depending on
their strength and directionality [5–8], quantum-mechanical
effects could lead to the self-assembly of one-dimensional
Co chains and Fe superlattices [9,10]. Exciting pioneering
examples include quantum corrals formed by Fe atoms on
Cu(111) [11], quantum wires on Au(111) surfaces [12], and,
more recently, magnetic nanostructures [13], one-dimensional
atomic chains [14], and atomic dimers [15].

The physics of a single magnetic impurity is the essence
of the Kondo problem: the magnetic moment is screened by
the spin of the electrons in the Fermi sea, forming a collective
singlet state [16]. This wave function can be described as a
hybridization cloud (“Kondo cloud”) centered at the impurity
and decaying in distance with a characteristic range RK

[17–19]. When more than one impurity interact with the
conduction electrons, an effective Ruderman-Kittel-Kasuya-
Yosida (RKKY) coupling between the magnetic moments
arises [20–22], which can be ferro- or antiferromagnetic, and
oscillates with the distance between the impurities R with
wave vector 2kF (the Fermi momentum), and an amplitude
that decays algebraically. It is commonly believed that if the
Kondo screening length RK is shorter than the separation
R, the Kondo effect will be more important and the RKKY
interaction will not be observed. On the other hand, if R is
smaller than RK , the RKKY interaction will dominate [17–19].
As pointed out in Ref. [17], even in a very dilute system with
a low concentration of magnetic moments, a finite number of
impurities would be inside regions in space with overlapping

Kondo clouds. The fact that Kondo physics dominates, and
that a single impurity model can explain all experimental
observations, clearly defies intuition. The purpose of this work
is to shed light on this issue by means of a numerical technique
able to access the ground state of very large systems, and free
of finite temperature effects. As shown below, the geometry
and dimensionality of the lattice play a fundamental role in
understanding this competition in real materials, and the recent
experimental observations in Refs. [6,8,23,24].

The Hamiltonian of the problem treated here is defined by
two Si = 1/2 Kondo impurities (where i = 1,2) interacting
locally with free fermions in the bulk via an antiferromagnetic
exchange coupling JK :

H = Hband + JK

(�S1 · �sr1 + �S2 · �sr2

)
, (1)

where Hband is the lattice Hamiltonian for noninteracting
electrons, parametrized by a hopping t , and �sri

represents
the conduction electron’s spin at the impurity’s coordinate ri ,
for impurities i = 1,2. As suggested by Doniach in Ref. [25]
(see also [26]), one could define a binding energy (or “Kondo
temperature”) for forming a Kondo singlet TK � e−1/JK , or an
RKKY state, TRKKY ∼ J 2

K , and a competition between these
two energy scales will dictate which phase will win.

The usual treatment to derive an effective exchange inter-
action between the localized moments involves second-order
perturbation theory. The result can be summarized as

JRKKY (R) = J 2
Kχ (R),

where χ (R) is just the Fourier transform of the noninteracting
static susceptibility, or Lindhard function. The dependence of
this function on the distance varies with dimensionality. A
universal expression is often offered in the literature, which is
derived from assuming a uniform electron gas with a quadratic
dispersion E(k) ∼ k2 [27]. Its asymptotic behavior at long
distances (kF R � 1) and in d dimensions is of the form

χ (R) ∼ sin (2kF R + πd/2)

Rd
.
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We note here that the effects of the lattice are completely
ignored in this treatment. Clearly, the presence of a discrete
lattice can have dramatic effects, due to the destructive and/or
constructive interference of the electronic wave functions
centered on different sites, as well as the shape of both the
dispersion and the Fermi surface [22,28–30]. For instance,
in graphene, the RKKY interaction can decay as 1/R2 for
impurities sitting on lattice sites, or 1/R3 for impurities sitting
at interstitial spaces [31,32].

Irrespective of the dimensionality, a generic argument can
show that, on bipartite lattices and at half-filling, the oscil-
lations in the RKKY interaction are commensurate with the
lattice, and, therefore, interactions are always ferromagnetic
when moments are on the same sublattice, or antiferromagnetic
otherwise [33]. Therefore, the effects of perfect nesting and
the density of states (DOS) should be manifest in the strength
of the interaction and its decay with distance, giving rise
to a competition between Kondo and RKKY states that is
nonuniversal and depends on the geometry and dimensionality
of the system.

II. METHOD

In this work we devise an approach to map the model
in Eq. (1) onto an effective one-dimensional problem that
is optimized for a DMRG calculation. By generalizing the
method introduced in Ref. [34] for single impurity problems,
we reduce a complex lattice geometry to a single chain, or a
multileg ladder in the case of multiple impurities. A simple
and straightforward analogy can be traced back to Wilson’s
numerical renormalization group (NRG) treatment of a single
impurity coupled to a Fermi sea [35,36], where the electronic
band is mapped onto a one-dimensional chain by means of a
smart change of basis.

In general, the total Hamiltonian of this problem can be
written as

H = Hband + Himp + V,

where Hband is the lattice Hamiltonian, Himp is the many body
impurity Hamiltonian (e.g., Coulomb interactions in the case
of Anderson impurities), and V contains the hybridization
terms coupling the lattice and the impurities. For the case
of interest here, V corresponds to the Kondo interaction in
Hamiltonian (1). In this section we give a general description
of the method, without defining a particular lattice geometry.
For clarity, we focus on the case of two magnetic impurities.

We present two approaches to carry out the transformation.
The first one relies on the so-called block Lanczos method
[37,38]. We start the recursion by picking “seed” initial states,
which are single-particle orbitals, from now on denoted |1〉,
|2〉, centered at the position of the impurities, r1 and r2.
As described in detail below, a block Lanczos method will
generate a block tridiagonal matrix that can be interpreted
as a single-particle Hamiltonian on a ladder geometry. The
second approach applies to lattices with inversion symmetry:
in this case we can simplify the problem even further by just
defining two new seeds, which we take to be the symmetric
and antisymmetric linear combinations of single-particle
states |±〉 = 1/

√
2 (|1〉 ± |2〉). We then follow the prescription

described in Ref. [34] for the single impurity problem. By

repeatedly applying on these states the noninteracting terms in
the Hamiltonian, we generate new Lanczos orbitals in which
the Hamiltonian has a tridiagonal form. The two new sets
of states generated by the two orthogonal seeds will also be
orthogonal in this new basis, and the geometry of the problem
is now reduced to two independent chains.

In the following we describe the two approaches in detail.

A. Block Lanczos method

In order to generalize the Lanczos scheme proposed in
Ref. [34], we propose two strategies, and will later show that
they are intimately connected. The first technique consists of
applying the extended block Lanczos method.

As done before for the single impurity, the first step is
to choose the seed states. We will choose them to be single-
particle orbitals sitting at the same lattice sites as the impurities,
say sites 1 and 2. The advantage of this choice is that the
hybridization terms in V will remain unchanged under this
transformation. The two initial states for the transformation
are

|α0〉 = c
†
1 |0〉 ,

|β0〉 = c
†
2 |0〉 ,

where we have ignored the spin subindexes for simplicity.
A new set of states can be obtained by using the extended
Lanczos recursion method,

|αn+1〉 = H |αn〉 − aαα
n |αn〉 − aαβ

n |βn〉
− bαα

n |αn−1〉 − bαβ
n |βn−1〉 ,

|βn+1〉 = H |βn〉 − aββ
n |βn〉 − aβα

n |αn〉
− bββ

n |βn−1〉 − bβα
n |αn−1〉 .

Requiring that the new states are orthogonal to the two
previous states, i.e.,

〈αn−1|αn+1〉 = 0 = 〈βn−1|αn+1〉 ,

results in the following equations that can be solved for the b

coefficients:

〈αn−1| H |αn〉 − bαα
n 〈αn−1|αn−1〉 − bαβ

n 〈αn−1|βn−1〉 = 0,

〈βn−1| H |αn〉 − bαα
n 〈βn−1|αn−1〉 − bαβ

n 〈βn−1|βn−1〉 = 0.

A similar set of equations determines the value of the a

coefficients,

〈αn| H |αn〉 − aαα
n 〈αn|αn〉 − aαβ

n 〈αn|βn〉 = 0,

〈βn| H |αn〉 − aαα
n 〈βn|αn〉 − aαβ

n 〈βn|βn〉 = 0,

For a bipartite lattice, as in the case of square or cubic, all aαα
n

and a
ββ
n will be zero and reduce these equations to

〈βn| H |αn〉
〈βn|βn〉 = aαβ

n .

So far, we have obtained a new non-normalized basis.
However, states |αn〉 and |βn〉 are not necessarily orthogonal.
In order to obtain a full set of orthonormal states, we use
a Gram-Schmidt procedure to orthogonalize them (note that
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FIG. 1. (Color online) Geometry of the equivalent two impurity
problem: (a) before and (b),(c) after the transformation. (b) and (c)
illustrate the cases of two impurities at distance R = 8, and R = 7,
respectively.

this is not the only choice):

|xn〉 = |αn〉 ,

|yn〉 = |βn〉 − 〈αn|βn〉 |αn〉 .

Our Hamiltonian can now be written in the desired
tridiagonal form:

Hband =

⎛
⎜⎜⎜⎜⎝

A0 B1 0 0 · · ·
B1 A1 B2 0
0 B2 A2 B3

0 0 B3 A3
...

. . .

⎞
⎟⎟⎟⎟⎠

,

where An and Bn are 2 × 2 matrices. This method can readily
be extended further to more impurities. For k impurities,
each A and B matrix will be k × k. This matrix represents
a new noninteracting tight-binding Hamiltonian, with each
block representing a unit cell. For k impurities, it can be
recognized as k coupled chains forming a k × L ladder, where
L is the number of Lanczos iterations. The new geometry is
now quasi-one-dimensional.

For the particular case of the square lattice, the matrices
acquire a different structure for impurities on the same or
opposite sublattices: in the first case, all the A matrices are
zero and the B matrices are lower triangular. This translates
into the slanted ladder geometry of Fig. 1(c). On the other hand,
if the impurities are on opposite sublattices, the A matrices are
off diagonal, while the B matrices are diagonal, as represented
in Fig. 1(b).

The first R orbitals (where R is the distance between
the two impurities) will simply correspond to the single
particle orbitals of two independent single-impurity problems,
generating two independent chains. As the number of iterations
increases, the orbitals will overlap, and the transformation will
introduce mixing in order to preserve the orthogonality, leading
to the hopping terms between both chains.

B. Bonding-antibonding symmetrization

We now introduce a simple transformation that will enable
us to simplify the geometry of the equivalent problem
even further in the case of lattices where we can define
inversion symmetry. We just choose the initial states as linear

FIG. 2. (Color online) Examples of symmetric single-particle or-
bitals obtained through the Lanczos transformation for two impurities
(one at the origin and the other at a distance R = 10 along the
x direction) after (a) 5 and (b) 10 iterations. In (c) we show the
geometry of the equivalent problem, with the two magnetic impurities
coupled to noninteracting tight-binding chains via many-body terms
proportional to JK .

combinations of single-particle orbitals,

|±〉 = c
†
±|0〉 = 1√

2
(c†1 ± c

†
2) |0〉 ,

representing symmetric (bonding) and antisymmetric (anti-
bonding) states, respectively [see Figs. 2(a) and 2(b)]. For
each initial state, the Lanczos iteration procedure is identical
to that described in the single-impurity problem [34]. Under
this transformation, the many-body interactions in Himp,V will
be modified introducing terms mixing the impurities, and the
first two orbitals of both chains |±〉. However, the equivalent
Hamiltonian will remain one dimensional, and local, as shown
in Fig. 2.

After rotating all terms to the new basis, the many-body
interactions in Eq. (1) acquire the form

V = JK

2

∑
λ=±

(S1 + S2) ·
∑

μ,η,γ=±
c†γμ �σμηcγη

+ JK

2

∑
λ=±

(S1 − S2) ·
∑

μ,η,γ=±
c†γμ �σμηc−γ η, (2)

where �σ are the Pauli matrices. Notice that this symmetrization
is identical in spirit and form to the folding transformation used
in NRG calculations for the two-impurity problem [39], with
the main difference being that our symmetrization takes place
in real space, instead of momentum space.

As shown schematically in Fig. 2(c), the magnetic impu-
rities that were originally connected to orbitals |1〉 and |2〉
are now interacting with the |±〉 orbitals by complicated
many-body terms that introduce a coupling between the
two chains. Nonetheless, the final Hamiltonian still is one
dimensional and local, and its ground state can accurately
be obtained using the DMRG method. Indeed, the advantage
of this approach is not only that the recursion is greatly
simplified, but also that the equivalent problem reduces in
practice to a single one-dimensional chain, as depicted in
Fig. 2(c), greatly reducing the entanglement in the problem,
and thus the computational cost of the simulations.

085101-3
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It is easy to show that both mappings are equivalent by
simply taking any of the ladders in Fig. 1, and symmetrizing
the orbitals under a reflection with respect to a plane parallel
to the chains. The equivalent Hamiltonian will be nothing else
but the chain in Fig. 2. As a consequence, the entanglement
in the problem is reduced by a factor 2, which translates into
an exponential gain in terms of the number of states needed in
the DMRG simulation.

C. DMRG simulations

In the block Lanczos approach, the bipartite entanglement
is proportional to the number of legs, or impurities, in the
problem. The main advantage of the folding transformation is
that the entanglement gets reduced by two, and the number
of states needed in the calculation is reduced by a power of
1/2. For the DMRG simulations, we take the total system
size (including impurities) to be L = 4n (n integer), such that
each impurity can form part of a collective RKKY state or its
own Kondo cloud (it has been already observed that Kondo
does not develop in chains of length L = 4n + 2 [40]). We
have considered values of L up to 204, which corresponds
approximately to a “sphere” around the two impurities of
radius ∼ 100. As explained in Ref. [34], we assume “infinite
boundary conditions,” corresponding to orbitals that expand
outward from the impurities and never hit any boundaries,
which is valid if one is interested in the thermodynamic limit,
in a similar spirit as the NRG approach. (Since we do not use
a logarithmic discretization of the leads, we are still studying
a “Kondo box” [41].) These system sizes are four times larger
than the maximum interimpurity distance considered in this
work, and we have not observed significant finite size effects.
Since the energy difference between the ground state and
the first excited state can be very small (∼ 10−6), we fix the
truncation error at 10−9 in all simulations, which translates into
a number of DMRG states of the order of 3000 or more in most
cases. Notice that this level of accuracy would be unattainable
on the ladder geometry (without the bonding-antibonding
symmetrization) due to the larger entanglement.

III. RESULTS

We have performed the mapping for two impurities embed-
ded in square and cubic lattices, placing them at different
distances R along the horizontal x axis. Unless otherwise
specified, we typically show results for L = 124, and at
half-filling. Figure 3 shows the spin-spin correlations between
both impurities as a function of R for (a) square, (b) cubic
lattices, and also (c) one-dimensional chain for comparison.
In all three cases, we observe commensurate oscillations, and
the different behaviors for impurities sitting at even or odd
distances. First, we notice that ferromagnetic correlations at
even distances are vanishingly small. This behavior has also
been verified for impurities positioned along the diagonals of
the lattice (not shown here). We focus our attention on the case
of both impurities on different sublattices (at odd distances),
and we find that for the 2D and 3D systems the correlations
decay smoothly at first, but instead obeying an algebraic power
law, and they have a marked change of behavior as they reach a
crossover distance: for values of the interaction JK � 0.1, the

FIG. 3. (Color online) Spin-spin correlations between Kondo im-
purities at different distances along the x axis, as a function of the
Kondo coupling JK and for different lattice geometries: (a) 2D square,
(b) 3D cubic, and (c) 1D chain, at half-filling.

impurities basically become uncorrelated for R � 20 lattice
spaces (or less, as JK increases).

Results for the cubic lattice—shown in Fig. 3(b)—display
similar behavior as the square lattice, but with two important
differences: the range of the correlations is slightly larger, and
the amplitude of the oscillations has contributions from more
than one mode, originating from the nontrivial shape of the
Fermi surface [22,28–30]. To see this explicitly, we just recall
the expression for the Lindhard function

χ (r1,r2) = 2 Re
∑ 〈r1|n〉 〈n|r2〉 〈r2|m〉 〈m|r1〉

En − Em

, (3)

where the sum is over the eigenstates n,m with energies En >

EF > Em. The |ri〉 are the single-particle states at position ri ,
for i = 1,2.

We calculate this quantity numerically, and plot it for the
square and cubic lattices in Fig. 4, and we also include the
one-dimensional case for comparison. We solved this formula
explicitly with the mapping, and the exact eigenstates of a
large system with both open and periodic boundary conditions,
with indistinguishable results. The function displays the same
oscillatory behavior as the spin-spin correlations. In particular,
the ferromagnetic components for R even are very weak
compared to the antiferromagnetic counterpart. We also notice
a remarkable reduction by two and three orders of magnitude
in 2D and 3D, respectively, compared to the 1D case.
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FIG. 4. Lindhard function (spin susceptibility) for the noninter-
acting tight-binding model for the (from top to bottom) square, cubic
lattices, and 1D chain at half-filling. Notice the different scales on the
y axes.

For this reason we now turn our attention to the one-
dimensional case, which already has been studied in the
literature [42,43]. For consistency, we use our Lanczos
transformation, keeping the total length of the system fixed
at L = 124. Results for the spin-spin correlations are shown
in Fig. 3(c), and are in sharp contrast to the higher dimensional
examples: large values of JK are needed to induce a noticeable
decay in the correlations. Moreover, for opposite sublattices,
we obtain large positive values, indicating a ferromagnetic
coupling, approaching the saturation value for small JK .

In order to determine whether the impurities are forming
an RKKY singlet or not, we study the uniform and staggered
magnetic susceptibilities for the impurities by numerically
calculating χu,st by applying a small (uniform or staggered)
magnetic field of magnitude h = 10−4 to both impurities and
evaluating (d〈Sz〉/dh)u,st on one of them (〈· · · 〉 means average
taken over the ground state). In the universal Kondo regime, we
expect χu,st ∼ 1/TK . We show this quantity for a 2D square
lattice in Fig. 5(a). Results indicate that χu � χst for all even
distances, and they asymptotically converge to the same value
at long distances. This indicates that impurities on the same
sublattice prefer to remain uncorrelated, in sharp contrast to the
prediction that they would couple ferromagnetically. Indeed,
the FM state simply is energetically unfavorable.

We investigate this behavior as a function of JK in Fig. 5(b).
As seen for interimpurity distance R = 9, for instance, there is
a crossover from an RKKY to a Kondo regime at JK � 0.5. At
distance R = 10, the two susceptibilities are indistinguishable,
while for R = 1,2, both clearly differ—although slightly for
R = 2—signaling that impurities form a screened RKKY
state. Assuming that 1/χu,st define the binding energy scale
TK,TRKKY , one would expect a crossover behavior—from

FIG. 5. (Color online) (a) Staggered and uniform impurity sus-
ceptibilities as a function of distance on the square lattice, for JK = 1.
(b) Same quantities as a function of JK , for distances R = 1,2,9,10.
The inset shows results for R = 10 in an extended range, and the
expression for a singlet for large JK . Curves for R = 2,10 are almost
indistinguishable.

quadratic to exponential—as a function of JK , as suggested by
the results for R = 9. However, for R = 2,10 we encounter
that these quantities vary linearly as ∼ JK for small JK . This
departure from the exponential form TK ∼ exp (−1/JK ) is in
agreement with the analysis presented in Ref. [26] and due to
the discreteness of the spectrum, i.e., our system is a “Kondo
box” with a level spacing of the order of TK , and we are
not in the universal scaling regime [41,44–48]. For large JK ,
as shown in the inset, the results asymptotically converge to
the expression for a spin singlet 1/χ = 2JK . This behavior
deserves a detailed study that will be presented elsewhere.

IV. CONCLUSIONS

We studied the competition between RKKY and Kondo
physics and the effect of dimensionality, by mapping the
noninteracting Hamiltonian onto an effective one-dimensional
lattice that can efficiently be solved using the DMRG method.
We found a clear departure from the conventional picture:
above relatively short distances, a Kondo screened state
becomes energetically favorable, and the impurities become
completely uncorrelated. Moreover, the ferromagnetic state
only develops in 1D, or weakly in higher dimensions and
at very short distances. According to the behavior of the
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Lindhard function, and also the density-density correlation
in the presence of a Kondo impurity [34], the probability of
finding conduction electrons on two sites of the same sublattice
can be vanishingly small and, as a consequence, their ability
to mediate the RKKY interaction is greatly hindered.

This behavior is nonuniversal, and depends on the geometry
of the lattice. In 3D, the RKKY correlations have a nontrivial
oscillatory behavior due to the shape of the Fermi surface
that translates into contributions of several modes to the
Lindhard function. Moreover, this function is one order of
magnitude smaller in 3D than in 2D, but the range of the
RKKY interactions is larger. This counterintuitive result may
be an indication of nonperturbative effects.

Curiously, the density of states of a cubic lattice has a
flat plateau spanning a range of energies [−2,2] in units of
the hopping t . This is almost identical (except for a small
curvature) to the flat DOS used in NRG calculations [49,50].
However, for all ranges of couplings JK studied in this work,
we have found important lattice effects, in agreement with
previous quantum Monte Carlo (QMC) calculations [51]. This
illustrates the limitations of considering only spherical plane
waves as the basis for constructing the NRG Hamiltonian [36].

In particular, a remarkable result in early NRG studies of
the two impurity problem [39,52]—with a linear dispersion
and ignoring details of the lattice—indicated the existence
of a non-Fermi liquid critical point, characterized by a value

of the spin correlations 〈S1 · S2〉 = −1/4 (for a more recent
analysis, see Ref. [53]). Further QMC studies on two- and
three-dimensional systems, with both a quadratic dispersion
and a lattice, did not find any evidence of such a state
[51,54,55]. Later analysis revealed that the existence of such
a critical point required the presence of a very particular kind
of particle-hole symmetry [56–58], which is realized in our
problem when R is even. Our simulations have confirmed the
QMC results, with a fast decay of the correlations, and the
absence of anomalous behavior.

Finally, we mention that our approach can readily be
generalized to study realistic band structures, multiorbital
problems, and magnetic molecules, potentially bridging the
gap between atomistic ab initio calculations, and methods for
strongly correlated problems.

Note added. While this manuscript was under considera-
tion, related work applying the block Lanczos transformation
to multi-impurity problems was published [59].
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