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Non-Abelian parafermions in time-reversal-invariant interacting helical systems
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The interplay between bulk spin-orbit coupling and electron-electron interactions produces umklapp scattering
in the helical edge states of a two-dimensional topological insulator. If the chemical potential is at the Dirac
point, umklapp scattering can open a gap in the edge state spectrum even if the system is time-reversal invariant.
We determine the zero-energy bound states at the interfaces between a section of a helical liquid which is gapped
out by the superconducting proximity effect and a section gapped out by umklapp scattering. We show that
these interfaces pin charges which are multiples of e/2, giving rise to a Josephson current with 8π periodicity.
Moreover, the bound states, which are protected by time-reversal symmetry, are fourfold degenerate and can be
described as Z4 parafermions. We determine their braiding statistics and show how braiding can be implemented
in topological insulator systems.
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Introduction. The one-dimensional (1D) edge states of
time-reversal (TR)-invariant two-dimensional (2D) topolog-
ical insulators [1,2] are helical: electrons with opposite spins
propagate in opposite directions [3,4]. For such a state,
Kramers theorem forbids elastic backscattering, and the edge
states remain gapless even in the presence of disorder and
weak interactions [5–7]. When gapped by proximity-induced
superconductivity, helical and quasihelical [8–12] systems
have been predicted to host exotic zero-energy bound states
with non-Abelian exchange statistics, such as Majorana
fermions [13–22] and parafermions [23–27]. These could have
important applications in topological quantum computation
[28,29]. Due to the helicity of the edge state, the induced
pairing potential is of the p-wave type [15], rendering the
system topologically nontrivial [13,14]. A topologically trivial
gap, on the contrary, results from coupling a helical edge to a
magnetic insulator, which breaks TR invariance.

Majorana bound states have been predicted to exist be-
tween such topologically nontrivial and trivial regions [16].
Experimental signatures compatible with the presence of
Majorana bound states have been found in quasihelical 1D
nanowires coupled to a superconductor [30–34]. The presence
of electron-electron interactions can result in a generalization
of the Majorana fermions to parafermionic bound states. They
can be engineered by coupling the edges of two fractional
quantum Hall states with fillings 1/m and −1/m [24,25,27].
Interfaces of regions gapped by superconductivity and a
magnetic field, respectively, then bind Z2m parafermions.
Most proposed realizations of parafermions and other non-
Abelian anyons [23–27,35–38] require TR symmetry to be
broken explicitly. Recently, there have been proposals on
how to engineer TR-invariant parafermions using fractional
topological insulators (FTIs) [39,40]. However, FTIs have not
yet been experimentally realized.

Here, we propose a realization of Z4 parafermions in
TR-invariant conventional topological insulators. Of course,
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since the states in our proposal are symmetry protected, and
not topologically protected, they cannot be used for topological
quantum computation. However, this system is very promising
for demonstrating the existence of parafermions and their
non-Abelian braiding statistics because topological insulator
edge states have already been studied in various experiments
[41–46] and superconductivity was already successfully in-
duced [47]. Moreover, our proposed realization does not
require the tricky coexistence of strong magnetic fields with
superconductivity.

One important ingredient in our work is umklapp scattering
(conversion between two right-movers and two left-movers),
which is known to potentially open a gap in the edge state spec-
trum even if the system is TR invariant [3,6,7]. If the chemical
potential is at the Dirac point, umklapp scattering satisfies en-
ergy and momentum conservation and, for sufficiently strong
interactions, is relevant in the renormalization-group sense.
The resulting umklapp gap can be regarded as a Mott gap.

In the remainder, we investigate the bound states at
interfaces between sections of a helical edge state gapped
by superconductivity or by umklapp scattering. We first
demonstrate how umklapp scattering in the 1D edge emerges
as a consequence of spin-orbit coupling in the bulk 2D
topological insulator material in HgTe/CdTe quantum wells
and InAs/GaSb heterostructures. We then prove the existence
of zero-energy bound states at these interfaces and determine
their degeneracy, which is a consequence of TR symmetry.
We explicitly construct the bound state operators, explore
their braiding statistics, and propose a Josephson current
measurement as a possible experimental signature.

Umklapp scattering. Let us start by considering a helical
system of length L consisting of right-moving spin-up particles
ψ↑ and left-moving spin-down particles ψ↓. The 1D spectrum
is assumed to be linear [4,5] and the Hamiltonian reads

H0 = −ivF

∑
σ

σ

∫
dxψ†

σ (x)∂xψσ (x), (1)

Hint = 1

2

∫
dxdy ρ(x)U (x − y)ρ(y), (2)
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where σ = ↑,↓ = +,−, and the total density operator
ρ = ρ↑ + ρ↓ = ∑

σ ψ†
σψσ . Since the TR operator T acts

as T ψσ (x)T −1 = σψ−σ (x), the Hamiltonian H0 + Hint is
TR invariant. Moreover, it has an axial spin symmetry,
[H0,Nσ ] = [Hint,Nσ ] = 0, where Nσ = ∫

dxρσ is the total
number of spin-σ fermions.

Umklapp scattering is described by the Hamiltonian

Hum ∝
∫

dxe−4ikF ψ
†
↑(∂xψ

†
↑)(∂xψ↓)ψ↓ + H.c. (3)

This process is allowed by TR symmetry, [Hum,T ] = 0. How-
ever, in contrast to H0 and Hint, umklapp scattering breaks the
axial spin symmetry, [Hum,Nσ ] �= 0. This raises the question
about whether and how Hum is generated in realistic systems.

To address this question, one needs to start from the
full 2D Hamiltonian of the TI. For instance, HgTe/CdTe
quantum wells can be modeled using the Bernevig, Hughes,
and Zhang (BHZ) Hamiltonian [4]. That Hamiltonian is block
diagonal in spin space and hence produces 1D edge states
with axial spin symmetry as in Eq. (1). However, it was
shown that structural inversion asymmetry generated, e.g.,
by applying a perpendicular electric field causes Rashba-type
spin-orbit coupling and leads to off-diagonal blocks in the 2D
Hamiltonian [48]. As a consequence, its edge states lose the
axial spin symmetry. Similarly, the Hamiltonians describing
other 2D TI materials, such as InAs/GaSb heterostructures [49]
or silicene [50,51], generally have edge states without axial
spin symmetry.

In such a generic, TR-invariant helical liquid, the
right-moving and left-moving energy eigenstates ψ±,k for a
given momentum k are linear combinations of spin-up and
spin-down states, ψα,k = ∑

σ Bασ
k ψσ,k , where α = +,− and

σ = ↑,↓. Because of TR symmetry, the matrices Bk are
SU(2) matrices satisfying Bk = B−k . A constant term Bk=0

can be absorbed in a redefinition of the spin quantization axis.
Therefore, the leading nontrivial contribution reads [52–54]

Bk ≈
(

1 −k2/k2
0

k2/k2
0 1

)
,

where k0 can be interpreted as the momentum scale on which
the spin quantization axis rotates. It is determined, e.g., by the
strength of Rashba spin-orbit coupling in the bulk TI and can
be calculated numerically; see Ref. [52] for an example. For a
system with axial spin symmetry, 1/k0 = 0, and Bk is diagonal.

The spin axis rotation becomes particularly important when
interactions are considered. In the following, we will focus on
the case when the chemical potential is at the Dirac point, kF =
0. The density-density interaction Hamiltonian (2) expressed
in the basis ψ±(x) contains single-particle backscattering and
umklapp scattering terms [52,54]. This umklapp scattering
term, however, contains additional derivatives compared to
Eq. (3) and always remains renormalization-group (RG)
irrelevant. The single-particle backscattering term reads

H 1
int = −U0

k2
0

∑
αβ=±

β

∫
dx(∂xρα)[(∂xψ

†
β)ψ−β + H.c.], (4)

where ρα = ψ†
αψα . Here, we assumed a local interaction po-

tential U (x) = U0δ(x) because a finite range of the interaction
will only give rise to less relevant terms. Next, we will show

that an umklapp term of the form (3) is produced by the RG
flow of H 1

int.
To carry out the RG calculation, we bosonize the Hamilto-

nian. The kinetic-energy and interaction terms proportional to
ραρβ together produce a Tomonaga-Luttinger Hamiltonian,

HLL = v

2π

∫
dx

[
K : (∂xθ )2 : + 1

K
: (∂xφ)2 :

]
, (5)

where : · : denotes bosonic normal ordering. The Luttinger
parameter K = (1 + U0

πvF
)−1/2, where 0 < K < 1 for repul-

sive interactions, and v = vF /K is the sound velocity. The
canonically conjugate bosonic fields φ(x) and θ (x) are related
to the fermionic fields by the bosonization identity ψ±(x) =
e∓iφ(x)+iθ(x)/

√
2πa. Here, a is the short-distance cutoff, and

the Klein factors [55] have been dropped because they
are insignificant for the following discussion. In terms of
bosonized operators, TR can be defined as

T φ(x)T −1 = φ(x) + π

2
, T θ (x)T −1 = −θ (x) + π

2
. (6)

The bosonized version of the single-particle backscattering
Hamiltonian reads

H 1
int = λvF a

(
2πa

L

)K ∫
dx:

(
∂2
xφ

)
(∂xθ ) sin[2φ(x)]:, (7)

where λ = 6U0/(π2vF k2
0a

2) is the dimensionless interaction
amplitude. An RG analysis up to the second order in λ (see
Supplemental Material [56]) reveals the bosonized version of
the umklapp Hamiltonian (3),

Hum = vF gum

a2

(
2πa

L

)4K ∫
dx: cos[4φ(x)]:, (8)

with dimensionless strength gum. Parameterizing the cutoff as
a() = ae, the corresponding RG equations read

dλ

d
= − (K + 1)λ,

dgum

d
= − 4(K − 1/2)gum (9)

+ 2π2(5−K)(3−K)(K − 1/2)λ2.

Hence, we conclude that even if the “bare” umklapp scattering
vanishes, it is generated by second-order single-particle
backscattering. While single-particle backscattering remains
formally RG irrelevant for all K , umklapp scattering becomes
relevant for strong interactions K < 1/2, and gum then flows
to strong coupling. The strong coupling fixed point of this
sine-Gordon type term is of course well known: the field φ(x)
will be pinned to one of the minima of the cosine potential.

Interface bound states. Next, we consider an interface
between a superconducting and a Mott insulating region in
a helical edge state, described by the Hamiltonian

H = 1

2π

∫ ∞

−∞
dx

{
v(x)K(x) : [∂xθ (x)]2 :

+ v(x)

K(x)
: [∂xφ(x)]2 :

}

+ �̃

∫ 0

−∞
dx sin[2θ (x)] + g̃um

∫ ∞

0
dx cos[4φ(x)], (10)
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where �̃ = �/(πa) and g̃um = vF gum/a2. � is the induced
pair potential, and ψ

†
+ψ

†
− + H.c. ∝ sin(2θ ) for our choice of

Klein factors. Note that the Rashba spin-orbit coupling leads
to RG-irrelevant corrections of order 1/k2

0 to the pairing term,
and they can be neglected compared to the sin(2θ ) term. For
x < 0 (x > 0), we have the sound velocity v(x) = vS (vM ) and
Luttinger parameter K(x) = KS (KM ).

Umklapp scattering becomes relevant for KM < 1/2,
whereas the pairing term becomes relevant and superconduc-
tivity can be induced only for KS > 1/2 [57]. Despite this
apparent contradiction, both conditions should be achievable
in experiments because of the screening of interactions due to
the superconductor: for instance, if a helical liquid interacts
via an interaction potential Usc(x) = Uscδ(x) with a nearby
superconductor, its Luttinger parameter increases from KM to
KS = KM [1 − K2

MU 2
sc/(πvM )2]−1/2 > KM [56]. Both cosine

and sine terms in Eq. (10) can thus be relevant.
In the superconducting section, the field θ (x) is pinned

to one of the minima of sin(2θ ). The cos(4φ) term has an
analogous effect in the Mott insulating region. Therefore, in
both regions, we can expand the sine or cosine potential to
second order around one of the minima, i.e., we use a mean-
field approximation. Tunneling of the phase between minima
and thermal activation over the barrier yield exponentially
small corrections for finite length of the sections or finite tem-
perature [58], which we neglect henceforth. For the quadratic
mean-field Hamiltonian, we calculate the local bosonic Mat-
subara Green’s functions Gμν(x,x ′,τ,τ ′)iωn

,μ,ν ∈ φ,θ and
find that these functions are continuous at ωn = 0 [56].

For x,x ′ �= 0 and energies below the gap, |ωn| <

�,gumvM/a, the Green’s functions are exponentially sup-
pressed. Using the bosonization identity, it is also possible to
numerically calculate the retarded fermionic Green’s function
at x = x ′ = 0, for which we find

Dσ (x = x ′ = 0,ω) = −i

∫ ∞

0
dteiωt 〈{ψσ (0,t),ψσ (0,0)}〉

∝ 1

ω + i0
for ω → 0, (11)

where {·} denotes the anticommutator. This isolated first-order
pole of the Green’s function already shows that the fermionic
density of states contains a zero-energy bound state, which is
localized at the interface.

Ground-state and bound-state operators. Non-Abelian
exchange statistics can occur if the ground state is degenerate.
To determine the ground-state degeneracy and investigate the
exchange statistics of the bound states, we follow an approach
demonstrated in Ref. [25] for non-Abelian anyons in fractional
quantum Hall systems. We consider a system with periodic
boundary conditions consisting of N superconducting regions
alternating with N Mott insulating regions; see Fig. 1. As
before, we assume that in the bulk of each superconducting
and Mott insulating region, the fields θ and φ are pinned to
one of the minima of sin(2θ ) and cos(4φ), respectively. The
different possible minima of the (co-)sine potential lead to a
finite ground-state degeneracy. To label the degenerate ground
states, we will construct a set of mutually commuting operators
which commute with the Hamiltonian, keeping in mind that the
fields θ and φ do not commute, [φ(x),θ (y)] = −iπ�(x − y).

FIG. 1. (Color online) Alternating superconducting and Mott in-
sulating sections (N = 2) with periodic boundary conditions. The
phase fields θi (φi) are pinned in the ith blue superconducting
(green Mott insulating) region. Bound states χi (stars) emerge at
the interfaces.

We define the operators (for i = 1, . . . ,N − 1)

πSi = θi+1 − θi, πQi = φi+1 − φi,
(12)

πStot = θ (L−) − θ (0+), πQtot = φ(L−) − φ(0+).

As depicted in Fig. 1, Si (Qi) corresponds to the spin (charge)
of the ith Mott insulating (superconducting) region, whereas
Stot and Qtot are the total spin and charge in the system. We
measure charges in units of the elementary charge e, and spins
in units of the electron spin �/2.

In each superconducting region, the spin is conserved,
but the charge is only conserved modulo 2. Conversely, the
umklapp scattering which occurs in the Mott insulating regions
means that the charge is conserved, but the spin can fluctuate
by multiples of 4.

Once the phase fields φi are pinned by umklapp scattering
to the minima of the cosine potential, it follows from Eq. (12)
that the charges Qi are quantized in half integers. This can be
understood physically by observing that the umklapp term can
be expressed in terms of free fermionic quasiparticles using
the refermionization formula, ψ̃†

± ∝ e±2iφ−iθ/2, which leads to
cos(4φ) ∝ ψ̃

†
+ψ̃− + H.c. Since [N,ψ̃

†
±(x)] = 1

2 ψ̃
†
±(x), where

N is the total number of physical electrons, these quasiparticles
indeed carry charge e/2.

We find that the following sets of operators commute with
the Hamiltonian and with each other:

{eiπS1/2, . . . ,eiπSN−1/2,eiπStot/2,eiπQtot},
(13)

{eiπQ1 , . . . ,eiπQN−1 ,eiπStot/2,eiπQtot}.
Using Eq. (12) and taking into account that φi and θi are
pinned to the minima of the respective (co-)sine potentials,
one finds that both eiπSi/2 and eiπQi have the four eigenvalues
{1,i,−1,−i}, corresponding to the integer spins si ∈ {0,1,2,3}
and the half-integer charges qi ∈ {0, 1

2 ,1, 3
2 }. An analogous

result holds for Stot and Qtot. If we require the total charge
of the system to be integer, qtot ∈ {0,1}, we can label each
ground state using either the charge basis or the spin basis as
|q1, . . . ,qN−1,stot,qtot〉 or |s1, . . . ,sN−1,stot,qtot〉, respectively.
Therefore, the ground state has a degeneracy of 4N × 2. In
the case of a single junction (N = 1), we therefore find
a fourfold degeneracy for any given total charge parity.
According to Eqs. (6) and (12), TR flips all spins, i.e.,
T |s1, . . . ,sN−1,stot,qtot〉 ∝ |−s1, . . . ,−sN−1,−stot,qtot〉.

The bound-state operators can be constructed from op-
erators which act on the ground-state subspace. Since
exponentials of Qj transfer spins between adjacent sec-
tions, eiπQj |sj ,sj+1〉 = |sj − 1,sj+1 + 1〉, we can construct
raising and lowering operators for spin and charge
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(j = 1, . . . ,N − 2),

Ŝj =
N−1∏
k=j

e−iπQk , Q̂j =
j∏

k=1

eiπSk/2. (14)

We use these to define creation and annihilation operators for
bound states that carry both spin and charge,

χ2j−1 = Ŝj Q̂j−1, χ2j = eiπ/4Ŝj Q̂j . (15)

Using the commutation relations of Ŝj and Q̂k , it is easy to
show that the operators χj fulfill Z4 parafermionic exchange
statistics,

χjχk = e−iπ/2χkχj (for j < k), χ4
j = 1. (16)

Note that if TR symmetry is broken, the ground-state degen-
eracy will be partially lifted and the resulting interface states
will be Majorana bound states [16,21].

The bound states have non-Abelian braiding relations.
To braid two neighboring bound states χk and χk+1, we
consider the protocol presented in Refs. [25,59]. A new pair
of bound states, χa and χb, is nucleated and alternatingly
coupled to the states χk and χk+1. With the coupling operators
Hij = −tijχjχ

†
i + H.c., which transfer charge 1/2 and spin

one between different interfaces, the braiding operator,

V (λ) =
⎧⎨
⎩

(1 − λ)Ha,b + λHb,k for 0 < λ < 1,

(2 − λ)Hb,k + (λ − 1)Hb,k+1 for 1 < λ < 2,

(3 − λ)Hb,k+1 + (λ − 2)Ha,b for 2 < λ < 3,

(17)

can be used to define a time evolution with the Hamiltonian
HV (t) = V (ζ t). In the case of adiabatic braiding (ζ → 0),
the system remains protected by TR symmetry. The unitary
operator describing the braiding of the states χk and χk+1 reads

Uk,k+1 = eiπ/4

2

3∑
p=0

e−iπp2/4

×
{[

exp
(

iπ
2 S(k+1)/2

)]p
for odd k,[

exp
(
iπQk/2

)]p
for even k.

One can easily verify that these operators satisfy the Yang-
Baxter equations, [Uj,j+1,Uk,k+1] = 0 if |j − k| > 1 and
Uk,k+1Uk+1,k+2Uk,k+1 = Uk+1,k+2Uk,k+1Uk+1,k+2. Therefore,
they form a representation of the braid group [29]. Of course,
Uk,k+1 depends on the tunnel operators Hij . If the latter are
chosen in such a way that they transfer only integer spin and
integer charge, the braid operators reduce to those of Majorana
fermions [13]. We expect that tunneling of e/2 charges
dominates between neighboring interface states, e.g., between
χ1 and χ2 in Fig. 2. On the other hand, between interface states
on opposite edges, e.g., χ2 and χ4, tunneling of e/2 charges
is expected only over distances that are small compared to the
transversal range of the many-body edge state wave functions.

Experimental realizability. The charge quantization in units
of e/2 has a particular impact on the Josephson effect. Let us
consider two superconducting regions with a phase difference
� separated by a single short Mott insulating region. Its finite
length means that the phase φ is no longer strictly pinned,
but can tunnel between minima of cos(4φ). Gauging away the

(a) (b)

(c)

FIG. 2. (Color online) A 2D topological insulator (green) with
movable edge states and a set of gates for locally switching the
proximity effect on (dark blue) and off (light blue) allow the
implementation of the braiding protocol (17) for the bound states
χi . In step (a), the bound states χ1 and χ2 are coupled. Deforming the
edge states also makes it possible to couple χ2 and χ3 or χ2 and χ4,
as shown in (b) and (c), respectively.

phase difference �, one finds that the tunneling of e/2 charges
carries a phase �/4. Diagonalizing the tunneling Hamiltonian,
one then finds an 8π periodic spectrum. As a consequence, the
Josephson current in this system shows 8π periodicity [56].

Braiding always requires an ability to move bound states in
the experiment. In our case, the most promising avenue will be
to use 2D TI materials such as InAs/GaSb, in which the edge
states can be moved using top gates [43,46,49]. Moreover,
the proximity effect can be tuned locally by a gate which
modulates the tunnel barrier between the superconductor and
the 2D TI, as has already been demonstrated for an interface
between a superconductor and a carbon nanotube [60]. By
using a convenient geometry (see Fig. 2), it is possible to
minimize the number of required gates. It is known that weak
disorder does not destroy the edge states if the system is
time-reversal invariant [6,7], and this protection applies in our
system as well. We would like to stress that one advantage
of our proposal is that it does not require the coexistence of
superconductivity and strong magnetic fields.

Conclusions. We have proposed a way to realize non-
Abelian parafermionic bound states in interacting 2D topolog-
ical insulators. Effects such as structural inversion asymmetry
in combination with electron-electron interactions generically
give rise to umklapp scattering. This umklapp scattering
becomes RG relevant for sufficiently strong interactions and,
if the chemical potential is at the Dirac point, it can open a gap
in the edge state spectrum. We investigated interfaces between
regions of a helical liquid gapped out by superconductivity
and umklapp scattering. We found that these regions localize
half-integer charges and the interfaces support zero-energy
bound states obeyingZ4 parafermionic statistics. We proposed
non-Abelian exchange statistics and an 8π periodic Josephson
effect as possible experimental signatures.

Note added. Just before submitting this manuscript, we
became aware of the work of Zhang and Kane [61] studying
the Josephson effect in this system.
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