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Weyl semimetals are a three-dimensional gapless topological phase in which bands intersect at arbitrary
points—the Weyl nodes—in the Brillouin zone. These points carry a topological quantum number known as
the chirality and always appear in pairs of opposite chiralities. The notion of chirality leads to anomalous
nonconservation of chiral charge, known as the chiral anomaly, according to which charge can be pumped
between Weyl nodes of opposite chiralities by an electromagnetic field with nonzero E · B. Here, we propose
probing the chiral anomaly by measuring the optical activity of Weyl semimetals via circular dichroism. In
particular, we observe that applying such an electromagnetic field on this state gives it a nonzero gyrotropic
coefficient or a Hall-like conductivity, which may be detectable by routine circular dichroism experiments. This
method also serves as a diagnostic tool to discriminate between Weyl and Dirac semimetals; the latter will give a
null result. More generally, any experiment that probes a bulk correlation function that has the same symmetries
as the gyrotropic coefficient can detect the chiral anomaly as well as differentiate between Dirac and Weyl
semimetals.
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I. INTRODUCTION

Weyl semimetals (WSMs) are a novel gapless topological
phase of matter that have accrued considerable attention as of
late [1–4]. They are three-dimensional systems whose band
structure contains isolated points in momentum space where
a pair of nondegenerate bands intersect. These intersection
points— or Weyl nodes—can be assigned a handedness or
chirality χ = ±1; very general arguments show that the total
number of Weyl nodes in the Brillouin zone must be even with
half of each chirality [5,6]. Moreover, they are topological
in the sense that they can only be annihilated (gapped out)
in pairs of opposite chirality, or via superconductivity. Thus,
they are stable as long as translational symmetry and charge
conservation hold. Near the Weyl nodes, the dispersion is
linear and the Hamiltonian resembles the Hamiltonian for
Weyl fermions well known in high-energy physics,

HW = χk · σ , (1)

where k is the momentum relative to the Weyl node and σi

are Pauli matrices in the local band basis—hence, the name
WSMs.

WSMs are bestowed with a physical property known as the
Adler-Bell-Jackiw anomaly or the chiral anomaly [7–14]. This
is a well-known phenomenon in high-energy physics. It rep-
resents an anomalous nonconservation of chiral charge in the
presence of appropriate external electromagnetic fields, even
though the Hamiltonian enjoys the continuous symmetry—the
chiral gauge symmetry—that is expected to lead to chiral
charge conservation via Noether’s theorem. The resolution to
this paradox lies in the fact that the chiral gauge transformation
modifies the integration measure in the path integral, and hence
the path integral itself. Thus, the chiral anomaly is a purely
quantum process that the classical Hamiltonian is oblivious to.
Viewed differently, it is an artifact of the low-energy theory,
and appropriate regularization at high energies that smoothly
interpolates between Weyl Hamiltonians of opposite chiralities
would destroy the chiral gauge symmetry [1].

WSMs present a condensed matter realization of the phe-
nomenon. In this context, the anomaly implies that although
the total charge in the WSM is conserved, the charge in the
momentum states near the left-handed or the right-handed
Weyl nodes is not individually conserved. In the simplest case
of a WSM with just two Weyl nodes, the anomaly can be
written as

∂μj
μ

ch = e2

4π2�2
E · B, (2)

where j
μ

ch = (jμ
+ − j

μ
−)/2 is the four-dimensional chiral cur-

rent and the subscripts ± on the currents denote the chirality
of the Weyl node contributing to them, and the right-hand side
states that the pumping is driven by an electromagnetic field
configuration with nonzero E · B.1 The electromagnetic fields
are space and time dependent in general. In the absence of any
spatial variations, (2) reduces to

∂tρch = e2

4π2�2
E(t) · B(t). (3)

For time-independent E and B, ρch grows linearly with time
until a scattering process cuts off the growth by relaxing the
charge imbalance between the Weyl nodes. Such processes
are rare in clean systems since they involve a large momentum
transfer. Thus, any measurement of the chiral anomaly can
unambiguously distinguish between WSMs and the less exotic
Dirac semimetals, in which Weyl nodes of opposite chiralities
coincide in momentum and energy. Equation (2) is a two-
dimensions-higher version of the chiral anomaly present at the
edge of an integer quantum Hall state [15]. There, charge can
be pumped from one edge to the other by a longitudinal electric
field, ∂μj

μ

ch = e2

2π�
E. An important difference, however, is that

the chiral currents j
μ
± in the integer quantum Hall state reside

on spatially separated edges and can be observed individually

1Henceforth, we abbreviate “electromagnetic fields with nonzero
E · B” as “an E · B field” or parallel electric and magnetic fields.
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with local probes, whereas the chiral currents in WSMs are
separated in momentum space and cannot be distinguished by
spatially local probes. The question is, what kind of probe can
qualitatively see the chiral anomaly?

A transport phenomenon intimately tied to the chiral
anomaly that was noticed early on was a large longitudi-
nal magnetoconductivity. This occurs because relaxation of
chiral charge involves large momentum scattering and hence
takes a long time in clean systems [7]. Recently, another
transport experiment was proposed in which chiral charge
pumping according to (3) resulted in a large enhancement
of the length scale over which an applied local voltage
decayed [16]. However, these effects are quantitative rather
than qualitative and hence difficult to identify unambiguously
in magnetotransport data [17], especially if the intervalley
relaxation time is short. While the first effect is accompanied
by weak localization or weak antilocalization physics [18] in
T -symmetric WSMs and would have to be isolated from it,
the enhancement of the length scale in the second proposal
may not be large enough to be measurable for moderate
intervalley relaxation rates because the nonlocal voltage
falls exponentially with the rate. There exist various other
predictions for chiral transport phenomena, most famously a
nonquantized anomalous Hall effect [3,11,13,19–22] and the
chiral magnetic effect [9,19,23,24], in which a current flows
along an applied magnetic field. An optical signature of the
anomalous Hall effect, namely, anomalous birefringence, was
briefly discussed in Ref. [25]. However, a more fundamental
question remains unanswered, namely, what kinds of material
properties are sensitive to the chirality of a given system?
Experiments that measure these properties can, in principle,
be designed to qualitatively rather than quantitatively probe
the chiral anomaly in WSMs as well.

II. GYROTROPY

In this Rapid Communication, we propose that material
parameters or transport coefficients that are of the form of
time-reversal-invariant (T -invariant) rank-3 pseudotensors are
appropriate probes of the anomaly. Just like the chirality of a
system, these quantities are odd under inversion (I) and even
under T and, hence directly couple to it. They can therefore
be employed to distinguish between Weyl nodes of opposite
chirality and consequently probe the chiral anomaly. Below,
we elaborate on one such a material property—one which
is responsible for optical activity. However, the fact that T -
invariant rank-3 pseudotensors exist only in chiral systems is
more general and can be used to probe the chiral anomaly in
other kinds of experiments as well. For instance, a chiral strain
field, such as that present near a screw dislocation, will modify
the resistivity by an amount that depends on the handedness
of the dislocation as well as to the chirality of the underlying
band structure. The relevant tensor for this phenomenon is the
elastoresistive tensor, which describes the change in resistivity
due to applied strain. On the other hand, these tensors, despite
being nonvanishing in general in all chiral systems, are not
tunable in ordinary chiral systems such as sugar molecules. It
is only in WSMs that the chiral anomaly can be exploited to
tune the magnitude and sign of chiral transport.

The T -invariant rank-3 pseudotensor that is responsible for
optical activity is the gyrotropic tensor γijk , which is defined
in terms of the dielectric tensor εij (q,ω) as [26]

εij (q,ω) = ε0
ij (ω) + iγijk(ω)qk + O(q2), (4)

where q and ω are the wave vector and frequency of light.
Clearly, γijk represents the response to variations in the electric
field. For systems with cubic or higher symmetry, such as a
single isotropic Weyl node, this tensor is purely antisymmetric,
γijk = γ εijk , and the gyrotropic coefficient reduces to a
complex number γ . Similarly, the q-independent diagonal part
of the dielectric tensor is proportional to the Kronecker delta
function ε0

ij (ω) = ε0(ω)δij for a single isotropic Weyl node.
Isotropy of the Weyl node can be assumed without losing any
essential physics, since any anisotropy can be removed by
rescaling momenta around the node.

T symmetry leads to Onsager’s reciprocity condition
εij (q,ω) = εji(−q,ω), which allows a nonzero γ , while mirror
symmetries allow only even powers of momentum normal to
the mirror plane in the dielectric tensor. Thus, γ vanishes
in systems that have a mirror symmetry. Systems that break
all mirror symmetries and hence break I symmetry have a
nonvanishing γ in general and can be assigned a handedness
proportional to γ . In particular, a single Weyl node is chiral and
can have a nonzero γ ∝ χ . However, any symmetries relating
Weyl nodes of opposite chiralities will make the total γ of
the WSM vanish. Since spatially local probes only detect the
total response of all the Weyl nodes, they will then see a null
result for γ . To get a nonzero result, one must find a way to
subtract, rather than add, contributions to γ from Weyl nodes
of opposite chirality.

Such a subtraction can be done by observing that γ is related
to the Hall conductivity through the relation εij = δij + iσij

ε0ω
,

where ε0 is the permittivity of free space, so it must have
contributions that are odd in the charge of the quasiparticles.
If one can somehow arrange for the doping to be different at
the χ = +1 and χ = −1 Weyl nodes, their contributions to
γ will no longer cancel. The anomaly induced by E · B [(2)
and (3)] precisely ensures such a charge imbalance between
the two chiralities. In other words, once a finite amount of
charge has been pumped from χ = −1 to χ = +1, the χ = −1
(χ = +1) Weyl node is surrounded by a hole (electron) Fermi
surface, assuming they were undoped initially, as shown in
Fig. 1. If they were already doped, their local Fermi levels will
become different. In the language of symmetries, chiral charge
pumping ensures that all symmetries relating Weyl nodes of
opposite chiralities are broken because they have different
Fermi levels relative to the Weyl points.

That systems with nonzero γ exhibit circular dichroism—
conversion of linearly polarized light into elliptically polar-
ization as it propagates through the system—can be seen as
follows. The eigenmodes of the dielectric tensor (4) correspond
to circularly polarized light; the associated eigenvalues deter-
mine the refractive indices for the two polarizations, n2

L,R(ω) =
ε0(ω) ± γ q. Later, we will find that γ for the system of interest
is purely imaginary. Since Im(nL) �= Im(nR), the two circular
polarizations making up the linear polarization are absorbed by
different amounts as the light propagates through the system,
resulting in circular dichroism. It is straightforward to show
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FIG. 1. (Color online) Illustration of gyrotropy induced by an
E · B field in WSMs. Colored (white) regions denote filled (empty)
states and the two colors indicate Weyl nodes of opposite chiralities,
which are located at different points in momentum space. In the
absence of E · B, the Fermi levels at the two nodes are equal. An
E · B field pumps charge across the nodes, shown by the curved
red arrow, resulting in a charge imbalance between the nodes and a
consequent net anomalous contribution to γ . Since WSMs break I
or T , they are in general optically active in the absence of external
fields as well. The anomalous contribution, proportional to E · B,
can be isolated by applying electromagnetic fields at distinct finite
frequencies.

that the ellipticity of the light that comes out is given by

|tanθCD| ≡
∣∣∣∣ER − EL

ER + EL

∣∣∣∣ ≈ |Im[γ ]|ω2

2c2
(5)

for |γω/c| � ε0, where EL,R are the transmitted amplitudes of
the circularly polarized fields,  is the thickness of the sample,
and c is the speed of light. Thus, we propose detecting the
chiral anomaly optically. Later in this Rapid Communication,
we estimate the sizes of this effect for typical WSMs and find
it may be within experimental limits.

A caveat, though, is that WSMs can at most preserve only
one out of I and T symmetries. Consequently, a T -symmetric
WSM already has a nonzero γ in general, without external
fields, while an I-symmetric WSM has vanishing γ but can
be optically active due to possible ferromagnetic moments
that break T . Later we will describe how the background
contributions to optical activity can be separated from the
anomaly-based ones by a clever separation of their frequencies.

III. SINGLE WEYL NODE RESULTS

In the following, we will first calculate the gyrotropic
coefficient of a single Weyl node and then apply the results
to WSMs with multiple Weyl nodes. We start with the
Hamiltonian H

χ

k = χ�vF k · σ − μχ for a single Weyl node
Wχ of chirality χ and chemical potential μχ above the
Weyl point. Such a description is valid if equilibration within
a Weyl node occurs at time scales that are much shorter
than the frequency at which the experiment is performed:
ω � τ−1

intra. μχ consists of two parts in general, the background
chemical potential due to doping already present in the system,
and the change because of charge pumping. For a constant
E · B field, which is what we assume for now, the latter
grows linearly with time in the absence of large momentum
scattering; in practice, such scattering is present and the system
reaches a nonequilibrium steady state characterized by an
intervalley relaxation time τinter. Equation (3) dictates that
the density of electrons pumped into the neighborhood of
Wχ in this time is �ρχ = χ e2

4π2�2 E · Bτinter. Later we argue
that time-dependent fields greatly facilitate separating the

anomalous contribution to γ from possible background terms,
and modify the results accordingly.

In the low-frequency limit, ωτintra � 1, γijk was shown to
be related to the first moment of the Berry curvature of the
occupied states and is thus particularly easy to calculate [27].
We recap the derivation below following a similar spirit as
Ref. [27], keeping the application to a single Weyl node in
mind.

The semiclassical equations of motion for a wave packet
in a band with dispersion ε(k) and Berry curvature F(k) =
i∇k × 〈ψk|∇kψk〉, where |ψk〉 is the Bloch wave function, in
the presence of a space-time varying electric field E(r,t) =
Eei(q·r−ωt), read

ṙ = v(k) − F(k) × e

�
E(r,t), k̇ = e

�
E(r,t), (6)

where v(k) = 1
�
∇kε(k). The second term above describes the

anomalous Hall current [28]; integrating over k gives a Hall
current at r due to the local electric field at r . However,
gyrotropy stems from a Hall-like response driven by spatial
variations in the electric field. Such a response is nonlocal,
and requires solving (6) for finite times. Doing so iteratively
to first order in E yields

r(t) = r0 + v(k0)t

+
∫ t

0
dt ′

∫ t ′

0
dt ′′

e

�
E(r0 + v(k0)t ′′,t ′′) · ∇k0v(k0)

− e

�
Fk0

∫ t

0
dt ′ E(r0 + v(k0)t ′,t ′),

(7)

k(t) = k0 +
∫ t

0
dt ′

e

�
E(r0 + v(k0)t ′,t ′),

where r0 and k0 are the initial position and wave vector of the
wave packet. The Hall response is given by the third line of
the expression for r(t). Explicitly, it is

jHall(k0,t) = e ṙHall(k0,t) = E(r,t)eiq·vk0 t e
2

�
Fk0 . (8)

Integrating over k0 for all occupied states gives the total Hall
current density

JHall(r,t) ≈ e2

�
E(r,t)

∫
k∈occ

Fk(1 + iq · vkt) (9)

for |q · vkt | � 1. For a single Weyl node doped away from the
Weyl point, the first term vanishes because of an effective time-
reversal symmetry in Hχ , k → −k, σ → −σ , which results
in Fk = −F−k. The nonvanishing part of the γ , proportional
to the q-linear part of the Hall conductivity, is

γsingle(ω) = e2

�

iτintra

ε0ω

∫
k∈occ

(Fk · q̂)(vk · q̂). (10)

In writing (10), we have replaced t by τintra to suggest that
the linear growth with time is cut off by a relaxation process
at t � τintra. The physical meaning of the above result is as
follows. Imagine a pair of electrons, with momentum k and
−k, starting at the same point in space and traveling in opposite
directions, along q and along −q. They can travel for a time
τintra without getting scattered; in the process, they are acted
upon by slightly different electric fields since the electric field
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varies in space. Since the Berry curvatures they experience
are equal and opposite, their total contribution to the Hall
current is nonvanishing and proportional to the wave vector
corresponding to the electric field variations. For a single
Weyl node given by the Hamiltonian H

χ

k = χ�vF k · σ − μχ ,

it is straightforward to show that Fk = χ k̂
2k2 and vk = vF k̂.

Substituting in (10) gives

γsingle(ω) = i
χμχe2τintra

6π2ε0�
2ω

. (11)

Note that γsingle is purely imaginary, so it leads to circular
dichroism.

IV. APPLYING TO REAL WSM

Having derived γ for a single Weyl node, we now make
the leap to a real WSM, which contains an even number of
Weyl nodes with half of each chirality. Thus, we sum the
contributions of all the Weyl nodes and estimate the size of
the consequent gyrotropic circular dichroism in a real WSM.
For simplicity, we assume an I-symmetric system with two
Weyl nodes, one of each chirality. The results can be trivially
scaled to N pairs of nodes by simply multiplying by N . If
the Fermi level is tuned to the Weyl point in the absence of
external electromagnetic fields—the iridate (candidate) WSMs
Y2Ir2O7 and Eu2Ir2O7 are expected to be in this limit because
of their stoichiometry—then there is no background chemical
potential and μχ only depends on the charge pumped:

μχ = χ

(
3e2

�v3
F

2
E · Bτinter

)1/3

. (12)

Summing (11) for two nodes gives

γ (ω) = i
e2τintra

3π2ε0�
2ω

(
3e2

�v3
F

2
E · Bτinter

)1/3

(13)

and

|tanθCD| = α

3π
(ωτinter)

|μ+ − μ−|
�c

, (14)

where α = e2/4πε0�c ≈ 1/137 is the fine structure constant.
Putting in realistic values of parameters, vF ≈ 106 ms−1

from the band structure of candidate WSMs Y2Ir2O7,
Eu2Ir2O7 [29], and Cd3As2 [30], |E| = 10 V/mm, |B| = 1 T,
τintra = 1 fs, τinter = 100 ps, �ω = 100 meV,  ∼ 1 μm gives
|μχ | ∼ 10 meV and |tanθCD| ∼ 10 μrad. We have chosen
numbers so that ω exceeds the plasma frequency ωp �√

(2α/3π )(c/vF )|μχ | [31,32]; this ensures that the incident
light is not screened. While the above estimate is crude,
it suggests that the effect may be measurable by current
experiments. Moreover, the effect will be enhanced in a
sufficiently clean system since both the lifetimes τinter and
τintra will be longer.

On the other hand, if the WSM is doped to a Fermi level
of εF away from the Weyl nodes, the effect is suppressed by
O[(μ+−μ−

εF
)2] for the same amount of charge pumped because

of the density of states for a three-dimensional linear dispersion
is proportional to ε2. Moreover, choosing a frequency that lies
between τ−1

intra and ωp will be difficult and perhaps impossible.

Thus, we only focus of the case where the WSM is undoped
to begin with.

V. SUBTRACTING THE BACKGROUND

Circular dichroism measurements are commonly used to
study systems that break T or I symmetry. WSMs break at
least one of T and I symmetries, and thus exhibit intrinsic,
i.e., E · B-independent, optical activity in general. The final
piece of the puzzle of probing the anomaly via gyrotropy is
being able to subtract this background.

One way to do so is to simply do an experiment without
E and B fields and subtract the results from the results in
the presence of an E · B field. While this procedure can
work in principle, it involves subtracting a potentially large
background and is thus error prone. Moreover, the E and B
fields can change the optical activity independently of the
chiral anomaly as well, for instance, by inducing polarization
or magnetization.

A cleaner procedure would be to make the fields time
dependent. Thus, if one applies E(t) = E cos �1t and B(t) =
B cos �2t , such that �1,2 � τ−1

inter, and measures the optical
activity at a higher frequency ω � τ−1

inter, then E(t) and B(t)
can be treated quasistatically and the preceding analysis can be
applied with minor modifications. In particular, the gyrotropic
coefficient will pick up a slow time dependence,

γ (ω; t)=4iαcτintra

3π�ω

(
3e2

�v3
F τinter

2
E · B cos �1t cos �2t

)1/3

,

(15)
for τinter � t � �−1

1,2, and will thus have components at fre-
quencies �1 ± �2 which should be easily separable from other
frequency components. In addition to the time dependence
of γ , its dependence on the relative angle between E and
B should be easy to observe as well on top of the constant
background.

VI. CONCLUSIONS

In summary, we have described a method to probe the chiral
anomaly in WSMs optically. Our method is based on the fact
that an E · B electromagnetic field in a WSM produces a
charge imbalance between Weyl nodes of opposite chirali-
ties. Such an imbalance gives rise to a nonzero gyrotropic
coefficient γ , a Hall-like contribution to the dielectric tensor
which determines the optical activity of the system. A routine
circular dichroism experiment can then potentially detect the
effect. We show how applying time-dependent E and B
fields facilitates the isolation of the anomalous contributions
to the optical activity from possible nonanomalous ones.
Additionally, anomalous optical activity distinguishes between
Dirac and Weyl semimetals. In particular, Dirac semimetals
do not exhibit a chiral anomaly and thus cannot develop an
E · B induced valley imbalance. However, unlike in WSMs,
even preexisting valley imbalances in Dirac semimetals do not
contribute to γ since Dirac nodes are achiral while γ is directly
sensitive to the chirality of the system. We estimate the typical
size of the anomalous circular dichroism in WSMs and find it
to be accessible by current experiments. Finally, we point out
that other experiments that can measure material parameters
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that have the same symmetries as the gyrotropic coefficient
can also be used to probe the chiral anomaly in WSMs as well
as to distinguish them from Dirac semimetals.
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