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Phase diagram of the antiferromagnetic XXZ model on the triangular lattice
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We determine the quantum phase diagram of the antiferromagnetic spin-1/2 XXZ model on the triangular
lattice as a function of magnetic field and anisotropic coupling Jz. Using the density matrix renormalization
group algorithm in two dimensions, we establish the locations of the phase boundaries between a plateau
phase with 1/3 Néel order and two distinct coplanar phases. The two coplanar phases are characterized by
a simultaneous breaking of both translational and U(1) symmetries, which is reminiscent of supersolidity. A
translationally invariant umbrella phase is entered via a first-order phase transition at relatively small values of
Jz compared to the corresponding case of ferromagnetic hopping and the classical model. The phase transition
lines meet at two tricritical points on the tip of the lobe of the plateau state, so that the two coplanar states are
completely disconnected. Interestingly, the phase transition between the plateau state and the upper coplanar
state changes from second order to first order for large values of Jz � 2.5J .

DOI: 10.1103/PhysRevB.91.081104 PACS number(s): 75.10.Jm, 05.30.Jp, 67.80.kb

Competing interactions between quantum spins can prevent
conventional magnetic order at low temperatures. In the search
for interesting and exotic quantum phases, frustrated systems
are therefore at the center of theoretical and experimental
research in different areas of physics [1–32]. One of the most
straightforward frustrated systems is the spin-1/2 antiferro-
magnet (AF) on the triangular lattice, which was also the first
model to be discussed as a potential candidate for spin-liquid
behavior without conventional order by Anderson [2]. It
is now known that the isotropic Heisenberg model on the
triangular lattice is not a spin liquid and does show order
at zero temperature [3]. Nonetheless, the phase diagram as
a function of magnetic field is still actively discussed with
recent theoretical calculations [4,5] as well as experimental
results [6–9] on Ba3CoSb2O9, which appears to be very well
described by a triangular AF. Interesting phases have also
been found for anisotropic triangular lattices [11–13] and
for the triangular extended Hubbard model [14]. Hard-core
bosons with nearest neighbor interactions on a triangular lattice
correspond to the XXZ model with ferromagnetic exchange in
the xy plane, which has been studied extensively [15–20]. In
this case a so-called supersolid phase near half filling has been
established for large interactions [15], which is characterized
by two order parameters, namely, a superfluid density and a√

3 × √
3 charge density order. Impurity effects show that the

two order parameters are competing [17] and the transition to
the superfluid state is first order [19,20].

However, surprisingly little attention has been paid to the
role of an antiferromagnetic anisotropic exchange interaction
at finite magnetization [24–27], even though the XXZ model
on the triangular lattice,
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is arguable one of the most fundamental examples of frustrated
antiferromagnetism. Only very recently was the first complete
phase diagram as a function of B and J/Jz published by Ya-
mamoto et al. using the cluster mean-field theory (CMF) [25].
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In this case, three phases with broken sublattice symmetry
and simultaneously broken U(1) symmetry were found. The
simultaneous breaking of those two order parameters is
analogous to the well-studied supersolid phase for J < 0
[15–20], but in the antiferromagnetic case there are now
up to three such phases, which are stable to much larger
values of J/Jz. One of those phases—the so-called π -coplanar
phase—was not expected to exist at all from simple mean-field
considerations [25] and therefore deserves special attention.

We now present quantum simulations of this model using
the density matrix renormalization group (DMRG) [33–35]
algorithm in two dimensions. The resulting phase diagram as
a function of B and J/Jz is summarized in Fig. 1, which first of
all confirms several aspects of the previous study in Ref. [25]:
For large values of J/Jz, we find an umbrella state with
spontaneously broken U(1) symmetry, but no broken sublattice
symmetry. With increasing Jz and at small magnetic fields a
first-order transition occurs to an antiferromagnetic coplanar
phase where the spins on one sublattice align against the field,
while the other two sublattices form a honeycomb structure
with spins still partially pointing in the xy plane, so that all
spins lie in a plane. At large fields a ferrimagnetic coplanar
phase is found with parallel canted spins on two sublattices
and one sublattice pointing in a different direction. A 1/3 Néel
phase with fixed magnetization separates the two coplanar
phases. The phase transition to the saturated phase occurs
exactly at B = 3(Jz + J/2) as for the classical triangular
antiferromagnet [21–25].

Our results also show several differences from the previous
study [25]: (1) The so-called π -coplanar phase is missing. As
shown below, this phase exists only for small system sizes or
clusters. (2) Two tricritical points, which separate the 1/3 Néel
phase from the umbrella phase, are pushed to much larger
values of J/Jz and become very close in the thermodynamic
limit. (3) The second-order phase transition between the 1/3
Néel phase and the ferrimagnetic coplanar phase curiously
becomes first order for strong interactions J/Jz � 0.4 at a
special critical endpoint, which has since been confirmed [26].
Similar critical endpoints where a phase transition changes
from first to second order were recently under discussion in
binary Bose mixtures [36].
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FIG. 1. (Color online) The phase diagram of the XXZ model on
the triangular lattice with two-dimensional DMRG and exact diago-
nalization [38] for different sizes. The solid (dashed) line represents
first- (second-) order phase transitions, respectively. Arrows indicate
the classical spin configurations in the different phases. The black
circles indicate the regions analyzed in Fig. 4. Linear finite size
scaling with 1/N of the interpolated data predicts the black solid
line as the phase boundary in the thermodynamic limit (TD). The two
black arrows show the finite size scaling of the tricritical points (see
the Supplemental Material [39] for details).

We now discuss the detailed numerical DMRG data at
selected points in the phase diagram. Frustrated systems are
known to be sensitive to boundary induced behavior [30], so
that periodic boundary conditions (PBCs) turned out to be
necessary in both directions [31,32]. Accordingly, the initial
truncation error may be as high as 10−5 which is normal
for a two-dimensional (2D) DMRG with PBCs [31,32]. In
fact, DMRG “sweeping” improves the data significantly (up
to 16%), so that the initial truncation error becomes irrelevant
as a measure (which is in fact not very sensitive to m). The
final energy values after sweeping go to a unique value for
large m � 1000, so that convergence can be ensured [39].
Note that the DMRG operates in the canonical ensemble, i.e.,
the data are given as a function of magnetization per site M

and the corresponding fields can be obtained as the derivative
of the ground state energy E(M) with respect to M , i.e.,
B(M) = E(M + 1/N) − E(M) [40–42]. The upper tricritical
point can be found by the condition B(1/3) = B(1/3 − 1/N).
There is no particle-hole symmetry so the kept states we
can afford is m = 3000 at most. Technical details about
convergence and finite size scaling can be found in the
Supplemental Material [39].

The Heisenberg system J = Jz in a field has previously
been considered using exact diagonalization [4,43–46], spin
waves [47,48], and coupled cluster methods (CCMs) [5]. It
is well known that the uniform magnetization has a plateau
at M = 1/6 which is characteristic of the 1/3 Néel phase, as
shown in the inset of Fig. 2.

The structure factors in the z direction Sz(Q) =
〈| ∑N

k=1 Sz
ke

iQ·rk |2〉/N and in the xy direction S±(Q) =
〈| ∑N

k=1 S+
k eiQ·rk |2〉/N at Q = (4π/3,0) are useful order pa-

rameters to measure the diagonal and the off-diagonal order,
respectively. If Sz/N is finite, the system has a broken
sublattice symmetry (charge order), while a finite S±/N

0.40.350.30.250.20.150.10.050
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M

43210

0.4

0.3

0.2

0.1

0
B/J

z

M

6×6
9×6

Sz/N 6×6

S±/N 6×6

Sz/N 9×6

S±/N 9×6

FIG. 2. (Color online) The structure factors Sz(Q)/N and
S±(Q)/N at Jz = J as a function of magnetization for different sizes.
The dotted line at M = 1/6 indicates the location of the 1/3 Néel
phase. Inset: The magnetization as a function of magnetic field.

indicates a broken U(1) rotational symmetry (superfluidity).
As shown in Fig. 2, both order parameters are finite in the
ferrimagnetic and antiferromagnetic coplanar phases. At zero
magnetization S±/N is larger than Sz/N , but then decreases
with M and scales to zero with 1/N at M = 1/6, which is
exactly the point where Sz becomes largest. In the experiments
on Ba3CoSb2O9 an additional cusp in the susceptibility was
observed at higher magnetization M ≈ 1/3 [6], which could
indicate another phase transition. However, our data do not
show any other phase for M > 1/6 and J = Jz. Nonetheless,
the off-diagonal structure factor S± does show a broad
maximum around M ≈ 1/3, which is due to the fact that the
spins on one of the sublattices are able to align along the xy
plane at approximately this magnetization, as shown in Fig. 2.
Spins that are aligned within the xy plane have in turn the
largest susceptibility in the z direction, so this could in part
explain the observed maximum in Ref. [6].

We now turn to larger values of Jz = 2.5J , where the
magnetization plateau is larger than for Jz = J , as shown in
the inset of Fig. 3. The behavior of the order parameters S± and
Sz is qualitatively similar to the isotropic case as a function of
magnetization. However, for the phase transition between the
1/3 Néel phase and the ferrimagnetic coplanar there is a subtle
but important difference in the magnetization curve at strong
interactions. As shown in Fig. 3, near the upper phase boundary
the calculated field decreases with increasing magnetization
(which is fixed for each simulation). This behavior indicates
an unstable state and in the thermodynamic limit leads to phase
separation, which is an obvious indication of a first-order phase
transition. In a finite system the energy of the phase boundary
can prevent phase separation and the unstable state can be
found by numerical simulations at a given magnetization,
which is the case here and in related systems [26,40,49]. The
corresponding first-order jump in magnetization must then
be determined by a Maxwell construction, as indicated in
Fig. 3. This jump vanishes somewhere between Jz = 2.5J

and Jz = 2J , so that we predict a critical endpoint where
the second-order phase transition becomes first order in the
strong coupling limit, as shown in Fig. 1. This surprising
behavior can in part be explained from the fact that the end of
the M = 1/6 plateau approaches the saturation field, so that
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FIG. 3. (Color online) The magnetization as a function of field at (a) Jz = 2.5J (inset: larger range) and (b) Jz = 5J for different sizes.
The dotted vertical line (red) indicates the Maxwell construction.

there is only a small field region where the magnetization
changes from M = 1/2 down to M = 1/6. However, the
coplanar spin state has only a limited susceptibility close to
saturation, so that a jump in magnetization may be the only
way to resolve this contradiction. In other words, starting
from the 1/3 Néel state, the configuration must make a
finite jump to reach the coplanar state if the upper critical
field is too large, since the ferrimagnetic coplanar state is
already canted significantly towards the field in this case.
In any case, the quantum mechanical mechanism for this
behavior is an interesting aspect for future studies. The
second-order phase transition between the antiferromagnetic
coplanar phase and the plateau phase is well understood from
a strong coupling expansion [20] in terms of holes which
start to occupy the honeycomb sublattice at a critical value of
B ≈ 3J/2 + 5J 2/8Jz − 71J 3/32J 2

z , which is consistent with
our numerical data.

We should emphasize that order parameters do not have to
be used in order to determine the phase transitions from the
1/3 Néel phase to the coplanar states, since the magnetization
plateau can be determined directly from the energies E(M). In
order to study the phase boundaries to the umbrella phase, on
the other hand, order parameters are essential, but this becomes
numerically costly for large system sizes. As additional tools,

we therefore want to explore here if different measures of
entanglement and quantum discord are useful in 2D DMRG,
which have been proposed and used for studying quantum
phase transitions in recent related systems [50–55]. To define
suitable quantum information measures it is useful to consider
the reduced density matrix ρij of two neighboring spins. The
trace over spin j gives the reduced density matrix of a single
spin ρi = Trj ρij . The von Neumann entropy of a general
density matrix SA = −TrρA log ρA can be used to define the
entanglement entropy Si . The concurrence [53,54]

Cij = 2 max(0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4), (2)

is given in terms of the eigenvalues λi of the matrix ρij ρ̃ij ,
where ρ̃ij characterizes the spin-flipped state. The quantum
discord [54,55] has been proposed as a good indicator for
quantum phase transitions,

Dij = min{�j
ν }(Si − Sij + Si|j ), (3)

which is calculated in terms of the conditional quantum
entropy

Si|j =
2∑

ν=1

pνS(ρ
i|�j

ν
), (4)
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FIG. 4. (Color online) The structure factor Sz(Q)/N , S±(Q)/N , concurrence, entanglement entropy, quantum discord, and the variational
angle θ in the 6 × 9 lattice in the regions shown by red circles in Fig. 1 indicate a phase transition to the umbrella state from (a) the
antiferromagnetic (B = 1.398Jz) and (b) the ferrimagnetic coplanar state (B = 2.161Jz).
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where ρ
i|�j

ν
= �

j
νρij�

j
ν and pν = Tr�j

νρij . The projec-
tors �ν = |ψ〉ν〈ψ |ν can be defined in terms of a general
parametrization

|ψ〉1 = cos θ |↓〉j + e−iφ sin θ |↑〉j ,
(5)

|ψ〉2 = e+iφ sin θ |↓〉j − cos θ |↑〉j .
The minimization over the projectors in (3) then corre-
sponds to a minimization over angles θ and φ in the wave
functions.

In Fig. 4 we show the two order parameters, the concur-
rence, the entanglement entropy, and the quantum discord at
two selected points in the phase diagram, which are indicated
by black circles in Fig. 1. All measures give the same locations
of the phase transition (in this case, B = 1.398Jz, J = 1.31Jz

and B = 2.161Jz, J = 1.55Jz, respectively). The quantum
information measures based on ρij are computationally less
demanding than the structure factors since they can be deter-
mined from the correlation functions of only two neighboring
spins [54]. They are also universal, since no particular order
needs to be assumed. In particular, the quantum discord Dij

[54,55] turns out to be very reliable in detecting the phase
transitions and, interestingly, the corresponding variational
angle θ in Eq. (5) takes on different values on the two sides
of the phase transition. It is so far unclear if this jump in a
variational parameter is a generic feature, but it may be useful
in future studies as well. We find that the phase transition
between the ordered states (Néel and coplanar) to the umbrella
phase is always first order, except at the isotropic point B = 0,
where it is known to be second order [31]. At two tricritical
points the second-order phase transitions between Néel and
coplanar phases meet the first-order transition. The phase
transition to the umbrella phase can be accurately determined
for system sizes of up to 9 × 12, so that a systematic
finite size scaling becomes feasible [39]. The (interpolated)
first-order phase transitions to the umbrella phase can be
linearly extrapolated in 1/N , which gives an estimate in the
thermodynamic limit (TD) shown in Fig. 1. Extrapolating with
a different power 1/

√
N also gives a reasonable fit and pushes

the phase transition line out even further by up to 0.3J/Jz,
which would make an even larger quantitative difference to the
coupled cluster study [25]. The two tricritical points approach
each other with finite size scaling and we cannot rule out that
they merge to one single multicritical point in the TD. While
finite size scaling works reasonably well for the first-order
phase transition, the same is not true for the second-order phase
transition lines, which show a much more irregular behavior
with system size, that we cannot explain [39].

Finally, we have made a focused search using exact
diagonalization [38] for the “π -coplanar” phase, which was
postulated in Ref. [25]. We found a suitable order parameter
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FIG. 5. (Color online) The order parameter 
S3 in Eq. (6) as a
function of J/Jz close to saturation M = 1/2 − 3/N. Inset: Finite
size scaling of the π -coplanar plateau width.

to be


S3 = N3〈(MA − M)(MB − M)(MC − M)〉, (6)

where MA,B,C is the magnetization on each sublattice A,B,C.
The parameter 
S3 shows three different values in the
ferrimagnetic coplanar, the π -coplanar, and the umbrella
phase, respectively, as shown in Fig. 5. For small system sizes
of 9 × 12 or less a π -coplanar phase can be identified, but it
shrinks fast with increasing system size. With finite size scaling
shown in the inset of Fig. 5, the π -coplanar phase disappears
for N � 200. Therefore, we predict that there is no such phase
in the thermodynamic limit.

In conclusion, we have analyzed the spin-1/2 XXZ model
on the triangular lattice using a two-dimensional DMRG
method with periodic boundary conditions. The phase diagram
shows two coplanar phases with different symmetries of
the superfluid condensate, which is separated by an ordered
plateau 1/3 Néel phase, with fixed magnetization M = 1/6.
The transition to the umbrella state is always first order for
finite fields and the critical line Bc(J ) in Fig. 1 is monotonically
increasing, so that a larger field always leads to an extended
ordered state. The transition between the coplanar and the 1/3
Néel phase is generically second order, but curiously the upper
phase transition line becomes first order for Jz � 2.5J , which
is yet not fully understood.
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