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Many-body localization edge in the random-field Heisenberg chain
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We present a large-scale exact diagonalization study of the one-dimensional spin-1/2 Heisenberg model in
a random magnetic field. In order to access properties at varying energy densities across the entire spectrum
for system sizes up to L = 22 spins, we use a spectral transformation which can be applied in a massively
parallel fashion. Our results allow for an energy-resolved interpretation of the many-body localization transition
including the existence of an extensive many-body mobility edge. The ergodic phase is well characterized by
Gaussian orthogonal ensemble statistics, volume-law entanglement, and a full delocalization in the Hilbert space.
Conversely, the localized regime displays Poisson statistics, area-law entanglement, and nonergodicity in the
Hilbert space where a true localization never occurs. We perform finite-size scaling to extract the critical edge
and exponent of the localization length divergence.
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Introduction. The interplay of disorder and interactions in
quantum systems can lead to several intriguing phenomena,
amongst which the so-called many-body localization has
attracted a huge interest in recent years. Following precursors
works [1–4], perturbative calculations [5,6] have established
that the celebrated Anderson localization [7] can survive
interactions, and that for large enough disorder, many-body
eigenstates can also “localize” (in a sense to be detailed later)
and form a new phase of matter commonly referred to as the
many-body localized (MBL) phase.

The enormous boost of interest for this topic in recent
years can probably be ascribed to the fact that the MBL
phase challenges the very foundations of quantum statistical
physics, leading to striking theoretical and experimental
consequences [8,9]. Several key features of the MBL phase
can be highlighted as follows. It is nonergodic, and breaks the
eigenstate thermalization hypothesis (ETH) [10–12]: A closed
system in the MBL phase does not thermalize solely following
its own dynamics. The possible presence of a many-body
mobility edge (at a finite energy density in the spectrum)
indicates that conductivity should vanish in a finite temperature
range in a MBL system [5,6]. Coupling to an external bath
will eventually destroy the properties of the MBL phase, but
recent arguments show that it can survive and be detected using
spectral signatures for weak bath coupling [13]. This leads to
the suggestion that the MBL phase can be characterized exper-
imentally, using e.g., controlled echo experiments on reason-
ably well-isolated systems with dipolar interactions [14–17].
Another appealing aspect (with experimental consequences
for self-correcting memories) is that MBL systems can sustain
long-range, possibly topological, order in situations where
equilibrated systems would not [18–22]. Finally, a striking
phenomenological approach [23] pinpoints that the MBL
phase shares properties with integrable systems, with an
extensive number of local integrals of motion [24–26], and
that MBL eigenstates sustain low (area-law) entanglement.
This is in contrast with eigenstates at finite energy density
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in a generic equilibrated system, which have a large amount
(volume law) of entanglement and which are believed to be
well described within a random matrix theory approach.

Going beyond perturbative approaches, direct numerical
simulations of disordered quantum interacting systems provide
a powerful framework to test MBL features in a variety
of systems [14,17,21,27–42]. The MBL transition dealing
with eigenstates at high(er) energy, ground-state methods
are not well adapted. Most numerical studies use full exact
diagonalization (ED) to obtain all eigenstates and energies
and are limited to rather small Hilbert-space sizes dimH ∼
104 [43].

In this Rapid Communication, we present an extensive
numerical study of the periodic S = 1

2 Heisenberg chain in

FIG. 1. (Color online) Disorder (h)—Energy density (ε) phase
diagram of the disordered Heisenberg chain, Eq. (1). The ergodic
phase (dark region with a participation entropy volume law coefficient
a1 � 1) is separated from the localized regime (bright region with
a1 � 1). Various symbols (see legend) show the energy-resolved
MBL transition points extracted from finite-size scaling performed
over system sizes L ∈ {14,15,16,17,18,19,20,22}. Red squares
correspond to a visual estimate of the boundary between volume
and area-law scaling of entanglement entropy SE .
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a random magnetic field, governed by the Hamiltonian

H =
∑

i∈[1,L]

Si · Si+1 − hiS
z
i , (1)

with hi drawn from a uniform distribution [−h,h] (to-
tal magnetization Sz is conserved). Model (1) has been
used [21,28,33,41] as a prototype for the MBL transition
in the “infinite-temperature” limit, where the full many-body
spectrum (or a large fraction thereof) is considered for systems
of maximum size L ≈ 16. In this work, we instead use a
shift-inverse ED approach and are able to reach eigenstates
at arbitrary energy density for systems up to L = 22 with
very large Hilbert spaces (dimHL=22 = 705 432 in the Sz = 0
sector). Our simulations unambiguously reveal the existence of
an extensive many-body localization edge: The resulting phase
diagram (disorder strength h vs energy density ε; Fig. 1) is built
on a careful finite-size scaling analysis of numerous energy-
resolved estimates. In particular, the transition is captured
using, e.g., spectral statistical correlations between nearby
eigenstates, volume vs. area law of entanglement entropies
and bipartite fluctuations, spin relaxation, and localization
properties in the Hilbert space, which all roughly agree within
error bars. We also perform a scaling analysis close to the
MBL transition.

Characterization of ergodic and localized regimes. Before
presenting our numerics, we summarize the main differences
between ergodic and localized phases, and the observables
used to quantify them.

(a) Level statistics and eigenvectors similarity. A popular
way to differentiate extended and localized regimes relies
on studying spectral statistics using tools from random
matrix theory [44]. In the ergodic regime, the statistical
distribution of level spacings follows Wigner’s surmise of the
Gaussian orthogonal ensemble (GOE), while a Poisson distri-
bution is expected for localized states. It is convenient [27]
to consider the ratio of consecutive level spacings r (n) =
min(δ(n),δ(n+1))/max(δ(n),δ(n+1)) with δ(n) = En − En−1 at a
given eigenenergy En to discriminate between the two phases,
as its disorder average changes from rGOE = 0.5307(1) [45] to
rPoisson = 2 ln 2 − 1 � 0.3863. This has been used in several
works [21,27,28,31,36,39], averaging over a large part of the
spectrum. Here, we compute r in an energy-resolved way in
order to locate the MBL edge (Fig. 2).

Quite interestingly, the GOE-Poisson transition can also
be captured by correlations between nearby eigenstates.
We expect eigenfunctions to be “similar” (“different”) in
the ergodic (localized) regime. We quantify the degree of
correlation by the Kullback-Leibler divergence (KLd) [46],
defined by KL = ∑dimH

i=1 pi ln(pi/qi), where pi = |〈i|n〉|2 and
qi = |〈i|n′〉|2 are the moduli squared of the wave function
coefficients of two nearby eigenstates |n〉,|n′〉 expressed in
the computational basis {|i〉} (here {Sz}). The KLd displays
different behavior in the two phases (Fig. 2): We find KLGOE =
2 [47], and KLPoisson ∼ ln(dimH).

(b) Entanglement entropy (EE). Beyond level statistics, EE
provides a quantitative tool to characterize how information is
spread from one part of the system to another [8]. In the ergodic
regime satisfying the ETH, the reduced density matrix ρA of a
typical eigenstate is expected to be thermal, yielding a volume-
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FIG. 2. (Color online) Adjacent gap ratio (top) and Kullback
Leibler divergence (bottom) as a function of disorder strength in the
spectrum center ε = 0.5. Insets: (top) data collapse used to extract the
critical disorder strength hc and exponent ν. The h axis is transformed
by (h − hc)L1/ν ; (bottom) distribution of KLd in both phases.

law scaling (with the subsystem A size) for the entanglement
entropy SE = −TrρA ln ρA. Conversely, localized eigenstates
display a much smaller entanglement, expected to cross over
towards an area-law scaling [8,21] when the subsystem size
exceeds the localization length. These different scalings of
SE allow one to distinguish both regimes (Fig. 3). In the same
spirit, we expect bipartite fluctuations of the subsystem magne-
tization Sz

A [48]F = 〈(Sz
A)2〉 − 〈Sz

A〉2 to exhibit similar scaling
(Fig. 4).

(c) Hilbert-space localization. Another characterization of
MBL relies on inverse participation ratios and associated
participation entropies (PE), traditionally used in the context
of single particle localization [49–51] and recently for many-
body physics [52,53]. Here the localization is studied in the
Hilbert space (of dimension dimH) of spin configurations
via the disorder average PEs SP

q , defined for any eigenstate
|n〉 represented in the {Sz} basis by SP

q (|n〉) = 1
1−q

ln
∑

i p
q

i

[SP
1 (|n〉) = −∑

i pi ln pi]. We generically find eigenstates to
be delocalized in both regimes with qualitatively different
features. In the ergodic regime, we obtain a leading scaling
SP

q = aq ln(dimH) with aq ≈ 1∀q (see color coding of a1 in
Fig. 1). In the localized phase, PE also grows with system size
(Fig. 5), but much slower with aq � 1, or aq = 0 within error
bars and a slow log divergence SP

q = lq ln(ln dimH), indicating
a nontrivial multifractal behavior.

Numerical method. The complete diagonalization of the not
translation invariant Hamiltonian equation (1) is out of reach
for system sizes L � 18 spins. Therefore, we use an approach
successful for the Anderson localization problem (see, e.g.,
Ref. [51]) and restrict ourselves to certain energy slices in
the spectrum by using a shift-invert spectral transformation
(H − E1)−1. In the transformed problem, it is easy to apply
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FIG. 3. (Color online) Entanglement entropy per site SE/L and
its variance σE , as a function of system size L for different disorder
strengths in the middle of the spectrum (left) and in the upper part
(right). The volume-law scaling leading to a constant SE/L for weak
disorder contrasts with the area law (signaled by a decreasing SE/L)
at larger disorder. Black line: SE/L for a random state [58]. Close to
the transition, the prefactor of the volume law is expected to converge
only for larger system sizes.

Krylov space methods [54] to compute the eigenpairs closest
to the shift energy E.

For each disorder realization, we first calculate the extremal
eigenenergies E0 and Emax used to define the normalized
energy target ε = (E − Emax)/(E0 − Emax) (we considered
the Sz = 0 sector of even-sized L = 12,14,16,18,20,22 and
Sz = 1 sector of L = 15,17,19). The shift-invert method,
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FIG. 4. (Color online) Bipartite fluctuations of half-chain mag-
netization as a function of disorder strength at ε = 0.3. Inset: Data
collapse using the best estimates for the critical disorder strength
hc = 3.09(7) and ν = 0.77(4).

7 8 9 10 11 12 13 14

SP
0

0

2

4

6

8

10

12

14

S
P q

= 0.4

h = 1.8

h = 4.8

S
P
1

S
P
2

SP
1

SP
2

a1 =1.00±0.02, l1 =-0.56±0.69
a2 =1.00±0.01, l2 =-1.42±1.16
a1 =0.07±0.09, l1 =1.61±0.79
a2 =0.00±0.07, l2 =1.66±0.60

FIG. 5. (Color online) Participation entropy as a function of SP
0 =

ln(dimH) for q = 1,2 and ε = 0.4. In the ergodic phase (h = 1.8),
SP

q grows linearly with SP
0 while the linear scaling term vanishes

within our error bars in the localized regime (h = 4.8). Our fits (solid
lines; see text) constrain aq ∈ [0,1] and yield a logarithmic scaling
prefactor lq ≈ 2(1) at h = 4.8, consistent with a (slow) growth of SP

q

with system size in the localized phase.

based on a massively parallel LU decomposition [55,56],
is then used to calculate at least 50 eigenpairs with energy
densities closest to the targets ε = {0.05,0.1, . . . ,0.95}. Note
that this is a much more demanding computational task than for
the Anderson problem, as the number of off-diagonal elements
of H scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated between
50 and 250 samples). For each ε, observables are calculated
from the corresponding eigenvectors and averaged over target
packets and disorder realizations for each value of the disorder
strength h. As eigenvectors of the same disorder realization
are correlated, we found it crucial [51] to bin quantities over
all eigenstates of the same realization, and then compute
the standard error over these bin averages, in order not to
underestimate error bars. Investigating numerous quantities
allows one to check the consistency of our analysis and
conclusions.

Results and finite-size scaling analysis. We discuss the
transition between GOE and Poisson statistics, first using
the consecutive gap ratio r , shown in Fig. 2 (top) for
ε = 0.5. When varying the disorder strength h, we clearly
see a crossing around hc ∼ 3.7 between the two limiting
values. This crossing can be analyzed using a scaling form
g[L1/ν(h − hc)] which allows a collapse of the data onto a
single universal curve (see inset), yielding hc = 3.72(6) and
ν = 0.91(7) (see details of fitting procedure and error bar
estimates in Supplemental Material [57]).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ε and averaged
over disordered samples, also displays a crossing between
the two limit scalings KLGOE = 2 and KLPoisson ∼ ln(dimH)
(Fig. 2, bottom). A data collapse is very difficult to achieve for
KL due to a large drift of the crossing points. Nevertheless,
the distributions of KL plotted in insets, display markedly
different features. The perfect Gaussian distribution in the
ergodic phase (at h = 1) around the GOE mean value of 2 with
a variance decreasing with L provides strong evidence that
the statistical behavior of the eigenstates is well described by
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GOE, extending its applicability beyond simple level statistics.
In the MBL regime (h = 4.8), the behavior is completely
different as variance and mean both increase with L.

We now turn to the entanglement entropy for a real space
bipartition at L/2 (L even). Shown for two targets ε = 0.5
and 0.8, the transition is signaled (Fig. 3) by a change
in the EE scalings from volume law SE/L → constant for
h < hc to area law with SE/L → 0 for h > hc. Assuming
a volume-law scaling at the critical point [59], we perform
a collapse of SE/L to the form g[L1/ν(h − hc)] (Fig. 3,
bottom panel) giving estimates for the critical disorder hc and
exponent ν consistent with other results (see Supplemental
Material [57]). Furthermore, as recently argued [32], the
standard deviation of the entanglement entropy displays a
maximum at the MBL transition. A scaling collapse of the form
σE = (L − c)g[L1/ν(h − hc)] (with c an unknown parameter
and the previous estimates of ν and hc from collapse of SE/L)
works particularly well (top panel of Fig. 3).

Perhaps more accessible to experiments, bipartite fluctua-
tions F of subsystem magnetization (taken here to be a half-
chain L/2) have a similar behavior. Being simply the Curie
constant of the subsystem, we also expect thermal extensivity
(subextensive response) in the ergodic (localized) regime. This
is clearly checked in Fig. 4 for ε = 0.3 where F/L has
a crossing point at the disorder-induced MBL transition. A
data collapse (inset of Fig. 4) is also possible for F/L =
g[L1/ν(h − hc)], giving hc = 3.09(7) and ν = 0.77(4), con-
sistent with estimates from other quantities (Fig. 1). Finally,
we also performed an analysis of the dynamic fraction f of an
initial spin polarization [28], and obtained similar consistent
scaling (see Supplemental Material [57] and Fig. 1).

The disordered many-body system can be mapped onto
a single particle problem on the complex graph spanned
by the Hilbert space whose dimH vertices are the basis
states, which are connected by spin-flip terms in Eq. (1).
The average coordinance of each node is z ∼ L and the
random potential has a Gaussian distribution of variance σh ∼
h
√

L, meaning that the effective connectivity grows faster
than the disorder strength. Using recent results on Anderson
localization on Bethe lattices at large connectivity [60], we
do not expect genuine Hilbert-space localization at any finite
disorder. This argument is corroborated by our numerical
results for the PE SP

q (Fig. 5) which are always found to
increase with SP

0 ≡ ln(dimH), albeit much more slowly in
the localized regime. Analysis of various fits of the form

SP
q = aqS

P
0 + lq ln(SP

0 ) + o(SP
0 ) indicate that aq � 1 ∀q in the

ergodic regime (with possibly small negative lq corrections)
as seen in the color scale of Fig. 1, in contrast to Anderson
localization on the Bethe lattice [61]. In the localized regime,
we obtain essentially similar fit qualities with aq � 1 (see
typical numbers in Fig. 5), or aq = 0 and lq > 0 (the slow
growth of SP

q and our limited system sizes do not allow one to
separate these two possibilities).

Discussions and conclusions. Using various estimates for
the MBL transition, our large-scale energy-resolved ED results
indicate the existence of an extensive many-body mobility
edge in the excitation spectrum (Fig. 1) of the random field
Heisenberg chain. Furthermore, we show that the ergodic
regime has full features of a metallic phase (with aq = 1 and
GOE statistics for both energy levels and the wave-function
coefficients), and that the localized many-body states do not ex-
hibit a true Hilbert-space localization for configuration spaces
up to dimH ∼ 7 × 105 [62]. Our detailed finite-size scaling
analysis (Supplemental Material [57]) provides a consistent
estimate of a characteristic length diverging as |h − hc|−ν with
ν = 0.8(3) through the full phase diagram. This estimate of
the exponent ν appears to violate the Harris-Chayes [63,64]
criterion ν � 2/d (see also Ref. [32]) within the system sizes
used. This is quite intriguing given that for the same size
range, the location of the critical point is consistent for all
various estimates used (see Fig. 1). This opens new questions
on the finite-size scaling and/or corrections to scaling at the
MBL transition which may not follow [27,28] standard forms.

Besides these results for the particular model, Eq. (1),
we believe that the numerical techniques (massively parallel
energy-resolved diagonalization) and new indicators of the
ergodic-localized transition (eigenstate correlations or bipar-
tite fluctuations) introduced here will be useful in a large
number of contexts related to MBL or ETH. In particular,
the obtention of exact eigenvectors on fairly large systems will
be crucial to quantify the effectiveness of encoding localized
states as matrix product states, as recently advocated [65–67].
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C. R. Laumann, D. A. Abanin, M. D. Lukin, and E. A. Demler,
Phys. Rev. Lett. 113, 147204 (2014).

081103-4

http://dx.doi.org/10.1103/PhysRevB.21.2366
http://dx.doi.org/10.1103/PhysRevB.21.2366
http://dx.doi.org/10.1103/PhysRevB.21.2366
http://dx.doi.org/10.1103/PhysRevB.21.2366
http://dx.doi.org/10.1103/PhysRevLett.78.2803
http://dx.doi.org/10.1103/PhysRevLett.78.2803
http://dx.doi.org/10.1103/PhysRevLett.78.2803
http://dx.doi.org/10.1103/PhysRevLett.78.2803
http://dx.doi.org/10.1103/PhysRevLett.79.1837
http://dx.doi.org/10.1103/PhysRevLett.79.1837
http://dx.doi.org/10.1103/PhysRevLett.79.1837
http://dx.doi.org/10.1103/PhysRevLett.79.1837
http://dx.doi.org/10.1103/PhysRevLett.81.5129
http://dx.doi.org/10.1103/PhysRevLett.81.5129
http://dx.doi.org/10.1103/PhysRevLett.81.5129
http://dx.doi.org/10.1103/PhysRevLett.81.5129
http://dx.doi.org/10.1103/PhysRevLett.95.206603
http://dx.doi.org/10.1103/PhysRevLett.95.206603
http://dx.doi.org/10.1103/PhysRevLett.95.206603
http://dx.doi.org/10.1103/PhysRevLett.95.206603
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://arxiv.org/abs/arXiv:1404.0686
http://arxiv.org/abs/arXiv:1408.2834
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1103/PhysRevB.90.064203
http://dx.doi.org/10.1103/PhysRevB.90.064203
http://dx.doi.org/10.1103/PhysRevB.90.064203
http://dx.doi.org/10.1103/PhysRevB.90.064203
http://dx.doi.org/10.1103/PhysRevLett.113.147204
http://dx.doi.org/10.1103/PhysRevLett.113.147204
http://dx.doi.org/10.1103/PhysRevLett.113.147204
http://dx.doi.org/10.1103/PhysRevLett.113.147204


RAPID COMMUNICATIONS

MANY-BODY LOCALIZATION EDGE IN THE RANDOM- . . . PHYSICAL REVIEW B 91, 081103(R) (2015)

[15] M. P. Kwasigroch and N. R. Cooper, Phys. Rev. A 90, 021605
(2014).

[16] N. Y. Yao, C. R. Laumann, S. Gopalakrishnan, M. Knap,
M. Mueller, E. A. Demler, and M. D. Lukin, Phys. Rev. Lett.
113, 243002 (2014).

[17] R. Vasseur, S. A. Parameswaran, and J. E. Moore,
arXiv:1407.4476.

[18] D. A. Huse, R. Nandkishore, V. Oganesyan, A. Pal, and S. L.
Sondhi, Phys. Rev. B 88, 014206 (2013).

[19] Y. Bahri, R. Vosk, E. Altman, and A. Vishwanath,
arXiv:1307.4092.

[20] A. Chandran, V. Khemani, C. R. Laumann, and S. L. Sondhi,
Phys. Rev. B 89, 144201 (2014).

[21] B. Bauer and C. Nayak, J. Stat. Mech.: Theory Exp. (2013)
P09005.

[22] R. Vosk and E. Altman, Phys. Rev. Lett. 112, 217204 (2014).
[23] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phys. Rev. B

90, 174202 (2014).
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