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Dynamical spin structure factor of one-dimensional interacting fermions
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We revisit the dynamic spin susceptibility χ (q,ω) of one-dimensional interacting fermions. To second order in
the interaction, backscattering results in a logarithmic correction to χ (q,ω) at q � kF , even if the single-particle
spectrum is linearized near the Fermi points. Consequently, the dynamic spin structure factor Imχ (q,ω) is nonzero
at frequencies above the single-particle continuum. In the boson language, this effect results from the marginally
irrelevant backscattering operator of the sine-Gordon model. Away from the threshold, the high-frequency tail
of Imχ (q,ω) due to backscattering is larger than that due to finite mass by a factor of kF /q. We derive the
renormalization group equations for the coupling constants of the g-ology model at finite ω and q and find the
corresponding expression for χ (q,ω), valid to all orders in the interaction but not in the immediate vicinity of
the continuum boundary, where the finite-mass effects become dominant.
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Introduction. Bosonization is the most common way to
describe one-dimensional (1D) interacting fermions [1]. If
the lattice effects are not essential, an exact correspondence
between the fermion and particle-hole (boson) operators
maps the charge sector of the system onto a gas of free
bosons [the Tomonaga-Luttinger liquid (TLL)]. The spin
sector, however, is not free but maps onto the sine-Gordon
model. The non-Gaussian (cosine) term of this model results
from backscattering of fermions with opposite spins. If
the interaction between the original fermions is repulsive,
the backscattering term represents a marginally irrelevant
operator and is renormalized down to zero at the fixed point,
where the spin sector also becomes free. At intermediate
energy scales, such marginally irrelevant operators lead to
logarithmic renormalizations of the observables [2]. Since
the original paper by Dzyaloshinskii and Larkin (DL) [3],
it has been known that the backscattering operator gives rise
to the logarithmic temperature (or external magnetic field)
corrections to the static spin susceptibility. In Refs. [4,5] it
was shown that the static spin susceptibility also depends
logarithmically on the external momentum q at small q.
In addition, both the spin and charge susceptibilities at 2kF

acquire multiplicative logarithmic renormalizations [1,6].
In this work we focus on dynamics of the long-wavelength

part of the spin response. First, we need to outline the differ-
ences between the charge and spin sectors. As charge bosons
are free at all energies, the dynamical charge structure factor
(the imaginary part of the charge susceptibility at finite
frequency ω and momentum q) is a δ function centered at
the boson dispersion ω = vcq, which is represented by a
straight line in Fig. 1(a). This result differs from that for free
fermions only in that the Fermi velocity vF is replaced by
the renormalized charge velocity vc. A nonzero width of the
charge structure factor appears only if one goes beyond the
TLL paradigm by taking into account finite curvature (inverse
mass) of the fermion spectrum. In the pioneering paper [7] and
subsequent work (for a review, see Ref. [8]), it was shown that
the combined effect of the curvature and interactions results
in many new features in the charge structure factor, such as
edge singularities at the boundaries of the continuum and the
high-frequency tail both of which are absent for free fermions.

As far as the spin channel is concerned, it is common to treat
the backscattering operator via renormalization group (RG).

As the fixed point corresponds to free bosons, the formal result
for the dynamical spin structure factor (DSSF) at the fixed point
is also a δ function with vc replaced by the spin velocity vs .
The problem with this argument is that DSSF is measured at
finite ω and q and thus away from the fixed point. Therefore,
its dependences on ω and q must reflect the flow at finite rather
than infinite RG time.

In this paper we revisit the DSSF of a 1D interacting
fermion system. Besides being of a fundamental interest on
its own, the DSSF is relevant for a number of experiments
in both condensed-matter and cold-atom systems, such as
inelastic neutron and spin-resolved x-ray spectroscopies,
nuclear magnetic resonance, spin Coulomb drag [9], etc. First,
we show by direct perturbation theory that the logarithmic
renormalization of the dynamical spin susceptibility occurs in a
Lorentz-invariant way, via a ln(v2

F q2 − ω2) term. This already
implies that, in contrast to the free-fermion case, the DSSF is
nonzero in the entire sector |ω| > vF |q| [the hatched region in
Fig. 1(a)]. In contrast to the charge sector, this high-frequency
tail occurs even without taking into account the finite-curvature
effects. Next, we collect all leading logarithmic terms by
using RG for the spin vertex. Our final result for the spin
susceptibility reads

χ (q,ω) = χ0
vsvF q2

(vsq)2 − ω2 − iδ

×
{

1 + g1

2

1

1 + g1

2 ln
[ (vs�)2

(vsq)2−ω2−iδ

]
}

, (1)

where χ0 = 2μ2
B/πvF is the spin susceptibility of 1D free

fermions, μB is the Bohr magneton, g1 is the (dimensionless)
backscattering amplitude, � is the ultraviolet cutoff, δ =
sgnω0+, and

vs = vF

√
1 − g1 (2)

is the spin velocity [10,11]. At ω = 0 and to second order in
g1, Eq. (1) reduces to the ln q correction of Refs. [4,5]. Also,
setting ω = 0 and replacing vF q by either temperature (T )
or the Zeeman energy in the external magnetic field (H ), we
reproduce the DL result [3]. To second order in g1, our result
is in line with those of Refs. [14,15] for a spin-1/2 Heisenberg
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FIG. 1. (a) Particle-hole excitations at small momenta and fre-
quency in a 1D fermion system. The line ω = vF q corresponds to
the continuum. The hatched area is the domain of incoherent spin
excitations arising due to backscattering processes. (b) Schematic
frequency dependence of the DSSF at given momentum q. Renor-
malization group flows into the strong coupling regime at frequency
�g [Eq. (16)] above the threshold. At distance ωq = q2/m to the
threshold, the effect of finite mass becomes more important than that
of backscattering.

antiferromagnetic chain. In that case, the high-frequency tail
of the DSSF occurs due to a marginally irrelevant operators
arising from umklapp scattering. The profile of Imχ (q,ω) is
shown schematically in Fig. 1(b). Sufficiently close to the
threshold, the divergence in Imχ (q,ω) must be regularized
by the finite-curvature effects—see below for a more detailed
discussion of the crossover between the high-frequency tail
and threshold singularities.

Feynman diagrams in the fermion language. As usual, we
linearize the fermion spectrum near the Fermi energy and
decompose the fermion operators into the left and right movers,
so that the Hamiltonian of a free system is

H =
∑

s=±,α

∫
dpξs(p)c†s,α(p)cs,α(p), (3)

where ξ±(p) = ±vF p with p being a deviation from the
Fermi momenta, vF is the Fermi velocity, and c±,α(p) is the
right/left-moving fermion with spin α. Linearization presumes
that the fermion momenta are bounded by ±�F . Fermions
interact via a short-range and SU(2)-invariant potential U (q),
parametrized by three (dimensionless) scattering amplitudes
g1, g2, and g4, which are defined in Fig. 2. To first order in
U , g2 = g4 = U (0)/πvF and g1 = U (2kF )/πvF . We assume
that the Fermi momentum is not commensurate with the lattice
and thus neglect umklapp scattering.

We now calculate the spin susceptibility at small but finite
ωm and q via a perturbation theory in the coupling constants
g1, g2, and g4. The free spin susceptibility [Fig. 3(a)] is

−

+−+ −+−+

+− +−

+− +−

+−

1g g2 g4

+− ++ −

−

FIG. 2. Scattering amplitudes of the fermion-fermion interaction
g1,2,4.

(h)
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(d) (e) (f)

(b)(a)
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FIG. 3. Feynman diagrams for the spin susceptibility to second
order in the interaction (wavy line). The Aslamazov-Larkin diagrams
(not shown) vanish identically by SU(2) symmetry. The second-order
RPA diagram (also not shown), obtained from (b) by inserting one
more wavy line parallel to the first one, does not contain a logarithmic
singularity and is thus ignored.

given by

χ (0)(q,ωm) = χ0
(vF q)2

ω2
m + (vF q)2

, (4)

where ωm is the Matsubara frequency. Upon analytic continua-
tion to real frequencies (ωm → −iω + 0+), the imaginary part
of the susceptibility is ∝q2δ(ω2 − v2

F q2), which corresponds
to well-defined spin excitations.

The first-order corrections are given by Figs. 3(b) and 3(c).
It can be shown (see Supplemental Material (SM) [16]) that
diagrams with g4 sum up to zero, while diagrams with g2

cannot be constructed at this order. For the backscattering
contribution we obtain

δχ (1)(q,ωm) = g1χ0

[
(vF q)2

ω2
m + (vF q)2

]2

. (5)

To second order in the interaction, there are five non-
trivial diagrams for the spin susceptibility, presented in
Figs. 3(d)–3(h). Calculations show that all the g1g2 terms
from diagrams 3(f)–3(h) sum up to zero. All the g2

4 terms
from all the second-order diagrams sum up to zero as well.
Finally, the g2

2 terms from diagrams 3(d) and 3(e) cancel each
other. What remains is the backscattering, g2

1 contribution
from diagrams 3(d) and 3(e). In the leading logarithmic
approximation we find

δχ (2)(q,ωm) = −1

4
g2

1χ0
(vF q)2

ω2
m + (vF q)2

ln

[
(vF �)2

ω2
m + (vF q)2

]
,

(6)

where � is the cutoff imposed on the interaction. At ωm = 0,
Eq. (6) reduces to the result of Refs. [4,5]. Upon analytic
continuation, the logarithmic factor gives rise to a nonzero
DSSF at |ω| > vF |q|. In the next section we will employ RG
to calculate the spin susceptibility to first order in the renor-
malized vertex. We outline the resulting expression for the spin
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FIG. 4. (a) Interaction vertex given by Eq. (8). (b) and (c) Spin
susceptibility to first order in renormalized vertex. (d) Graphical
equation for the backscattering amplitude γ1.

susceptibility:

χ (q,ωm) = χ0

{
(vF q)2(1 − g1/2)

ω2
m + (vF q)2

+ g1
(vF q)4[

ω2
m + (vF q)2

]2

+ g1

2

(vF q)2

ω2
m + (vF q)2

1

1 + g1

2 ln
[ (vF �)2

ω2
m+(vF q)2

]
⎫⎬
⎭ , (7)

where a factor of −g1/2 in the numerator of the first term
was added to compensate for the first-order contribution from
the third term. The first and second terms in Eq. (7) can be
combined into an expansion of χf(q,ωm) ≡ χ0vsvF q2/[ω2

m +
(vsq)2] to order g1, which is the spin susceptibility of free
bosons at the fixed point, where the Luttinger parameter of
the spin channel is renormalized to unity. We surmise that all
nonlogarithmic terms can be absorbed into χf(q,ωm). In the
last term of Eq. (7), we cannot distinguish between vs and
vF within the leading logarithmic approximation. However,
guided by the general RG principle, we conjecture that vF in
the last term must be replaced by vs as well. Performing these
replacements, we obtain (after analytic continuation) the result
announced in Eq. (1). Next, we are going to show that RG does
indeed reproduce the logarithmic part of the result in Eq. (7).

Renormalization group. From now on we neglect the g4

processes, as they do not flow under RG. The interaction
vertex, shown graphically in Fig. 4(a), can be decomposed
into the spin and charge parts as

1

πvF

�αβ
μη = −1

2
γ1 �σαβ · �σμη −

(
1

2
γ1 − γ2

)
δαβδμη, (8)

where γ1,2 are the renormalized back- and forward-scattering
amplitudes. As these vertices will be used to find the spin
susceptibility at finite ω and q, we will need to know them away
from the Fermi surface along both the energy and momentum
axes. The equations for γ1 and γ2, derived in SM and shown
graphically in Fig. 4(d), are of the standard form [1,17,18]

dγ1(�)

d�
= −γ 2

1 (�),
dγ2(�̃)

d�̃
= −γ 2

1 (�̃)

2
, (9)

except that the RG times � and �̃ are different. The ver-
tex γ1, which is renormalized in the particle-hole channel,
evolves with � ≡ ln[ vF �√

�2
n+(vF Q)2

], where �n and Q are the

Matsubara frequency and momentum transfers through the
vertex, correspondingly. The vertex γ2, which is renormalized

in the particle-particle channel, depends on the total incoming
frequency and momenta. The meaning of Eq. (9) is that one
first solves for γ1 as a function of � and then replaces � by �̃ to
find γ2. The initial values are γi(� = 0) = gi , i = 1,2. (Details
of the derivation are given in the SM [16].) Solving Eq. (9)
one obtains

γ1(�) = g1

1 + g1�
, γ1(�̃) − 2γ2(�̃) = const. (10)

We are now in a position to calculate the renormalized spin
susceptibility at finite ωm and q, using γ1 as an effective
interaction. To first order in γ1, there are only two diagrams
for the spin susceptibility: Figs. 4(b) and 4(c). Combining
the two diagrams together and using Eq. (10), we obtain the
renormalized part of the spin susceptibility along with the
linear in g1 term (see SM for details of the calculations):

χ (ln) = −4μ2
B

[
(vF q)2

|ω̄|4
] ∫

dQd�n

(2π )2
ln

[
(vF �)2

|�̄ + ω̄|2
]
γ1(�)

= χ0
g1

2

(vF q)2

ω2
m + (vF q)2

1

1 + g1

2 ln

[
(vF �)2

ω2
m+(vF q)2

] , (11)

where �̄ = �n + ivF Q and ω̄ = ωm + ivF q. This result
indeed coincides with the last term in Eq. (7), and thus the
conjecture leading to Eq. (1) is proven.

Equation (1) is the central result of this paper, which shows
that DSSF is nonzero at |ω| > vF |q|. Away from the free-
boson pole, the DSSF is given by

Imχ (q,ω) = χ0
πg2

1

4

vF vsq
2

ω2 − (vsq)2

× sgnω{
1 + g1

2 ln
[ (vs�)2

ω2−(vsq)2

]}2 + [
πg1

2

]2 . (12)

The conditions for the validity of Eq. (12) near the threshold
are discussed before the concluding paragraph of this paper.

Fermi liquid in 1D. Putting ωm = 0, replacing vF q →
max{T ,μBH } under the logarithm, and expanding back the
nonlogarithmic term to order g1 in Eq. (1), we reproduce the
DL result for the static spin susceptibility [3]:

χ (T ,H ) = χ0

{
1 + g1

2

[
1 + 1

1 + g1 ln
[

vF �
max(T ,μBH )

]
]}

.

(13)

We now show that the DL result can be reproduced by the
Fermi-liquid (FL) theory, if one replaces the FL parameters by
running values of the scattering amplitudes. We recall the FL
expression for the spin susceptibility [19]

χ = χ0
m∗

m

1

1 + �s
m∗
m

Z2
, (14)

where m∗ = m[1 − ∂ω�(ω,k)]/[1 + ∂k�(ω,k)/vF ]|ω,k=0 is
the effective mass, Z = [1 − ∂ω�(ω,k)]−1|ω,k=0 is the quasi-
particle residue, �s is the spin part of the interaction vertex,
and � is the self-energy. Since the original interaction is static,
it gives a frequency-independent self-energy to first order.
Therefore, the Z factor is not renormalized to this order, while
the momentum dependence of the self-energy amounts to
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renormalization of the effective mass m∗ = m(1 + g1/2) both
for right- and left-moving fermions. According to Eq. (8), �s =
−γ1/2, where γ1 is given by Eq. (10) with � = ln[ vF �

max(T ,μBH ) ]
in the static case. Substituting these m∗ and �s into Eq. (14)
and expanding to first order in γ1, we reproduce the DL result,
Eq. (13). Although the FL theory is not valid in D = 1, it is still
valid in D = 1 + ε with ε → 0+. Our example shows that a
logarithmic flow of the scattering amplitude with ε reproduces
the correct result even in D = 1.

Another interesting feature of the DL result is that the
fixed-point value χ = χ0(1 + g1/2) is renormalized by g1.
This seems to contradict RG because g1 flows to zero at
the fixed point. In fact, this means that not all the coupling
constants in the perturbative result should be replaced by their
running values: some remain at their bare values evaluated at
the ultraviolet cutoff. This is an example of the “anomaly” fre-
quently encountered in massless field-theoretical models [20].
Another example of such an anomaly is the specific heat of 1D
fermions [10].

Connection to bosonization. The fermion language is not
a preferred one: One can equally well obtain the same results
in the boson language. However, one has to be careful about
not taking the limit of local interaction too soon. Assuming
a nonlocal interaction potential U (x − x ′), we bosonize the
Hamiltonian, treating the interaction as local in the Gaussian
part and nonlocal in the non-Gaussian part. For clarity, we
distinguish between the backscattering amplitudes of fermions
with the same and opposite spins g1|| and g1⊥ correspondingly.
This yields [10]

H = 1

2π

∑
i=c,s

∫
dx

[
vi

Ki

(∂xφi)
2 + viKi(∂xθi)

2

]

+ �2
F

2π2

∑
α=±

∫∫
dxdx ′ cos{

√
2[φs(x) + αφs(x

′)]}

× cos{
√

2[φc(x) − φc(x ′)] + 2kF (x − x ′)}U (x − x ′),

(15)

where φc(s) and θc(s) are usual position and momentum boson
fields in the charge (c) and spin (s) sectors, vs = vF , Ks = 1,
and explicit expressions for vc and Kc are given in SM.
If the local limit is also taken in the non-Gaussian part,
we obtain a spin-charge separated sine-Gordon model with
the coupling g1⊥ in the cosine term, vs = vF

√
1 − g1‖ and

Ks = 1/
√

1 − g1‖. With Hamiltonian (15) one can construct
a perturbation theory for the spin susceptibility χ (x,τ ) =
−〈Tτ ∂xφs(x,τ )∂xφs(0,0)〉. In doing so, we reproduce the same
diagrams for the spin susceptibility as in the fermion approach.
The first-order term of the fermion approach, Eq. (5), is
reproduced correctly only if one keeps nonlocal interaction
in the non-Gaussian term. The reason is that a part of this
result comes from mass renormalization [Fig. 3(c)], which is
absent to first order in the local interaction. Starting from
second order, one can take the local limit. The results of
the boson and fermion approaches are identical, as they
should be. In particular, the second-order result for χ (q,ω)
[Eq. (6)] can obtained by expanding the partition function of
the sine-Gordon model to second order in the backscattering
operator, as it was done in Ref. [15] for the umklapp operator.

In our case, this gives Imχ (q,ω) ∝ g2
1⊥q2(ω2 − v2

s q
2)2Ks−3

which, upon expanding near weak coupling (Ks ≈ 1 + g1||/2)
and setting g1⊥ = g1||, reproduces Eq. (12) to third order
in g1.

Finite-mass effects. Taking into account finite curvature of
the fermion dispersion is the only way to smear the δ-function
singularity in the dynamic charge structure factor [7,8]. In
the spin sector there are two competing effects that lead
to a nonzero DSSF outside the continuum: the marginally
irrelevant backscattering operator and finite curvature. For
massive fermions with dispersion p2/2m, the effect of finite
curvature becomes important when the distance to the thresh-
old � ≡ |ω| − vs |q| becomes comparable to ωq ≡ q2/m. On
the other hand, the RG flow develops at � � �g , where

�g ≡ (vs�
2/q) exp(−2/g1). (16)

The results of this paper are valid if RG flow develops before
the curvature becomes important, i.e., if �g � ωq or q �
(mvs�

2)1/3 exp(−2/3g1) (see Fig. 1).
Even in this case, the RG result (1) diverges at the

threshold |ω| = vs |q| and the divergence must be regularized
by finite curvature. A detailed analysis of matching between
the threshold singularities due to finite mass [21] with our RG
result is outside the scope of this paper. However, one can
compare the high-frequency tails due to each of these effects.
For � � �g , the RG result reduces to the second-order one;
up to a numerical coefficient

Imχ (q,ω) ∼ χ0g
2
1

v2
F q2

ω2 − v2
F q2

�(|ω| − vF |q|). (17)

On the other hand, the high-frequency tail for spinless fermions
arising from finite mass was calculated via an expansion
in 1/m in Refs. [7,15,23]. For massive fermions, however,
the difference in the 1/m expansions of the charge and
spin susceptibilities amounts only to a numerical coefficient.
Up to this coefficient, we can simply borrow the result of
Refs. [15,22,23]:

Imχ1/m(q,ω) ∼ g2

(
q

mvF

)2
v2

F q2

ω2 − v2
F q2

�(|ω| − vF |q|),

(18)

where g is some dimensionless coupling constant. Comparing
Eqs. (17) and (18), we see that the high-frequency tail due to
a marginally irrelevant operator is larger than that due to finite
mass by factor of mvF /q � 1.

Conclusions. We have studied the dynamical spin structure
factor (DSSF) of one-dimensional interacting fermions for
small momenta (q � kF ). In contrast to the charge structure
factor, the DSSF is nonzero above the continuum even
in a model with linearized fermion spectrum due to the
effect of a marginally irrelevant backscattering operator. We
found the DSSF by direct perturbation theory in the fermion
language, supplemented by RG. The high-frequency tail due
to backscattering is larger than that due to finite mass by a
factor of mvF /q � 1. One immediate consequence of our
result is the nonanalytic temperature dependence of the nuclear
spin relaxation rate T −1

1 ∝ T
∫

dq
Imχ(q,ω)

ω
|ω→0 resulting from

the region of q � kF . Logarithmic renormalization of χ (q,ω)
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modifies the Korringa law as 1/T1 ∝ T/ ln(vF �/T ), which is
line with the logarithmic corrections to the FL theory discussed
early in this paper. At weak coupling, renormalization from
the q = 0 region is comparable to the usually considered 2kF

contribution [1].

Acknowledgments. We are grateful to A. V. Chubukov,
S. Maiti, C. Reeg, O. A. Starykh, and especially to L. I.
Glazman for stimulating discussions. This work was supported
by the National Science Foundation via Grant No. NSF
DMR-1308972.

[1] T. Giamarchi, Quantum Physics in One Dimension (Oxford
University Press, New York, 2003).

[2] J. L. Cardy, J. Phys. A: Math. Gen. 19, L1093 (1986).
[3] I. E. Dzyaloshinskii and A. I. Larkin, Sov. Phys. JETP 34, 422

(1972).
[4] D. Belitz, T. R. Kirkpatrick, and T. Vojta, Phys. Rev. B 55, 9452

(1997).
[5] A. V. Chubukov and D. L. Maslov, Phys. Rev. B 68, 155113

(2003).
[6] T. Giamarchi and H. J. Schulz, Phys. Rev. B 39, 4620 (1989).
[7] M. Pustilnik, M. Khodas, A. Kamenev, and L. I. Glazman, Phys.

Rev. Lett. 96, 196405 (2006).
[8] A. Imambekov, T. L. Schmidt, and L. I. Glazman, Rev. Mod.

Phys. 84, 1253 (2012).
[9] I. D’Amico and G. Vignale, Phys. Rev. B 62, 4853 (2000);

M. Polini and G. Vignale, Phys. Rev. Lett. 98, 266403 (2007).
[10] A. V. Chubukov, D. L. Maslov, and R. Saha, Phys. Rev. B 77,

085109 (2008).
[11] Our expression for the spin velocity differs from that in Ref. [1]:
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