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Valley Zeeman effect and spin-valley polarized conductance in monolayer MoS2
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We study the effect of a perpendicular magnetic field on the electronic structure and charge transport of a
monolayer MoS2 nanoribbon at zero temperature. We particularly explore the induced valley Zeeman effect
through the coupling between the magnetic field B and the orbital magnetic moment. We show that the effective
two-band Hamiltonian provides a mismatch between the valley Zeeman coupling in the conduction and valence
bands due to the effective mass asymmetry and it is proportional to B2 similar to the diamagnetic shift of exciton
binding energies. However, the dominant term which evolves with B linearly, originates from the multiorbital and
multiband structures of the system. Besides, we investigate the transport properties of the system by calculating
the spin-valley resolved conductance and show that, in a low-hole doped case, the transport channels at the edges
are chiral for one of the spin components. This leads to a localization of the nonchiral spin component in the
presence of disorder and thus provides a spin-valley polarized transport induced by disorder.
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I. INTRODUCTION

Monolayer of the molybdenum disulfide (ML-MoS2) has
recently attracted great interest because of its potential appli-
cations in two-dimensional (2D) nanodevices [1–3], owing to
the structural stability and lack of dangling bonds [4]. The
ML-MoS2 is a direct band gap semiconductor with a band
gap of 1.9 eV [2], and can be easily synthesized by using
scotch tape or lithium-based intercalation [2–5]. The mobility
of the ML-MoS2 can be at least 217 cm2 V−1 s−1 at room
temperature using hafnium oxide as a gate dielectric, and
the monolayer transistor shows the room temperature current
on/off ratios of 108 and ultralow standby power dissipation [2].
These properties render Ml-MoS2 as a promising candidate
for a wide range of applications, including photoluminescence
(PL) at visible wavelengths [6], and photodetectors [7]. The
experimental achievements triggered the theoretical interests
in the physical and chemical properties of the ML-MoS2

nanostructures to reveal the origins of the observed electrical,
optical, mechanical, and magnetic properties, and guide the
design of MoS2-based devices.

Having defined the valleytronics of graphene, many phys-
ical phenomena, originated from the spin of the electron,
have been extended to be used for the valley index. One
is the internal magnetic moments of spin which couples
to an external magnetic field through well-known Zeeman
interaction. In a system where the inversion symmetry is
broken, the valley degree of freedom can be distinguished.
There is a valley dependence orbital magnetic moment which
can result in a Zeeman-like interaction for the valley index.
Gapped graphene is one of the main representatives of mate-
rials in which the valley index couples to the perpendicular
magnetic field as a real spin [8]. However, due to the small
value of the gap, this effect has not been yet observed
experimentally. Transition metal dichalcogenides (TMDCs),
on the other hand, provide a more applicable paradigm for
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the valley Zeeman (VZ) effect. The VZ in TMDCs has been
recently observed [9–12] and studied theoretically [13]. Those
measurements were based on the shift of photoluminescence
peak energies as a function of the magnetic field interpreted
as a Zeeman splitting due to the valley-depended magnetic
moments. In order to explore the VZ we do need to perceive
all physical characteristics of the system. Actually, the energy
band structure which can be calculated via ab initio methods,
contains some information and besides, the Berry curvature
and orbital magnetic moment of the Bloch states, are two
main quantities which provide extra information to the band
structure [14–16].

A peculiar property of the ML-MoS2 is its spin-valley
coupled electronic structure which is due to the strong spin-
orbit coupling and it induces a spin-orbit splitting in the valence
band [17]. Furthermore, many physical properties of TMDCs
can be described by using a two-band model which is indeed a
projected model from a higher dimension Hamiltonian. Since
the projection is an approximation and it is not a perfect unitary
transformation, the two-band Hamiltonian may not provide a
full description of the low-energy excitations of the system
especially when the system is addressed by a perpendicular
magnetic field. Basically, some physics related to the multi-
band structure such as Berry curvature and orbital magnetic
moment properties might be ignored along the projection
process. In this work we would like to address these issues
and explore their physical sources in the ML-MoS2 structure.

An effective model based on a Dirac-like Hamiltonian has
been introduced by Xiao et al. [17] to explore ML-MoS2

electronic properties. Very recently, it has been shown, based
on the tight-binding [18,19] and k · p method [20], that a
model going beyond the Dirac-like Hamiltonian (including
effective mass asymmetry, trigonal warping, and a quadratic
momentum dependent term) is very important. Each term
in the Hamiltonian can be as a source of many physical
consequences. For example, due to the spin-orbit coupling
(λ) and the diagonal quadratic term (α), the two-band model
reveals a particle-hole asymmetry and also the diagonal
quadratic term of β gives a contribution to the Chern number
at each valley [21]. A nanoribbon MoS2 in the presence of the
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perpendicular magnetic field reveals the Landau level band
structure with a VZ term [18]. We attempt to clarify the VZ
concept based on symmetry arguments, semiclassical (orbital
magnetic moment) and quantum mechanical (Landau levels)
calculations. In other words, we emphasize that a particle-hole
asymmetry originating from the orbital magnetic moment
occurs in the presence of the perpendicular magnetic field
and thus we express the physical reasons of the asymmetry
observed in the experiments [9–12].

In this paper we further study the electronic structure and
two-terminal electronic transport of a zigzag ML-MoS2 in the
presence of the perpendicular magnetic field. Our calculations
are based on the multiorbital tight-binding approach [22]
which describes the electronic properties of the monolayer
MoS2 based on all d and p relevant orbitals of both the Mo and
S atoms, respectively. We calculate the conductance of a clean
and disordered systems in the presence of the perpendicular
magnetic field by using a nonequilibrium recursive Green’s
function method [23].

According to the spin-orbit coupling and the valley degen-
eracy breaking, a spin-valley polarization (SVP) is expected
in the electronic structure of the bulk system and particularly
in the hole doped case. Most remarkably, in the zigzag
ribbon case, there are some metallic edge states which spoil
the SVP in a clean system. However, our numerical results
in the two-terminal conductance show a spin-valley polarized
mode made by the quantum Hall and finite size edge states in
the presence of on-site disorder.

The paper is organized as follows. In Sec. II we introduce
the formalism that will be used for calculating the electronic
structure, orbital magnetic moment, two terminal conductance,
and the valley polarization quantity from the recursive Green’s
function approach. In Sec. III we present our analytic and
numeric results for the dispersion relation in the presence of
the magnetic field. Section IV contains a brief summary of our
main results.

II. THEORY AND METHOD

A. Tight-binding model

The tight-binding Hamiltonian is a common and a powerful
technique to explore the transport properties. The model
provides a reasonable description of the bulk properties of
the ML-MoS2 including direct band gap [22]. We carry out
our calculations based on the following real space model
Hamiltonian:

H =
∑
i,μ

εa
i,μa

†
i,μai,μ + εb

i,μ

(
bt †

i,μbt
i,μ + bb†

i,μbb
i,μ

)

+
∑
i,μ

[
t⊥i,μbt †

i,μbb
i,μ + H.c.

]

+
∑

〈ij〉,μν

[
tab
ij,μνa

†
i,μ

(
bt

j,ν + bb
j,ν

) + H.c.
]

+
∑

〈〈ij〉〉,μν

[
taa
ij,μνa

†
i,μaj,ν + H.c.

]

+
∑

〈〈ij〉〉,μν

[
tbb
ij,μν

(
bt †

i,μbt
j,ν + bb†

i,μbb
j,ν

) + H.c.
]
, (1)

where εa and εb indicate on-site energies for Mo and
S atoms and tab,taa , and tbb show the hopping matrixes
corresponding to Mo-S, Mo-Mo, and in-plane S-S hopping
process, respectively. t⊥ denotes the hoping integral between
two sulfur layers, i,j and μ,ν stand for lattice site and atomic
orbital indices, respectively. Note that the Hamiltonian is
constructed by d and p orbitals of the Mo and S atoms which
are listed as follows:

d basis (Mo atoms): dz2 ,dx2−y2 ,dxy,dxz,dyz,
(2)

p basis (S atoms): px,t ,py,t ,pz,t ,px,b,py,b,pz,b,

where the t or b subindex indicates the top or bottom sulfur
plane, respectively. A unitary transformation is used to reduce
the dimensionality of the Hamiltonian and thus relevant
orbitals are only considered. The unitary matrix is given by

U = 1√
2

(
I u

I −u

)
, (3)

where I is a three-dimensional identity matrix and u =
diag[1,1,−1]. Implementing the unitary matrix on the p basis
of the sulfur atoms, results in two decoupled bases with a
symmetric (even) and an antisymmetric (odd) combination of
the p orbitals of two sulfur layers with respect to the horizontal
reflection symmetry. These even and odd spaces read as

Even :
1√
2

(px,t + px,b),
1√
2

(py,t + py,b),
1√
2

(pz,t − pz,b),

Odd :
1√
2

(px,t − px,b),
1√
2

(py,t − py,b),
1√
2

(pz,t + pz,b).

(4)

The transformation gives rise to an opportunity to suppress
direct coupling between two sulfur layers. Based on the
Hamiltonian in the main orbital space, two sulfur layers are
directly coupled due to the vertical hopping as

H =
(

h t⊥

t⊥ h

)
, (5)

where h = εb which indicates the on-site term of the tight-
binding Hamiltonian corresponding to the p orbitals of the
sulfur atoms on both top and bottom layers. Using ut⊥ = t⊥u

and uεb = εbu one can show that in the new space we have

H′ = UHU † =
(

h + ut⊥ 0

0 h − ut⊥

)
, (6)

where the first (ε̃b = εb + ut⊥) and second diagonal block
belong to the even and odd symmetric subspaces [22],
respectively. Therefore, the six-band real space Hamiltonian
can be written in the even symmetric subspace which contains
even subspace of p orbital and even subspace of d orbital (i.e.,
dz2 ,dx2−y2 ,dxy). Besides, in the presence of the perpendicular
magnetic field, the six-band Hamiltonian reads as

H =
∑
i,μ

εa
i,μa

†
i,μai,μ + ε̃b

i,μb
†
i,μbi,μ

+
∑

〈ij〉,μν

[
eiφij tab

ij,μνa
†
i,μbj,ν + H.c.

]
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+
∑

〈〈ij〉〉,μν

[
eiφij taa

ij,μνa
†
i,μaj,ν + H.c.

]

+
∑

〈〈ij〉〉,μν

[
eiφij tbb

ij,μνb
†
i,μbj,ν + H.c.

]
. (7)

Using Eq. (6), together with the crystal fields of the system
[22], and also spin-orbit couplings for the valence and
conduction bands in atomic limit, i.e., L · S, the on-site energy
matrices are given by

εa
i,μ =

⎛
⎜⎝

�0 0 0

0 �2 −iλMŝz

0 iλMŝz �2

⎞
⎟⎠,

(8)

ε̃b
i,μ =

⎛
⎜⎝

�p + t⊥xx −i λX

2 ŝz 0

i λX

2 ŝz �p + t⊥yy 0

0 0 �z − t⊥zz

⎞
⎟⎠,

where λM = 0.075 eV and λX = 0.052 eV stand for the
spin-orbit coupling originating from the Mo (metal) and S
(chalcogen) atoms, respectively [24]. Notice that s = ± indi-
cates the z component of the spin degree of freedom. Moreover,
we have added an external perpendicular magnetic field to
the system using Peierls phase factor φij = e

�

∫ j

i
�A · �dr to

carry out the orbital effect of the perpendicular magnetic field.
Interlayer hopping between the sulfur planes is given as t⊥ =
diag[Vppπ ,Vppπ ,Vppσ ] based on the Slater-Koster table [25].
The numerical values of the tight-binding parameters are �0 =
−1.096, �2 = −1.512, �p = −3.560, �z = −6.886, Vddσ =
−0.895, Vddπ = 0.252, Vddδ = 0.228, Vppσ = 1.225, Vppπ =
−0.467, Vpdσ = 3.688, and Vpdπ = −1.241 in eV units. These
parameters will be presented elsewhere [26]. We might express
that this Hamiltonian provides a very good energy band
structure in according to the comparison with those results
obtained within the density functional theory simulations [24].

B. Orbital magnetic moments

In many semiconductor systems, such as GaAs bulk,
the circular polarization of luminescence from circularly
polarized excitation originates from electron or hole spin
polarization [27]. However in ML-MoS2, the optical selection
rule originates from the orbital magnetic moments at each K

or K ′ valley independent of electron or hole spin [28].
In a periodic lattice, the eigenfunctions of the Schrödinger

equation are Bloch states un,k , where n and k indicate the band
index and crystal momentum, respectively. In semiclassical
method, it is common to use a wave packet picture of electrons
[14–16]. The wave packet |W 〉 can be easily constructed
by the linear superposition of the Bloch states. Due to the
self-rotation of the wave packet around its own center of
mass, the magnetic moment (or the angular orbital momentum
L) defined as M = − e

2m0
L = − e

2m
〈W |(r̂ − rc) × p̂|W 〉 along

the z direction, where m0 is the free electron mass and
p̂ is the canonical momentum operator, and moreover the
wave packet is also centered at rc in the position space. The
orbital magnetic moment of Bloch electrons has a contribution
from intercellular current circulation governed by symmetry

properties. After straight forward calculations [14–16], the
orbital magnetic moment is written as

Mn(k) = i
e

�

∑
m�=n

〈∇kunk| × [H (k) − εnk]|∇kunk〉. (9)

This relation can be written in a more practical expression as

Mn(k)=−ẑ
e

�

∑
m�=n

Im
[〈unk|∂kx

H (k)|umk〉〈umk|∂ky
H (k)|unk〉

]
εnk − εmk

.

(10)

Up to linear order in the magnetic field and in semiclassical
limit, the energy dispersion in an external magnetic field
modifies as

Enk = εnk − Mn(k) · B, (11)

where εnk is the band dispersion of the system without
magnetic field. It is worth mentioning that the inversion and
time reversal symmetries play vital roles in the nontrivial
Berry curvature and the orbital magnetic moment. According
to the time reversal symmetry, M(k) = −M(−k) while the
presence of the inversion system results M(k) = M(−k).
Consequently, the orbital magnetic moment vanishes by
governing both symmetries. Most importantly, the magnetic
moment is nonzero in ML-MoS2 since the inversion symmetry
is broken. Similar behavior is expected for the Berry curvature
as well. In order to calculate the orbital magnetic moment,
based on the six-band tight-binding model, we carry out a
Fourier transformation along the x and y directions to find
the six-band Hamiltonian in the k space. Moreover, the orbital
magnetic moment can be also found through the corresponding
two-band model around the K point. The two-band model can
be extracted by using a Löwding partitioning method from
the six-band Hamiltonian. The two-band Hamiltonian of the
monolayer MoS2, after ignoring the trigonal warping and the
momentum dependence of the spin-orbit coupling, is given by

H = �0 + λ0τs

2
+ � + λτs

2
σz

+ t0a0q · σ τ + �
2|q|2
4m0

(α + βσz), (12)

where s = ± and τ = ± indicate spin and valley, respec-
tively, σ τ = (τσx,σy) are Pauli matrices, and q = (qx,qy) is
momentum. The numerical values of the two-band model
parameters are given by �0 = −0.11 eV, � = 1.82 eV, λ0 =
70 meV, λ = −80 meV, t0 = 2.33 eV, α = −0.01, and β =
−1.54. The z component of the orbital magnetic moment
of the conduction and valence bands in the two-band model
Hamiltonian are given by

Ms
c (k)=Ms

v (k)=−τ
e

�

t2
0 a2

0

(
� − 2bβa2

0k
2 + λs

)
(
� + 2bβa2

0k
2 + λs

)2 + 4t2
0 a2

0k
2
,

(13)

where b = �
2/4m0a

2
0 ≈ 0.572. Moreover, at two valleys (k =

0) the contribution from β is eliminated and one can find

Ms
c (k = 0) = Ms

v (k = 0) = −τ
e

�

t2
0 a2

0

� + λs
. (14)
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Note that for the low-energy model parameters we have
�M↑(k = 0)/(ea2

0) ≈ −3.14τ eV and �M↓(k = 0)/(ea2
0) ≈

−2.87τ eV.
It should be noticed that the opposite sign of the orbital

magnetic moments at two valleys, which originates from the
time reversal symmetry, leads to the VZ effect when the
system is imposed by an external perpendicular magnetic
field. Moreover, the low-energy Hamiltonian exhibits the
same value of the semiclassical magnetic moment at both the
valence and conduction bands while the recent experimental
studies showed a different value for the magnetic moment
at two bands. In the numerical section we will discuss this
discrepancy more carefully.

Although the magnitude of the valley splitting in each band
has not been measured experimentally, the mismatch was mea-
sured in four different experiments. The photoluminescence
intensity of a monolayer transition metal dichalcogenide has
been measured in the presence of the external perpendicular
magnetite field using circular polarized light as the excitation
light. The shift value of the peak of the luminescence spectrum
of MoSe2 [9,12] and WSe2 [10,11] are about 2–5 meV for
left- and right-handed polarizations and for both neutral and
charged exciton.

The linear dependence of the valley splitting demonstrates
a Zeeman-like effect of the valley index. According to the
circular dichroism effect in these materials, the right- (left-)
handed light couples just to the K (K ′) valley. In the magnetic
field the energy gap between electron and hole states differs
in two valleys, whereas ECBM − EVBM = � + λ + τ (gcon

v −
gval

v )�ωc/2 and the difference provides an opportunity to
the valley Zeeman effect to be measured experimentally.
Therefore, due to the circular dichroism effect, the left- and
right-handed emitted light have two different frequencies (i.e.,
corresponding energy gap) leading to a splitting in the peak of
the PL spectrum for two polarizations.

Being aware of the discrepancy of the two-band model in
the magnetic field and in order to capture the correct value of
the orbital magnetic moment of the system, we add a mismatch
κv between the semiclassical orbital magnetic moments of the
six- and two-band models at the K point to the low-energy
two-band Hamiltonian when there is a perpendicular magnetic
field. Consequently, in the presence of the magnetic field, the
low-energy Hamiltonian, Eq. (12), is modified as

Hτs = �0 + λ0τs

2
+ � + λτs

2
σz + vπ · σ τ

+ |π |2
4m0

(α + βσz) − 1

2
τκv�ωc − 1

2
sgs�ωc, (15)

where π = p + eA and gs ≈ 2 is the Zeeman coupling for the
real spin and the mismatch between the Zeeman coupling of
both the bands is

κv = 1eV

�2/
(
4m0a

2
0

)(
mc − m2 0

0 mv − m2

)

≈
(−0.62 0

0 −1.50

)
, (16)

where m2 (in units of e2V a2
0/�) is the magnetic moment

calculated by the two-band model while mc and mv are the

Lead Scattering Region Lead

1 2 M. . .

1

N

2

...

FIG. 1. (Color online) A top view schematic of a monolayer
MoS2 lattice structure in a two-terminal setup. Blue (orange) circles
indicate the Mo (S) atoms. The nearest neighbor (δi) and the next
nearest neighbor (ai) vector are shown in the figure. Ribbon width
and scattering region length are W/a0 = 3N/2 − 1, L/a0 = √

3M ,
respectively.

magnetic moment obtained within the six-band tight-binding
model in the conduction and valence bands, respectively. The
numerical values of κv [which is about �ωc = �(eB/2m0)]
are obtained by using the semiclassical results of the orbital
magnetic moments presented in Fig. 3 at the K point and
by averaging over spins. We also define κcon

v = −0.62 and
κval

v = −1.5.

C. Conductance and spin-valley polarization

Using the Fourier transformation along the ribbon, the
energy dispersion can be found as Hk = H00 + H01e

ika +
H

†
01e

−ika , where H00 and H01 are the intra- and interprincipal
cell Hamiltonian, respectively [29]. Note that a = √

3a0 =
0.316 nm stands for the Mo-Mo or in-plane the S-S bond length
with a0 as the in-plane projection the Mo-S bond length. To
calculate the conductance we use the nonequilibrium Green’s
function method in which the retarded Green’s function is
defined as Gr

s = (E − Hs − �s + i0+)−1 by employing the
recursive Green’s function method [30]. Note that s =↑
or ↓ for the spin degree of freedom. In the noninteracting
Hamiltonian, the self-energy (�s = �L

s + �R
s ) originates only

from the connection of the system to leads (Fig. 1) and it
can be calculated by the method that has been developed
by Lopez et al. [31]. Using the Landauer formula, the zero
temperature conductance for each spin component is given as
G↑(↓) = e2

h
T↑(↓), where

Ts = Tr
[
�L

s Gr
s�

R
s Gr†

s

]
(17)

and �L,R
s = −2�m[�L,R

s ] are linewidth functions. Because
of the collinear spin structure, the conductance of each spin
component can be calculated separately. Consequently, in
principal, a spin polarization quantity can be defined as
P = (G↑ − G↓)/(G↑ + G↓).
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III. RESULTS AND DISCUSSION

In this section we present our main results in the orbital
magnetic moment, Landau levels spectrum, and spin-valley
polarized transport in monolayer MoS2 in the presence of
the perpendicular magnetic field. We present our extensive
numerical results of the electronic structure by exploring the
structure of the Landau levels in the quantum Hall regime
and the spin-valley resolved transport properties of the zigzag
MoS2 nanoribbon. We calculate the conductance in both
unipolar electron and hole doped cases and we explore the
spin-valley-resolved electronic transport in both clean and
disordered systems.

A. Valley Zeeman and Landau levels

Before calculating the conductance of the system, we first
discuss the VZ effect induced by the perpendicular magnetic
field in both semiclassical and quantum aspects. First of all,
the orbital magnetic moment corresponding to the conduction
and valence bands are calculated in the whole Brilloun zone
(BZ) using the six-band tight-binding model, specially using
Eqs. (7), (8), and (10), and results are shown in the counter
plots in Fig. 2. It is obvious that the orbital magnetic moment
changes sign in the two valleys owing to the time reversal
symmetry. Indeed, the states near the corners of the BZ
contribute mainly to the orbital magnetic moment. Moreover,
a comparison between the semiclassical orbital magnetic
moment calculated within the two-band, using Eq. (13), and
the six-band models as a function of the momentum along x

axis are shown in Fig. 3 for both spin components. As seen
in the figure, a remarkable difference between the value of the
orbital magnetic moment in the valence and conduction bands
is obtained by the six-band model Hamiltonian. However, in
the two-band model, the semiclassical magnetic moment is
the same in both the valence and conduction bands [see Eq.
(13)] even in the presence of the particle-hole asymmetry terms
such as the spin-orbit coupling and effective mass asymmetry.
Most remarkably, the mismatch between the orbital magnetic
moment of two bands calculated within the six-band model
plays an important role in interpreting the VZ experimental
measurements.

The difference between the two- and six-band models can
be classified in two intraband and interband categories. The
intraband reason is related to the orbital character of the bands.
Using the Slater-Koster table for constructing the tight-binding
model provides a platform for taking into account the nature
of the relevant atomic orbitals such as p and d types and also
considering the neighboring lattice symmetry. However, the
orbital basis of the two-band model is substituted with the
band basis and the orbital character can be mainly captured by
d-type orbitals.

According to Eq. (10), similar to the Berry curvature
formula and the second order perturbation theory, the orbital
magnetic moment of each band is affected by virtual transitions
between bands corresponding to the interband sector [32]. Due
to the transition between neighboring energy bands, observing
a different value of the orbital magnetic moment of two
different bands is awaited, however such virtual transition

−3 −2 −1 0 1 2 3

kxa0

−3

−2

−1

0

1

2

3

k
y
a

0

−4 −3 −2 −1 0 1 2 3 4

−3 −2 −1 0 1 2 3

kxa0

−3

−2

−1

0

1

2

3
k

y
a

0

−4 −3 −2 −1 0 1 2 3 4

FIG. 2. (Color online) Contour plot of the orbital magnetic mo-
ment as function of the momenta along the x axis at the conduction
(top panel) band and the valence (below panel) band. M is in units of
e2V a2

0/� and the spin-orbit coupling is neglected in this figure.

is definitely eliminated in the two-band case. Consequently,
we would like to emphasize that one might be careful in
using the Löwdin canonical projection from a multiband to
a two-band model, because some information regarding the
orbital character and virtual transitions might be ignored.

The wave vector point group symmetry of a honeycomb
lattice with broken inversion symmetry, like gapped graphene,
is C3h point group [33,34] near the K and K ′ points. The
irreducible representations of the point group characterize
energy eigenfunctions at the K and K ′ valleys. According
to the character table, the phase winding at each K and K ′
is C3|c,τ 〉 = ωτ |c,τ 〉 and C3|v,τ 〉 = ω−τ |v,τ 〉, where ω =
ei2π/3 due to threefold rotational for the conduction and the
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FIG. 3. (Color online) Orbital magnetic moment as a function of
the momentum along the x axis for both the spin-up and -down
components calculated by the six-band and the two-band models. Up
(below) panel corresponds to the spin-up (-down) component and M

is in units of e2V a2
0/�.

valence bands. The relation means that the orbital angular
momentum in the conduction band is lc = −τ and similarly
lv = τ for the valence band. In a semiclassical picture, the
angular momentum has been induced from the self-rotation of
the electron wave packet around its center of mass. This kind
of the orbital angular momentum, called Bloch phase shift, is
well studied in the content of gapped graphene which can be
explained by a single pz-orbital tight-binding model. However,
in any multiorbital system, another distinct contribution to the
orbital angular moment might be expected.

At high symmetric points where the Bloch states are in-
variant under a g-fold discrete rotation, an azimuthal selection
rule lc + gN = lv ± 1 is expected for interband transitions.
According to the ab initio calculations near the K(K ′) point,
the conduction band minimum is mainly formed from the Mo
dz2 orbitals with lz = 0 and the valence band is constructed
by the Mo dx2−y2 + idxy (dx2−y2 − idxy) orbital with lz = 2
(lz = −2). Note that there are some contributions from px and
py orbitals of the S atoms in both band edges. If the mixing
from the p orbital is ignored, the total angular momentum will
be lc ∼ −τ and lv ∼ τ + 2τ ∼ 3τ including the Bloch phase
shift and local orbital contribution of the conduction band.
Moreover, owing to the selection rule allowed with discrete
threefold rotational symmetry, we can add a multiplicand of
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FIG. 4. (Color online) (Top panel) Landau levels as a function of
the momentum in units of eV calculated by a tight-binding approach
on a zigzag ribbon where B = 100 T. (Bottom panel) Valley Zeeman
splitting in units of meV as a function of the magnetic field in units
of tesla for both the conduction and valence bands. In the inset: The
mismatch between the valley Zeeman effect of the conduction and
valence bands which is the splitting in PL spectrum for right- and
left-handed polarized light as a function of the magnetic field in units
of tesla. Note that blue (red) lines indicate spin-up (-down) states. We
set N = 100 as the ribbon width and the real Zeeman effect is not
included in this figure.

three to the orbital angular moment of one of the bands in
order to satisfy lv − lc = ±1 which is necessary in the dipole
absorption limit [35]. In this case, we have lv ∼ 0 and lc = −τ .

The Landau level spectrum is also calculated within the
six-band model (see Fig. 4) of a zigzag ribbon ML-MoS2

after applying a Peierls substitution in the tight-binding model.
Thus, by using the Landau level spectrum resulted from
full tight-binding calculation, we extract the valley Zeeman
effect of the conduction and valence bands. The mismatch
between the splitting in two bands, which is the shift of the PL
spectrum of right- and left-handed light in the presence of the
magnetic field, is shown in Fig. 4 (bottom panel). This linear
dependence of the magnetic field magnitude of the energy
splitting approves the Zeeman-like coupling and is in good
agreement with those results measured in experiments.

Having calculated the orbital magnetic moments in the
six- and two-band models, we modified the two-band model
Hamiltonian in the presence of the perpendicular magnetic
field given by Eq. (15). After a straightforward calculation, the
Landau level spectrum of the modified two-band Hamiltonian,
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Eq. (15) reads as

E±
n�=0,τ s =±

√[
�+λτs

2
+�ωc

(
βn− ατ

2

)]2

+2

(
t0a0

lB

)2

n

+ �0 + λ0τs

2
+ �ωc

(
αn − βτ

2

)
− 1

2
τκv�ωc

− 1

2
sgs�ωc,

E−
n=0,Ks = �0 + λ0s

2
− � + λs

2
+ �ωc

2
(α − β) (18)

−1

2
κval

v �ωc − 1

2
sgs�ωc,

E+
n=0,K ′s = �0 − λ0s

2
+ � − λs

2
+ �ωc

2
(α + β)

+ 1

2
κcon

v �ωc − 1

2
sgs�ωc,

in the presence of a constant magnetic field B. It must be
noticed that for the n = 0 level, there is no solution of the
eigenvalue problem in the conduction band at the K point
and similarly in the valence band at the K ′ point. Having
calculated the analytical expression of the Landau level from
the two-band model, we could deduce a valley splitting the
conduction band and adding the contribution from a real Zee-
man interaction and multiband correction. The valley splitting
coupling in the conduction and valence bands can be defined
as gcon

�ωc = E+
1,K↑ − E+

0,K ′↓ and gval
�ωc = E−

0,K↑ − E−
1,K ′↓,

respectively, with the following explicit expressions:

gcon(val)
�ωc =

√[
� + λ

2
+ �ωc

(
β ∓ α

2

)]2

+ 2

(
t0a0

lB

)2

− � + λ

2
− �ωc

(
β ∓ α

2

)

− (
κcon(val)

v + gs

)
�ωc, (19)

where −/+ stands for the conduction/valence band. This is
important that α has no effect on the semiclassical orbital
magnetic moment while it is a source of the mismatch of
the magnetic moment (i.e., valley splitting) in those bands
from a quantum point of view. In other words, in the quantum
picture, the two-band model could produce a mismatch
between magnetic moments while this is not the case in the
semiclassical picture. It is worth to expand the above relation
up to leading order in a weak magnetic field as

gcon,val ≈ 4a2
0m0t

2
0

�2(� + λ)
+

2a2
0m0t

2
0

(
(±α−2β)(�+λ)

m0
− 4a2

0 t2
0

�2

)
l2
B(� + λ)3

− κcon,val
v − gs. (20)

Here, using the six-band tight-binding model, the relation for
the splitting is given by

gcon − gval = 4a2
0et

2
0

�(� + λ)2
× α × B − (

κcon
v − κval

v

)
. (21)

It is clear that the effective mass asymmetry (i.e., α) yields
a quadratic dependence of the mismatch to the magnetic

field which can compete with the diamagnetic shift of the
exciton binding energies which is also quadratic in B [36–38].
However, that cannot explain those PL experimental data
while the correction from the multiband and the multiorbital
nature of this material (κv) gives rise to a linear shift of the
PL spectrum of left- and right-handed light. Therefore, our

low-energy model predicts gcon − gval ∼ −0.88 + 7.22a2
0

l2
B

α.
Based on the tight-binding model, Fig. 4 bottom panel,
gcon − gval ∼ −0.81 indicating that the proposed Eq. (20) is
reasonably good by incorporating the semiclassical approach
of the value κcon

v and κval
v .

B. Spin polarization: Two-terminal transport

The optical probing, such as the PL approach, can just
measure the mismatch between the valley Zeeman effect
of electron and hole states since measuring valley Zeeman
splitting at each band requires a transition between two
valleys which contains a large momentum difference, while
the optical method are based on direct transitions. We propose
a valley splitting at each band which can be measured
via a two-terminal unipolar transport setup where a valley
polarization is expected. Although specifying valley index is
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FIG. 5. (Color online) Unipolar conductance according to the
Landau level spectrum of the low-energy model. The Zeeman
interaction corresponding to the real spin is not taken into account in
this figure.
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not as easy as spin index, we believe that the valley index can
be realized through measuring spin resolved conductance in
the TMDs due to the spin-valley coupling. In the unipolar case,
the conductance can be calculated by counting the transport
channel, so that the corresponding conductance for each spin
component is given as Gs

nn(pp) = min(νs
L,νs

R), in units of e2/h

between the left and right leads. In this regard, we plot
the conductance based on the Landau level sequence of the
two-band model in Fig. 5 for both electron and hole doped
cases and the spin polarization can also be seen. In the valence
band the polarization is more pronounced due to the strong
spin-orbit coupling. The sequence of the plateaus for both the
cases are different in the low-energy levels. This effect can
be understood based on the strong spin-orbit coupling in the
valence band which decreases the number of the channel of
the hole doped system to the half of the accessible channel in
the conduction band.

Moreover, there are some finite size metallic edge modes
(see Fig. 4) due to the zigzag edges. These edge modes
suppress the spin polarization when the system is subjected
to an external magnetic field. We calculate the normalized
projected local density of states (PLDOS) to clarify that
each of those states are mostly localized on which edge and
orbital. The PLDOS which can be calculated as ρ(y,n,k,μ) =∑

mk′ |ψmk′μ(y)|2δ(Enk − Emk′) is shown in Fig. 6 for spin-up
[Figs. 6(a) and 6(d)] and spin-down [Figs. 6(c) and 6(d)]
components, respectively. Here ψmk,μ is the wave function in
which m(n), k(k′), and μ stand for the band index, momentum,
and orbital index, respectively. The left-going (which is defined
by a negative slope of the dispensation relation) spin-up state,
which is connected to the zero Landau level in the valence
band at the K point, lies on the top edge while the right-going
one is located on the bottom edge. On the other hand, both
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FIG. 6. (Color online) (a) and (b) Projected local density of states
ρ(y,Ek) for spin-up edge modes at EK = −0.89 eV. The left- and
right-going modes are localized on opposite edges. (c) and (d) The
same as before for spin-down edge modes but the left- and right-going
states are localized on the same edges. The edge modes are mostly
constructed by dxy and dx2−y2 orbitals of the molybdenum atoms.

right- and left-going spin-down states are on the bottom edge.
This feature tells us that the former pair is chiral, whereas the
later one is not.

The nonequilibrium Green’s function method is used in
a two-terminal setup to count the number of the transport
channel of a zigzag ribbon geometry. First of all, we calculate
the conductance of a clean system in the presence of the
external magnetic field and the results are illustrated in Fig. 5
which shows the two-terminal conductance plateaus for each
spin component. Obviously there is no the spin polarization
for the low-hole doped case and it is due to the extra finite size
edge modes.

Furthermore, in a real material there are also impurities
and structural defects which can affect the expected transport
properties of the clean sample. Here we study the effect of
impurities by adding a simple random on-site energy in the
range of [−δ/2,δ/2] to the Hamiltonian where δ stands for
the intensity of disorder scattering. In this case, we assume
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FIG. 7. (Color online) (a) Unipolar conductance for a zigzag
ribbon as a function of the Fermi energy in the presence of the
perpendicular magnetic field and random on-site energy. (b) Spin
polarization in the presence of the perpendicular magnetic field and
random on-site energy. The Zeeman interaction corresponding to the
real spin is not taken into account in this figure. We set N = 50,
M = 10, and B = 150 T.
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that all of the relevant atomic orbitals at each lattice site are
affected in a same way from the presence of impurity. This
kind of impurity which has a uniform distribution only induces
an intravalley scattering rate to relax the momentum. We are
only interested in a simple momentum relaxation to realize
whether finite size or quantum Hall edge modes are robust
with respect to the randomness. The numerical conductance
results as a function of the Fermi energy are presented in
Fig. 7 showing that disorder induces a spin-valley polarization.
In the clean ribbon with a low-hole doped case, both spin
components have same contributions to the conductance.
The spin-down contribution of the conductance in the lowest
plateau is originating from the finite size edge modes, while
that corresponding to the spin-up component has a contribution
from a quantum Hall edge mode which is connected to the zero
Landau level at the K point.

After adding random on-site energy, one can clearly see that
for a reasonable intensity of the randomness the spin-down
edge modes are localized. This is due to the fact they are not
chiral and thus they can scatter backward similar to a nonchiral
one-dimensional system where a localization always occurs
in the presence of a randomness. However, in the case of the
spin-up states, since they are on the opposite side of the ribbon,
they cannot be scattered to each other based on their chiral
nature. Hence, the spin-up states are not localized and they can
carry spin-polarized current which is also valley polarized due
to the spin-valley coupling of the hole doped case. Eventually,
disorder revives the spin-valley polarized transport in the finite
size case. Moreover, if we increase the strength of the scattering
from impurity, the conductance contribution from both spin
will drop, however the polarization will approximately saturate
to a constant value (P ∼ 0.6).

IV. CONCLUSION

In this work we have shown that the strength of the valley
Zeeman interaction in TMDCs, which mainly originates from
the broken inversion symmetry, differs in the conduction and
valence bands due to the different orbital character and also
virtual interband transitions. We have provided a modified two-
band Hamiltonian in the presence of the magnetic field which
can be used to describe recent experimental data. Moreover, we
have shown that the quadratic diagonal momentum dependent
terms in the low-energy model contribute in the valley splitting
which evolves in a quadratic way by varying B that might
compete with the diamagnetic shift of the exciton binding
energy. Remarkably, the dominant dependance of the valley
splitting to the magnetic field, which evolves linearly with B,
originates from the multiorbital and multiband structures of
the system.

Furthermore, we have studied the two-terminal electronic
transport of a zigzag ML-MoS2 in the presence of a perpendic-
ular magnetic field using the nonequilibrium recursive Green’s
function method. We have found that the conductance is not
spin polarized in the clean hole-doped case due to the presence
of the finite size metallic edge modes in addition to the quantum
Hall edge modes. Our numerical results in the two-terminal
conductance show a spin-valley polarized transport in the
presence of the on-site disorder which is related to the chiral
nature of one of the spin components.
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APPENDIX: HOPPING MATRICES

The hopping terms of the system, calculated by the Slater-Koster table [39], are listed below for the nearest neighbor hopping,

tab
1 =

√
2

7
√

7

⎛
⎜⎝

−9Vpdπ + √
3Vpdσ 3

√
3Vpdπ − Vpdσ 12Vpdπ + √

3Vpdσ

5
√

3Vpdπ + 3Vpdσ 9Vpdπ − √
3Vpdσ −2

√
3Vpdπ + 3Vpdσ

−Vpdπ − 3
√

3Vpdσ 5
√

3Vpdπ + 3Vpdσ 6Vpdπ − 3
√

3Vpdσ

⎞
⎟⎠, (A1)

tab
2 =

√
2

7
√

7

⎛
⎜⎝

0 −6
√

3Vpdπ + 2Vpdσ 12Vpdπ + √
3Vpdσ

0 −6Vpdπ − 4
√

3Vpdσ 4
√

3Vpdπ − 6Vpdσ

14Vpdπ 0 0

⎞
⎟⎠, (A2)

tab
3 =

√
2

7
√

7

⎛
⎜⎝

9Vpdπ − √
3Vpdσ 3

√
3Vpdπ − Vpdσ 12Vpdπ + √

3Vpdσ

−5
√

3Vpdπ − 3Vpdσ 9Vpdπ − √
3Vpdσ −2

√
3Vpdπ + 3Vpdσ

−Vpdπ − 3
√

3Vpdσ −5
√

3Vpdπ − 3Vpdσ −6Vpdπ + 3
√

3Vpdσ

⎞
⎟⎠. (A3)

The next nearest neighbor hopping process, the hopping along ai direction (see Fig. 1) which corresponds to the hopping among
the Mo or the S atoms, reads as

taa
1 = 1

4

⎛
⎜⎜⎝

3Vddδ + Vddσ

√
3

2 (−Vddδ + Vddσ ) − 3
2 (Vddδ − Vddσ )

√
3

2 (−Vddδ + Vddσ ) 1
4 (Vddδ + 12Vddπ + 3Vddσ )

√
3

4 (Vddδ − 4Vddπ + 3Vddσ )

− 3
2 (Vddδ − Vddσ )

√
3

4 (Vddδ − 4Vddπ + 3Vddσ ) 1
4 (3Vddδ + 4Vddπ + 9Vddσ )

⎞
⎟⎟⎠, (A4)
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taa
2 = 1

4

⎛
⎜⎝

3Vddδ + Vddσ

√
3(Vddδ − Vddσ ) 0√

3(Vddδ − Vddσ ) Vddδ + 3Vddσ 0

0 0 4Vddπ

⎞
⎟⎠, (A5)

taa
3 = 1

4

⎛
⎜⎜⎝

3Vddδ + Vddσ

√
3

2 (−Vddδ + Vddσ ) 3
2 (Vddδ − Vddσ )

√
3

2 (−Vddδ + Vddσ ) 1
4 (Vddδ + 12Vddπ + 3Vddσ ) −

√
3

4 (Vddδ − 4Vddπ + 3Vddσ )
3
2 (Vddδ − Vddσ ) −

√
3

4 (Vddδ − 4Vddπ + 3Vddσ ) 1
4 (3Vddδ + 4Vddπ + 9Vddσ )

⎞
⎟⎟⎠, (A6)

tbb
1 = 1

4

⎛
⎜⎝

3Vppπ + Vppσ

√
3(Vppπ − Vppσ ) 0√

3(Vppπ − Vppσ ) Vppπ + 3Vppσ 0

0 0 4Vppπ

⎞
⎟⎠, (A7)

tbb
2 =

⎛
⎜⎝

Vppσ 0 0

0 Vppπ 0

0 0 Vppπ

⎞
⎟⎠, (A8)

tbb
3 = 1

4

⎛
⎜⎝

3Vppπ + Vppσ −√
3(Vppπ − Vppσ ) 0

−√
3(Vppπ − Vppσ ) Vppπ + 3Vppσ 0

0 0 4Vppπ

⎞
⎟⎠. (A9)

The direction of the hopping indicated by subindex 1, 2, and 3 can be seen in Fig. 1 for the nearest and next nearest neighbor
hopping. Note that a = √

3a0 = 0.316 nm stands for the Mo-Mo or in plane S-S bond length with a0 as in plane projection of
the Mo-S bond length.
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