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Thin films of a three-dimensional topological insulator in a strong magnetic field: Microscopic study
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The response of thin films of Bi2Se3 to a strong perpendicular magnetic field is investigated by performing
magnetic band-structure calculations for a realistic multiband tight-binding model. Several crucial features of
Landau quantization in a realistic three-dimensional topological insulator are revealed. The n = 0 Landau level
is absent in ultrathin films, in agreement with experiment. In films with a crossover thickness of five quintuple
layers, there is a signature of the n = 0 level, whose overall trend as a function of magnetic field matches
the established low-energy effective-model result. Importantly, we find a field-dependent splitting and a strong
spin polarization of the n = 0 level, which can be measured experimentally at reasonable field strengths. Our
calculations reveal mixing between the surface and bulk Landau levels, which causes the character of the levels
to evolve with magnetic field.
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I. INTRODUCTION

The peculiar structure of the Landau levels (LLs) present
in three-dimensional (3D) topological insulators (TIs) [1–3]
in a strong magnetic field is a characteristic signature of their
Dirac surface states [4–6]. In the simplest low-energy effective
models, a field-independent n = 0 level emerges at the surface-
state band-crossing energy that is analogous to the n = 0 level
of another Dirac material, namely graphene [7], suggesting
strong similarities in the magnetic-field response of these two
systems. However, a number of important features have been
observed recently in thin films of binary-chalcogenide 3D
TIs, which indicate that the conventional picture of Landau
quantization may not be fully applicable to these materials.
The most notable features include (i) deviations from the
square-root dependence of LL energies on the magnetic field
and the LL index, which applies when linear dispersion is
present over a wide energy regime [4], (ii) asymmetry of the
LL spectrum with respect to the Dirac point [4,5], and (iii)
finite-thickness effects, in particular the predicted splitting
of the n = 0 level due to intersurface coupling [8–10] and
its absence in ultrathin films [11]. LL positions are readily
measured in scanning probe studies and, since they depend
on both the zero-field energy bands and the momentum
dependence of zero-field wave functions, they are a sensitive
probe of the electronic structure.

In this work, we study the electronic properties of thin
films of Bi2Se 3 in the presence of a strong quantizing
magnetic field, using a microscopic approach that captures the
complex electronic structure and the intersurface hybridization
of the realistic material. We perform magnetic band-structure
calculations [12–14] using a multiband tight-binding (TB)
model for Bi2Se3 [15,16]. We consider slabs of one to six
quintuple layers (QLs) in magnetic fields of the order of 10 T
(for the smallest thickness) and larger. We find that the n = 0
LL is absent in slabs with thicknesses below five QLs, but it
starts to emerge at this crossover thickness, in agreement with
experiments on a similar system (Sb2Te3) [11]. Importantly,
the energy gap due to intersurface coupling, which is found at
the Dirac point of 3D TI thin films at zero field [17], persists
at finite magnetic fields.

This finding is partly consistent with recent theoretical
studies, which investigated the effect of finite thickness on the
LL spectrum either by introducing an ad hoc hybridization gap
into the Dirac Hamiltonian of the surface states [9,10], or by
using a minimal TB model [8] for a single-Dirac-cone family
of 3D TIs. However, there are crucial differences between
the results obtained with our microscopic approach and those
obtained with effective models. The hybridization gap at finite
magnetic fields emerges naturally in our electronic structure
calculations for finite slabs. As a result, the degeneracy of
the n = 0 level is lifted. For moderate field strengths, the
gap increases approximately linearly with the field, with the
dependence becoming weak with increasing thickness.

For five QLs, the field dependence of one of the two
components of the n = 0 LL is in good agreement with
the analytical expression derived by Liu et al. [18] using a
four-band effective Hamiltonian [19]. The other component,
which is energetically closer to the valence band, deviates
further from the analytical curve for increasing magnetic fields,
with its wave function becoming progressively bulklike. In the
limit of small fields, the splitting approaches the value of the
zero-field hybridization gap. The LLs of the bulk and surface
states, which cannot be easily disentangled experimentally,
are identified based on the spatial character of their wave
functions. The splitting of the n = 0 LL can be detected by
scanning tunneling spectroscopy (STS) experiments, and it can
be used as a probe of pertinent electronic structure features.

The paper is organized as follows. In Sec. II, we describe the
TB model and discuss the details of magnetic band-structure
calculations. The numerical results, namely the calculated
LL spectra and the analysis of the hybridization gap in the
presence of an applied magnetic field for one to six QLs
of Bi2Se3, are presented in Sec. III. We also briefly outline
possible implications of our findings for measurable electronic
properties of 3D TI thin films in magnetic field. Finally, we
draw some conclusions.

II. MODEL

The electronic structure of a Bi2Se3 slab is described by an
sp3 TB model with parameters obtained by fitting to density
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functional theory (DFT) band structures [15,16]. The applied
magnetic field is introduced via the Peierls substitution [20,21].
The Hamiltonian of the system reads

Ĥ (k) =
∑

ii ′,σ
αα′

γ αα′
ii ′ eik·rii′ e− ie

�c

∫ i′
i

A·dl ĉ
σ†
iα ĉσ

i ′α′

+
∑

i,σσ ′
αα′

λi〈i,α,σ | �̂l · �̂s|i,α′,σ ′〉 ĉ
σ†
iα ĉσ ′

iα′ , (1)

where k is the reciprocal-lattice vector, i(i ′) is the atomic
index, α(α′) labels atomic orbitals, and σ (σ ′) denotes the spin.
Here i runs over all atoms in the magnetic unit cell (see the
definition below), while i ′ �= i runs over all neighbors of atom
i, including atoms in the adjacent cells; rii ′ is the distance
between atoms i and i ′ (rii ′ = 0 for i = i ′). γ αα′

ii ′ are the Slater-
Koster parameters and ĉ

σ†
iα (ĉσ

iα) is the creation (annihilation)
operator for an electron with spin σ at the atomic orbital α of
site i. We include the hopping between nearest neighbors in the
x-y plane and next-nearest neighbors along the z direction. The
second term in Eq. (1) is the intra-atomic spin-orbit interaction,
where |i,α,σ 〉 are spin- and orbital-resolved atomic orbitals,
�̂l is the orbital angular momentum operator, and �̂s is the spin
operator; λi is the SO strength.

The factors eiθii′ , with θii ′ = − e
�c

∫ i ′

i
A · dl (θii = 0), which

multiply the hopping matrix elements in Eq. (1), are the Peierls
phase factors. A is the magnetic vector potential and l is a
straight path connecting the lattice sites i and i ′. A uniform
magnetic field is applied perpendicular to the surface of the
slab, B = Bẑ, and we use the Landau gauge, A = (0,Bx̂,0).
We focus on the orbital contribution of the magnetic field,
which is expected to be the most crucial one for Landau
quantization, at least for magnetic fields in the experimental
range. Therefore, we do not consider the Zeeman term. We
are concerned with the effect of the hybridization between the
opposite surfaces, and between the surfaces and the valence
band bulk, on the LL spectrum of Bi2Se3 thin films.

It is known that for electrons, subject to both magnetic field
and a periodic potential, the electron wave function cannot
satisfy the periodic boundary conditions [the Hamiltonian in
Eq. (1) does not commute with the operator of translations].
However, one can introduce the new primitive translation
vectors, which define the magnetic unit cell, provided that
the magnetic flux φ threading a crystal unit cell is a rational
multiple of the magnetic flux quantum φ0 = hc/e, i.e., φ =
pφ0/q, where p and q are mutually prime integers [12]. The
magnetic unit cell, carrying a magnetic flux pφ0, is q times
larger than the crystal unit cell (see Fig. 1). The corresponding
magnetic Brillouin zone is q times smaller than the original
one. This magnetic periodic boundary condition (MPBC)
requirement guarantees that the electron wave function only
accumulates a phase 2πp when one moves along the edges
of the magnetic unit cell. It follows from the MPBC that
the value of the magnetic field is determined by the size of
the magnetic unit cell, i.e., B = p φ0/Sm = p φ0/qS0, where
Sm (S0) is the area of the magnetic (crystal) unit cell in the
plane perpendicular to the field. This is a notorious numerical
limitation of magnetic band-structure calculations.

FIG. 1. (Color online) Top view (x-y plane) of the magnetic unit
cell (q = 4) of five QLs of Bi2Se3. ax(y) are the 2D lattice vectors. The
magnetic field is along the z axis. The dashed lines show the crystal
unit cell. The shaded triangle marks the elementary 2D placket.

The magnetic unit cell of a Bi2Se3 slab is built by replicating
the slab unit cell q times along the x axis (Fig. 1). Its size grows
as q × (5NQL), where NQL is the number of QLs. With this
constraint, we were able to reach minimum field strengths of ∼
8 T for one QL and ∼ 45 T for five QLs. To predict the behavior
at smaller fields, we either use numerical fitting or, when it
is appropriate, we interpolate the results of our calculations
between B = 0 and the smallest field accessible for a given
thickness. We employ the Lanczos method of diagonalization
at each k point in the magnetic Brillouin zone, and we focus
on a small energy window around the Dirac point to reduce
the computational load.

As one varies the parameter p/q, a nontrivial fractal pattern
in the electronic spectrum, known as the Hofstadter butterfly
[21], emerges. First predicted for electrons on a square two-
dimensional (2D) lattice, the pattern has been obtained for
other 2D lattices (honeycomb [22], triangular [23]), and a
generalization to the 3D case has been demonstrated [24]. In
this work, we calculate the Hofstadter butterfly for a slab of
Bi2Se3 with varying thickness. By focusing on the low-field
(low-flux) region of the Hofstadter spectrum, which is typically
the region probed in experiment, we will show the emergence
of well-resolved LLs.

III. NUMERICAL RESULTS

We start with the calculation of LLs in ultrathin films of
Bi2Se3. Figure 2(a) shows the Hofstadter spectrum of a one-
QL-thick slab. Only the results for φ/φ0 ∈ [0,1] are shown
for better visibility. As in the case of a one-band triangular
lattice model [23], the spectrum is not symmetric with respect

FIG. 2. (Color online) (a) Hofstadter spectrum of one QL of
Bi2Se3. Positive (b) and negative (c) branches of the LL spectrum
(the lowest 24 levels are shown for each branch). Thin dashed lines
show the results of numerical fitting for B < 8.3 T. Horizontal lines
mark the zero-field energy gap.
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to φ/φ0 = 1/2 since the elementary placket, i.e., the smallest
loop in the x-y plane pierced by magnetic flux, is a fraction
of the unit cell (Fig. 1). At B = 0 there is a large energy
gap, 	B=0 = 0.84 eV, due to intersurface hybridization. This
gap persists at finite magnetic fields. The field dependence of
the gap is quite complex, especially for large values of φ/φ0,
where the interplay between the periodic lattice potential and
the quantizing magnetic field is strong. However, in the regime
where the broadening of the LLs is sufficiently weak so that few
lowest levels can be resolved (φ/φ0 � 0.1), the gap increases
with magnetic field.

We now focus on two regions of the spectrum, marked by
red boxes in Fig. 2(a), corresponding to small fields (B � 30 T)
and energies around the zero-field gap. There are two distinct
branches of the LL spectrum, namely positive and negative
[Figs. 2(b) and 2(c), respectively], with well-resolved levels.
For the positive branch, the LLs come in pairs, originating
from doubly generate states at B = 0. The levels disperse
almost linearly with magnetic field, in striking similarity
with an ordinary 2D electron gas. A similar pattern is found
for the negative branch, with the exception of the top LL,
which depends weakly on B in this range but starts to deflect
downward for B > 40 T.

In the same way, we calculate the Hofstadter spectra and
the LLs for two to six QLs. The results are summarized
in Fig. 3, where we analyze the hybridization gap as a
function of magnetic field and slab thickness. Note that
for B = 10 T we perform numerical interpolations for all
thicknesses except one QL. For B = 45 T, an interpolation is
only required for the largest thickness of six QLs. Figure 3(a)
shows that the gap increases with magnetic field for all
slabs considered. The dependence is predominantly linear.
By using numerical fitting, we determine numerically the
linear (dominant) coefficient a1 in the field dependence, and
we plot it versus the thickness in Fig. 3(b). As one can
see, the field dependence becomes weaker for thicker slabs.
At the same time, the gap decreases exponentially with the
thickness, as shown in Fig. 3(c). At B = 0 this result is
well-established. However, here we explicitly demonstrate the
exponential decay at finite fields. As the thickness increases
beyond five QLs, the gap becomes exponentially small and
field-independent. Hence, in the limit of an infinitely thick
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FIG. 3. (Color online) (a) Hybridization gap as a function of
magnetic field (including B = 0) for two to six QLs of Bi2Se3.
Symbols show the data points. Solid lines are numerical interpolations
in the low-field region. Coefficient of the linear term in the field
dependence of the gap (b) and the logarithm of the gap (c) vs thickness
for B = 0, 10, and 45 T.

slab, the expected LL structure, with a doubly degenerate
field-independent n = 0 level, is recovered.

The existence of the hybridization gap at finite magnetic
fields was investigated in Ref. [8] using the low-energy
model of Refs. [17,18]. Within this approach, the particle-hole
symmetry is imposed from the start, and therefore the model
is unable to capture the asymmetry of the LL spectrum and the
strong hybridization with the valence band, which is significant
in Bi2Se3. Our approach is free from these limitations and
provides qualitatively and quantitatively accurate description
of these features that are crucial in thin films.

In Ref. [8], the gap was found to depend weakly on magnetic
field, oscillating as a function of the thickness, in analogy with
the zero-field gap found in other continuum models [18,25,26].
We find that at B = 0 the gap exhibits nonmonotonic behavior
at certain thicknesses, which resembles the oscillations in these
continuum models. The nonmonotonicity is also present at
B �= 0, but it is smoothed out at large fields [Fig. 3(c)]. The
analytical expression for the gap in Ref. [8] contains a term
linear in B (multiplied by an oscillatory and exponentially
decaying function of thickness). This is consistent with our
calculations but only for moderate field strengths: at large
fields the field dependence in our model is highly nonlinear
[Fig. 2(a)], in contrast to the result of the continuum model.

The field dependence of LLs that we find in ultrathin films
at low magnetic fields (Fig. 2) is clearly distinct from the
square-root behavior expected from the Dirac-Hamiltonian
description of the surface states. Together with the absence
of the n = 0 level and a sizable hybridization gap below five
QLs (Fig. 3), these results demonstrate that the Dirac fermion
picture does not capture the magnetic-field response of 3D TI
thin films at moderate magnetic-field strengths.

For typical magnetic-field strengths and disorder strength,
the five QL thickness marks a crossover to the range beyond
which the topologically protected bulk TI surface state is ro-
bustly manifested [17]. This suggests that a nearly degenerate
n = 0 LL is expected to appear at this thickness at finite
magnetic fields. The calculated LL spectrum for 5QLs is
shown in Fig. 4(a). We compare our results with the analytical
expression for the LLs of the surface states, obtained in Ref.
[18], using a low-energy effective Hamiltonian under the
assumption of decoupled bulk and surface states.

By setting the Zeeman term to zero in the analytical formula
of Liu et al. [18], we find that the energy of the n = 0 level is
given by E0 = C̃0 + eC̃2B/�, where C̃0(1) are the parameters
of the model. The term ∝ C̃2B can be traced back to the
nonlinear (quadratic) term C̃2k

2 in the Hamiltonian of the
surface states as a function of momentum k, characteristic of
the complex electronic structure of the material. Although
at low fields the n = 0 level is nearly constant, the field
dependence becomes significant already at B ∼ 20 T.

In our calculations at finite fields, two distinct levels with
a quasilinear dispersion emerge close to the original Dirac
point. We interpret this pair of levels as the two components
of n = 0 LL, split by intersurface coupling. This splitting is
not captured by the effective model of Ref. [18] for the surface
states of a semi-infinite system. However, the field dependence
of the highest of these two levels matches remarkably well the
analytical curve (the position of the Dirac point in the analytical
expression has been adjusted to that found in our calculations,
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FIG. 4. (Color online) (a) LL spectrum of five QLs of Bi2Se3.
Open (filled) symbols are for surface (bulk) states. Dashed lines
are numerical interpolations for the n = 0 level. Solid lines are the
analytical surface LLs from Ref. [18]. The horizontal line in (a) marks
the position of the Dirac point at B = 0. Wave functions |ψ |2 (b,c)
and expectation values of the spins sx(y,z) (d) of the two components
of the n = 0 LL, marked as ε1 and ε2 in (a), plotted vs distance along
the width of the slab. In (b) and (d), B = 45 T; in (c), B is ten times
larger.

i.e., ∼0.09 eV). In the limit B → 0, we expect the numerical
and analytical results to converge, as confirmed by numerical
interpolation (apart from a small but non-negligible gap at zero
field). For the higher-index LLs, we find significant deviations
from the analytical results. These features are due to the finite
thickness of the sample and to higher-order nonlinearities in
the electronic structure that are captured by our model.

The two components of the n = 0 level are the true surface
states, as one can see from the real-space distribution of their
wave functions along the slab [Fig. 4(b)]. In fact, their wave
functions are almost indistinguishable from the ones calculated
at zero field. The surface character is preserved in fields as
large as 100 T. The levels have the same spin polarization and
are nearly fully spin-polarized in the direction opposite to the
magnetic field [Fig. 4(d)]. This finding is consistent with the
analytical prediction of Ref. [8]. The splitting between the two
n = 0 levels increases with magnetic field. For five QLs, we
find a splitting of 6 meV at 45 T and we estimate the splitting
to be 3 meV at 20 T.

Our calculations capture the strong asymmetry of the
LL spectrum with respect to the Dirac point observed in
experiments [4,5] and the mixing between bulk and surface
states. The asymmetry is mainly due to the fact that the Dirac
point is close to the valence band. As a result, the negative
branch has only a few well-resolved LLs, which merge with
the bulk states with increasing magnetic field. On the contrary,
the positive branch contains many levels that preserve their
surface character at large fields. Based on the real-space
analysis of wave functions, the states roughly in the energy
window [−0.02; 0.4] eV are surface states, while the ones
outside this window are bulk states. Importantly, the character
of the states does not remain constant, and some of the states
evolve from surface- to bulklike as the field increases [see
Fig. 4(a)].

This behavior is due to the proximity of the bulk and can be
understood using the following semiclassical argument. With
increasing magnetic field, the radius of the nth Landau orbit
in momentum space, expressed as kn = √

2|n|/lB , with lB =

√
�/|e|B being the magnetic length [5], increases. Therefore,

the LLs start to involve states at k points further away from
�. In the band structure of a Bi2Se3 thin film, at k ∼ kn

the energy bands can be quite different from the linearly
dispersed Dirac states, especially below the Dirac point, i.e.,
close to the valence band. Indeed, for five QLs at k ≈ kn, with
kn ≈ 0.3 Å−1 for B ≈ 50 T and |n| = 1, the bulk contribution
to the energy bands just below the Dirac point becomes
dominant [16]. This also explains why at large fields the lower
component of the n = 0 LL deflects toward the valence band,
while the upper one still follows the analytical curve. Since
the lower component is energetically closer to the valence
band, it is more affected by the valence-band states, and at
very large fields its wave function becomes more bulklike
[see Fig. 4(c)].

LLs manifest as peaks in the electronic density of states
that can be detected in tunneling spectra measured by scanning
tunneling spectroscopy (STS) [4,5]. The energy of the n = 0
LL indicates the position of the Dirac point within the energy
bands. A scaling analysis of LLs can be used to accurately
determine the energy dispersion in 3D TIs [5]. The splitting
of the n = 0 LL studied in this work is detectable by STS
at moderate magnetic fields. Hence, it can be used as an
alternative sensitive probe of the intersurface hybridization,
and in particular of the hybridization gap.

LLs are typically associated with the physics of the quantum
Hall effect (QHE). The structure of LLs is embodied in the
optical conductivity tensor calculated in the presence of a
magnetic field, in the framework of linear-response theory.
This yields an estimate of the Hall conductivity in the QHE
regime, and it allows, in general, the calculation of magneto-
optical effects [27]. We expect the features of the LLs in 3D TI
thin films predicted in the present work to affect the structure
and position of the Hall plateaus as a function of the chemical
potential [9,10].

IV. CONCLUSIONS

In conclusion, we presented a microscopic study of Landau
quantization in thin films of Bi2Se3. We find that the n = 0
level is absent in ultrathin films. For a thin film containing
five QLs, the degeneracy of the n = 0 level is lifted due to
hybridization between top and bottom surface states, with
the two components being strongly spin-polarized. Since it
is now possible to probe the properties of 3D TIs in strong
magnetic fields (� 20 T) [28] and to measure sub-meV gaps
in thin films of 3D TIs [29], these spin-polarized states with
a splitting of a few meV can be measured experimentally.
The nontrivial structure of Landau levels, originating from
the realistic band structure and the intersurface coupling, will
affect the properties of 3D TI thin films in magnetic field,
in particular magneto-optical properties, the surface quantum
Hall effect, and the quantum anomalous Hall effect.
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