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Predicting excitonic gaps of semiconducting single-walled carbon
nanotubes from a field theoretic analysis
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We demonstrate that a nonperturbative framework for the treatment of the excitations of single-walled carbon
nanotubes based upon a field theoretic reduction is able to accurately describe experiment observations of the
absolute values of excitonic energies. This theoretical framework yields a simple scaling function from which
the excitonic energies can be read off. This scaling function is primarily determined by a single parameter, the
charge Luttinger parameter of the tube, which is in turn a function of the tube chirality, dielectric environment,
and the tube’s dimensions, thus expressing disparate influences on the excitonic energies in a unified fashion.
We test this theory explicitly on the data reported by Dukovic et al. [Nano Lett. 5, 2314 (2005)] and Sfeir et al.
[Phys. Rev. B 82, 195424 (2010)] and so demonstrate the method works over a wide range of reported excitonic
spectra.
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I. INTRODUCTION

One of the most challenging problems in studying low
dimensional strongly correlated systems is the quantitative pre-
diction of the absolute values of the energies of its fundamental
excitations. These energies are typically nonperturbative in
nature and so lie out of the reach of approximations that
treat interactions as weak. One nonperturbative theoretical tool
that is not so limited is quantum field theory. Quantum field
theories arise as descriptions of condensed matter systems
by focusing on their low energy properties. They have had
considerable success in studying a number of problems
in quantum magnetism [1–7], in particular the remarkable
prediction of an E8 symmetry in a critical quantum Ising model
in a longitudinal field [8] that has been recently observed [9],
one dimensional Mott insulator physics [10–13], and Luttinger
liquids in all of their various forms [14–20]. However, quantum
field theories are best at predicting universal properties of
materials. Typically they do not attempt to understand absolute
values of gap energies, but instead are satisfied with (the
still very nontrivial task of) computing ratios of excitation
energies.

In this paper we show that this restriction need not always
hold. We demonstrate that the data that can be extracted from
a field theoretic analysis can in fact be used to predict the
absolute magnitude of excitation gaps. To this end we analyze
a field theoretic treatment of the excitonic spectrum of semi-
conducting carbon nanotubes [21]. This spectrum determines
the optical properties of carbon nanotubes and so determines
their use in various optical-electronic devices such as solar
cells [22]. The excitonic gaps of semiconducting carbon nan-
otubes are known to be variegated, depending on tube diameter,
chirality, subband, and dielectric environment [23–29]. They
are also known to be strongly renormalized by Coulomb
interactions from their bare, noninteracting values [25,30–
33]. Both of these features make them an ideal testing
ground for the analysis presented herein. While we apply
this analysis to carbon nanotubes, the ideas behind it apply
equally well to other one dimensional (1D) strongly correlated
nanomaterials such as carbon nanoribbons [34], boron nitride

nanotubes [35], and excitons in semiconducting quantum
wires [36].

Typically, excitonic spectra of carbon nanotubes have been
determined using a Bethe-Salpeter equation combined with
first principle input [31,32,37–39]. While this methodology
results in an estimate for the absolute magnitude of an excitonic
gap, it does so by focusing upon a particular subband of a
tube of a particular chirality and in a particular dielectric
environment. In our field theoretic treatment of excitonic
spectra, even though we are interested in the absolute values
of gaps, we are still able to derive a universal scaling function
from which the values of the excitonic gaps can be read off.
The key parameter of this scaling function will be the total
charge Luttinger parameter, Kc+, a measure of the effective
strength of Coulomb interactions in the tube [19,33].

This paper is organized as follows. In Sec. II we both
review and extend the field theoretic treatment of excitons
in carbon nanotubes presented in Ref. [21]. In particular
the new theoretical ingredients found in this paper are an
identification of how the effective bandwidth (or cutoff) in
the field theory depends on the physical parameters of the
nanotubes as well as a full derivation of the corrections due
to this finite bandwidth to the excitonic gaps. It is here then
that we derive a universal scaling function for the excitonic
gaps. In Sec. III we compare the results coming from this
theoretical treatment to actual excitonic data coming from a
wide range of tubes. We demonstrate a good match between
theory and experiment. Finally in Sec. IV we draw conclusions
and discuss future directions.

II. FIELD THEORETIC APPROACH

We begin by reviewing our field theoretical treatment
presented in Ref. [21]. In this treatment we focus on a single
subband of a carbon nanotube. In Appendix C we argue that
intersubband interactions lead only to very weak perturbations
on the spectra of a single subband. This subband at low energies
is described by four sets of right (r = +) and left (r = −)
moving fermions, ψrασ (two for the spin, σ , degeneracy and
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two for the valley, α = K,K ′, degeneracy). These fermions
have a Hamiltonian given by

H =
∫

dx(Hkin + Hgap) + HCoulomb. (1)

The first part of this Hamiltonian, Hkin + Hgap, describes
noninteracting fermions with a band dispersion of ε2(p) =
v2

0p
2 + �2

0:

Hkin = iv0

∑
rασ

rψ†
rασ ∂xψrασ ;

Hgap = �0

∑
rασ

ψ†
rασ ψ−rασ , (2)

where v0 is the bare velocity of the fermions.
HCoulomb, on the other hand, encodes the interactions in the

tube. We only consider the strongest part of this interaction, a
forward scattering term given by

HCoulomb = 1

2

∫
dxdx ′ρ(x)V0(x − x ′)ρ(x ′),

where ρ(x) = ∑
rασ ψ

†
rασ (x)ψrασ (x). A precise enumeration

of the other terms arising from HCoulomb are given in Ref. [19].
However, we have checked that these terms only affect weakly
(at the 1% level) the values of the excitonic gaps.

To treat this model we regroup terms in this Hamiltonian.
We, as per normal, do not treat HCoulomb as a perturbation of
the noninteracting Hamiltonian

∫
dx(Hkin + Hgap). Instead we

treat
∫

dxHgap as a perturbing term of
∫

dxHkin + HCoulomb.
In this picture the “unperturbed” Hamiltonian is nothing more
than the Hamiltonian of a metallic carbon nanotube whileHgap

is treated as a confining interaction on top of the metallic tube.
We can make progress here through bosonization.

The interacting metallic tube has an extremely simple form
under bosonization [19,20]. Introducing the chiral bosons φrασ

(see Appendix A for our bosonization conventions), we can
write the right and left moving fermions via

ψrασ ∼ exp(iφrασ ). (3)

Once this is done, we arrive at a theory of four Luttinger liquids
described by the four bosons θi , i = c±,s± (and their duals φi),

H0 =
∫

dx
∑

i

vi

8π

(
Ki(∂xφi)

2 + K−1
i (∂xθi)

2
)
. (4)

These four bosons θi , i = c±,s± are linear combinations of the
original four bosons. These combinations separate out charge
and flavor degrees of freedom in the tube. For our purposes
the most significant boson is the total charge boson,

θc+ =
∑
r=±

r

2
(φrK↑ + φrK↓ + φrK ′↑ + φrK ′↓), (5)

as it is the only boson to see the effects of the Coulomb
interaction. In particular, the charge Luttinger parameter,
Kc+, and the charge velocity, vc+ = v0/Kc+, are strongly
renormalized while the remaining three Luttinger parameters
are equal to 1.

For long range Coulomb interactions [19], Kc+ has the form

Kc+ =
(

1 + 8e2

πκ�v0
[− log(kminR) + c0]

)−1/2

. (6)

This expression for Kc+ takes into account all of the key
identifiers of the tube. κ is the dielectric constant of the medium
surrounding the tube and is the factor that determines most
strongly the effective strength of the Coulomb interaction, i.e.,
how much Kc+ deviates from 1. kmin is the minimum allowed
wave vector in the tube. It necessarily has to be larger than
2π/L where L is the length of the tube, but can in principle
be much larger, say on the order of the inverse mean free path
in the tube. R is the tube’s radius and finally c0 is a wrapping
vector [the vector (n,m) that identifies how a graphene sheet
is rolled up to form a particular tube] dependent O(1) constant
whose derivation can be found in Refs. [18] and [19]. In typical
nanotubes, Kc+ can take on values in the range of ∼0.2.

Having bosonized H0 we now turn to the bosonization of
Hgap. Under bosonization this term takes on a sine-Gordon-like
form, i.e.,

Hgap = 4�̃0

π

[∏
i

cos

(
θi

2

)
+

∏
i

sin

(
θi

2

)]
, (7)

where �̃0 = �0()(/vc+)(1−Kc+)/4 and  is the effective
bandwidth of the tube [40]. As we stressed in Ref. [21], this
renormalization of the gap has important consequences for
the excitonic physics of the tube. In field theoretic language,
the coupling �0, has picked up an anomalous dimension.
Rather than purely having the dimensions of energy, �̃0 now
has the dimensions of energy(5−Kc+)/4 × velocity(Kc+−1)/4. This
means that all excitation gaps of the tube no longer linearly
scale with �̃0 but scale rather with the nontrivial power
�̃

4/(5−Kc+)
0 . Coupling constants (here the bare gap) inheriting

“anomalous dimensions” is a standard feature of quantum field
theories. These anomalies allow one to easily access aspects
of nonperturbative physics: An immediate consequence of
this was argued in Ref. [21] to be that the ratio of excitons
between the first and second subbands goes as 24/(5−Kc+) (not
2 as predicted by noninteracting band theory), so providing a
straightforward resolution of what Ref. [33] termed the exciton
ratio problem.

In the above we have written the bare gap as �0 = �0()
to indicate that this bare gap has a cutoff dependence. In our
calculations we will always import the value of this bare gap
from a tight-binding description of the nanotube of concern.
But it is important to stress (as will be apparent in the next
section) that any tight-binding description has this built-in
cutoff (which is related to the bandwidth of the model).

Derivation of a scaling form for excitonic gaps

In this section we go beyond this basic characterization
of scaling in the theory and develop a scaling function for
the gap able to predict gap magnitudes with good quantitative
accuracy. An important part of this development will be to
understand how corrections induced by the presence of a finite
cutoff, , affect the end predictions of the gap magnitude.
In a treatment of the tubes as a tight-binding lattice model,
this would always be implicit as the cutoff would be found
in the various lattice parameters (for example, the hopping
amplitudes of the model). But because we are working in a
continuum reduction, we have to make the effects of the cutoff
explicit. As will be seen, we will also have to worry about how
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to connect the cutoff of the physical system with the cutoff
present in our numerical treatment of the continuum model.

We begin the development of the scaling function by using
dimensional analysis. This tells us that the gap, Eα , of any
excitation α (exciton, single particle, or otherwise) takes the
following universal form:

Eα = f 
α (Kc+)�̃4/(5−Kc+)

0 v
μ(Kc+)
c+ , (8)

with μ(Kc+) = (1 − Kc+)/(5 − Kc+) and where f 
α (Kc+)

is some dimensionless function. We want to stress that
this form is nonperturbative and does not depend on the
strength of the bare gap �0. This fact derives from the
anomalous scaling dimension of the renormalized coupling �̃0

appearing inHgap, being exactly 3/4 + Kc+/4. The anomalous
dimension of this coupling arises from the normal ordering
of the cosine operator. This normal ordering removes all
UV divergences [40] in the model and so the anomalous
dimension of the operator is the same regardless of the value
of �0. In general when considering a massless 1 + 1D field
theory (here the metallic carbon nanotube) perturbed by a
relevant operator (here Hgap), the anomalous dimension of the
perturbing operator is unchanged (and so is a nonperturbative
quantity) when this dimension is less than 1 (as is the case
here) because in such cases the theory is completely UV
finite (i.e., there are no UV divergences which might lead
to further changes in the perturbing operator’s anomalous
dimension) [41].

The dimensionless scaling function has the general form

f 
α (Kc+) = f ∞

α (Kc+)

[
1 + A(Kc+)

(
�̃0

v0

)2(
v0



)(5−Kc+)/2
]

.

(9)

f ∞
α (Kc+) governs the gap in the large bandwidth,  � �0,

limit and was already determined in Ref. [21]. However, not
previously considered, the scaling function sees corrections
at finite bandwidth. These corrections will be important for
predicting accurately the excitonic gaps of excitons in the
higher subbands. The constant A(Kc+) is a dimensionless
parameter (but depends on the charge Luttinger parameter) that
governs the size of these corrections. It is plotted in Fig. 2(a).
The form of A(Kc+) is derived in what follows.

To begin to derive the form of the scaling function in
Eq. (9), we will first consider the effects of the cutoff on the
excitation spectrum in the context of a particular regulation
scheme. The scheme, a numerical one, goes under the name
TCSA-NRG (truncated conformal spectrum approach with
a numerical renormalization group) [21]. It is an extension
of the TCSA developed in Ref. [42] in that it adds a
numerical renormalization group procedure modeled after the
one developed by Wilson [43] to study quantum impurity
problems. We will first detail how the cutoff as implemented
in the numerics effects gaps and then turn to how to connect
the numerical cutoff with the cutoff of the actual system, the
carbon nanotube.

TCSA-NRG is able to study any Hamiltonian which can be
written as a perturbed conformal field theory:

H = HCFT + λ�perturbation, (10)

where here in this case HCFT is a theory of four
bosons, θi , the coupling λ equals 4�̃0/π , and �perturbation =
[
∏4

i=1 cos(θi/2) + ∏4
i=1 sin(θi/2)]. The method uses the

Hilbert space of HCFT as a computational basis. (For details of
the case at hand, see Refs. [21] and [44].) This computational
basis is optimal because the exact computation of matrix
elements of �perturbation is readily done using the commutation
relations of the governing algebra of the unperturbed confor-
mal theory, the Virasoro algebra. Being able to compute these
matrix elements means H can be recast as a matrix. For this
matrix to be a finite matrix, we need to truncate the Hilbert
space of HCFT. The unperturbed energies of the eigenstates of
HCFT, {|β〉}, appearing in the excitonic sector have the form

Eβ =
4∑

i=1

v0

Ki

(
2πni

LT CSA

− c

12LT CSA

)
, (11)

where the ni are integers and c is the central charge of a single
boson (c = 1). Here LT CSA is the length of the system used in
the numerics and is to be distinguished both from the radius, R,
of the nanotube and the length, L, of the tube. We do not have
to choose LT CSA to be equal to L. One of the features of this
numerical scheme is that finite size effects are exponentially
small (provided the system has a finite gap) and so typically
we work in a regime where LT CSA 	 L but LT CSA�0 � 1.

To implement the cutoff in the numerics we insist that the
integers, ni , appearing in Eq. (11) satisfy∑

i

(ni/Ki) � N.

This allows us to define the cutoff of this method as

T CSA = v0
2πN

LT CSA

, (12)

where N is some integer.
With this in hand, the next step in the derivation of the

scaling form is to write down the β function of the coupling
constant �̃0 that governs the size of the gaps. Manipulation of
this β function will allow us to write down the scaling form
for the gap that appears in Eq. (9). The β function has the form

N
d�̃0

dN
= α(Kc+)

�̃3
0

v2
0

(
LT CSA

2πN

)(5−Kc+)/2

+O

[
�̃5

0

(
LT CSA

N

)5−Kc+
]

. (13)

Now this β function is written down to lowest order in �0.
However, higher order terms in the β function are suppressed
by powers of 

−(5−Kc+)/2
T CSA and as we are interested in the

correction that comes from having a large but finite cutoff in the
theory, this order is sufficient for our purposes. In principle the
numerical coefficient α(Kc+) can be determined analytically.
This, however, is complicated in this case because we have a
theory of four bosons whose velocities are not all the same.
As such we will extract it numerically from the TCSA data.
This numerical determination is what is used to plot A(Kc+)
in Fig. 2(a). The form this β function has can be determined
following Refs. [45] and [46] by insisting that the partition
function of the theory remains invariant under changes in the
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cutoff T CSA. In the gapped phase of the theory with LT CSA

sufficiently large this is equivalent to insisting the gaps of
the theory are invariant under the renormalization group (RG)
flow.

If we integrate this β function we obtain an expression
relating the coupling in the absence of a cutoff to that with a
cutoff:

�̃0(N = ∞) = �̃0(N )

1 − 2α(Kc+)
5−Kc+

�̃2
0(N)
v2

0

(
LT CSA

2πN

)(5−Kc+)/2
. (14)

This relation tells us how to obtain the same numerical values
for the gaps, Eα , from two different theories: one with no cutoff
and a value of �̃0 = �̃0(N = ∞), and one with a finite cutoff
T CSA = 2πN/LT CSA and �̃0 = �̃0(N ) where �̃0(∞) and
�̃0(N ) are related by the above equation.

The gaps, Eα , in the absence of a cutoff, depend on the
coupling �̃0(∞) via the relation

Eα(N = ∞,�̃0 = �̃0(∞)) = f ∞
α �̃0(∞)4/(5−Kc+), (15)

a simple consequence of dimensional analysis (taking into
account the anomalous dimensions of the coupling constant,
�̃0). By the RG invariance just described, we have Eα(N =
∞,�̃(∞)) = Eα(N,�̃(N )). So substituting this into Eq. (15)
and using Eq. (14) we obtain the desired scaling form:

Eα(N,�̃0(N )) = f ∞
α (�̃0(N ))4/(5−Kc+)

[
1 + 8α(Kc+)

(5 − Kc+)2

×
(

�̃0(N )

v0

)2 (
LT CSA

2πN

)(5−Kc+)/2 ]
. (16)

In the above there is a quantity �̃0(N ). This is nothing but the
value of the renormalized gap at the cutoff  of the theory,
i.e., �̃0(N ) = �̃(). This is now almost the scaling function,
Eq. (9). The only issue is that this is expressed in terms of
the TCSA cutoff T CSA = 2πv0N/LT CSA that arises from
our numerical treatment of the problem and not the effective
bandwidth of the tube, .

To determine the relationship between  and T CSA we
begin by considering the bosonization formula giving the
right/left moving fermion, ψ

†
±, in terms of a normal ordered

vertex operator of a boson:

ψ
†
±(x) ∼: eiφ±(x) : . (17)

In writing this expression we have dropped prefactors such as
Klein factors—for our purposes what matters is the normal
ordered exponential. The key to the relationship between 

and T CSA is found in the relation between the normal ordered
vertex operator and its unnormal ordered counterpart:

: eiφ±(x) : =
√

2π

LT CSA

eiφ±(x)e1/2
∑N

n>0(1/n)

≈
√

2π

LT CSA

eiφ±(x)eγ/2N1/2, (18)

where γ is the Euler constant and the factor
√

2π/LT CSA en-
sures the engineering dimension of the normal ordered vertex
operator matches its anomalous dimension. The appearance
of N = LT CSAT CSA/(2πv0) reflects our use of the TCSA

cutoff to regulate the UV divergences that normal ordering
exhibits in the theory.

When we initially bosonize the theory, the total charge
boson is normal ordered assuming Kc+ = 1. When we rediag-
onalize the theory, absorbing the forward scattering part of the
Coulomb interaction into the quadratic part of H, we have to
adjust the normal ordering to take into account Kc+ �= 1. We
do so as follows:

: eθc+/2 :Kc+=1 =
(

2π

LT CSA

)1/4

eγ/4N1/4
c eiθc+/2

=
(

eγ 2πNc

LT CSA

)(1−Kc+)/4

: eθc+/2 :Kc+�=1 ,

where the subscripts : · :Kc+ indicate the value of Kc+ for which
the normal ordering is being done. We use Nc instead of N as
Nc governs the maximal energy in the total charge (c+) sector
of the theory, not the entire theory itself. The two are related
via

Nc+ = Nv0

4vc+
, (19)

assuming an equipartition of energy between the four bosons
in the theory. It is this difference in normal ordering prefactors
that is absorbed into the bare coupling, �0, when we bosonize
the theory in Eq. (7).

�̃0 = �0

(
eγ 2πNc+

LT CSA

)(1−Kc+)/4

. (20)

Comparing the above with the relation �̃0 =
�0(/vc+)(1−Kc+)/4 then implies



vc+
= eγ

4vc+
T CSA. (21)

We are now close to having a useful form for the scaling
function. What remains is to determine how , the effective
bandwidth of theory, is related to the properties of the
nanotube.

 reflects the largest energy scale in the low energy
reduction of the tube. This energy scale is not the bandwidth
of graphene (∼9 eV), but rather some much smaller scale
reflecting that the electrons on the tubes are delocalized around
the tube’s circumference. We thus take as an ansatz



vc+
= B

d
, (22)

where B is an O(1) dimensionless constant and d = 2R is the
tube’s diameter. We cannot directly determine this constant, but
treat it as a fitting parameter, the only undetermined parameter
of this approach. But we will see the same constant works over
tubes with a wide variety of radii, different subbands within
the same tube, and tubes in different dielectric environments.
We will also see, as an important self-consistency check, that
this same relation determines the finite bandwidth corrections
to the excitonic gaps of higher subbands. Because the intuition
behind this ansatz is of electron delocalization transverse to
the main axis of the 1D system, we expect analogous relations
to hold in other strongly correlated one dimensional materials.
We consider this ansatz (and the fact that it works) to be one
of the central results of this paper.

075417-4



PREDICTING EXCITONIC GAPS OF SEMICONDUCTING . . . PHYSICAL REVIEW B 91, 075417 (2015)

2 3 4 5 6 7 8 9 10
1/Kc+

2

2.1

2.2

2.3

2.4

2.5
f

ii(K
c+

 )(
v c+

/v
0)μ(

K
c+

)

2

4

6

8

10

12

f
co

nt
(K

c+
)(

v c+
/v

0)μ(
K

c+
)

iiE Econt

cb

vb

FIG. 1. (Color online) The scaling functions [see Eqs. (8)
and (9)] for the Eii excitons (excitons formed as a bound state of
a hole in the i th valence subband and a particle in the i th conduction
subband) and the particle-hole continuum, Econt. At Kc+ = 1 (the
noninteracting limit) these functions go to 2. Inset: Sketch of Eii and
Econt excitations.

The scaling function can then be put in the form

Eexc = f ∞
exc�̃

4/(5−Kc+)
0

×
[

1 + A(Kc+)

(
�̃()

v0

)2 (v0



)(5−Kc+)/2
]

;

A(Kc+) = 8α(Kc+)

(5 − Kc+)2

(
eγ

4

)(5−Kc+)/2

, (23)

where α(Kc+) is defined in the RG equation [Eq. (13)]. The
final detail to be discussed is the numerical determination
of the coefficients f ∞

exc and A(Kc+). To extract these, we
numerically study the full Hamiltonian, H0 + Hgap, using
the previously mentioned TCSA-NRG. The coefficients f ∞
for the excitons and particle-hole continuum were already
determined in Ref. [21] (where details of the numerical
analysis can be found) but because these are central quantities
for the purpose of analyzing experimental data, we reproduce
them here in Fig. 1 where they are plotted as a function of Kc+.

We see the scaling function for Eii is relatively flat as
a function of Kc+ while that of Econt varies comparatively
sharply. In the limit Kc+ tends to 1 (the noninteracting limit),
the scaling function f ∞

ii tends to 2 (i.e., the exciton energy is
that of the bare (noninteracting) particle-hole continuum gap).
In the limit Kc+ tends to 0, f ∞

ii ∝ K
−1/5
c+ , only going to infinity

slowly. In contrast, f ∞
cont grows much more quickly, going as

K−1
c+ . We have thus quantified the general observation [33] that

the renormalization of the single particle gap due to Coulomb
interactions is much more marked than that of the excitons. It is
also much stronger than has been suggested in random-phase-
approximation-type computations [47]. We immediately infer
that the binding energy of the exciton as a fraction of the
exciton energy grows as K

−4/5
c+ as Kc+ → 0. We will see in

the next section that this leads to very large predicted binding

2 4 6 8 10
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FIG. 2. (Color online) (a) The function A(Kc+) giving the size of
the finite bandwidth correction to Eii . (b) The size of this correction,
δEexc, for the excitons, E33 and E44, of the four tubes studied in
Ref. [23].

energies for the tubes which we study using this approach (see
Figs. 5 and 6).

Also shown in Fig. 2 [panels (a) and (b)] are numerical
data demonstrating the size of the finite bandwidth corrections
to the tubes. In Fig. 2(a) we plot the coefficient A(Kc+)
governing how the finite bandwidth correction affects the
excitonic energies. And in Fig. 2(b) we plot the overall size
of the finite bandwidth correction for excitons in the third and
fourth subbands in the tubes studied in Ref. [23]. We plot it
for these tubes in particular because the bandwidth correction
here is large (on the order of several hundred meV).

III. ANALYSIS OF EXPERIMENTAL DATA

We now examine how this theoretical approach fares in
predicting the excitonic data of Refs. [23] and [24]. These
papers present excitonic gaps of tubes for a wide range
of diameters and subbands as well as different dielectric
environments. We note that despite representing a wide
collection of tubes, the effective Kc+ for this collection has
a comparatively small range, 0.16 < Kc+ < 0.26. This might
make one think that the test of our approach is rather limited.
However for a given tube, the predicted excitonic gap will vary
by up to 10% for this range of Kc+’s whereas, as we will see, the
accuracy of our predictions is typically within a few percent.
Another aspect of the scaling form that is similarly tested is
its accuracy in predicting the dependency of excitonic gaps
on tube diameter. We stress that the ansatz taken in Eq. (22)
for the relation between the cutoff of the tube and its diameter
is a key part of this analysis and proves to be remarkably
good. Getting this wrong (say by taking a single uniform
diameter-independent cutoff) would lead to deviations to the
gaps on the order of 10%, whereas again we find agreement
between our theory and experiment to be on the order of a few
percent.

A. Excitonic gaps

Let us now turn to the data. In Ref. [23] measurements
were performed on a set of four larger diameter tubes (d
running from 1.86 to 2.14 nm). In each of the four tubes,
the first four single photon excitons, Eii , i = 1, . . . ,4, were
measured. E33 and E44 were studied by suspending the
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nanotubes and using Rayleigh scattering spectroscopy. In
these measurements the relevant dielectric constant was κ = 1.
These same tubes were then printed onto a silicon wafer
where source and drain electrons were patterned. This enabled
E11 and E22 to be measured by a complimentary technique,
Fourier-transform photoconductivity. In this configuration the
effective dielectric constant of the tubes is the average of air
and silicon dioxide, κ = (1 + κSiO2 )/2 = 2.45, a result easily
derived from considering the effective potential between two
charges confined to the interface of two media with different
dielectric constants. To determine the appropriate value of
the Luttinger parameter for these tubes, we need to specify
kmin. The length, L, of the tubes of Ref. [23] was typically
L ∼ 2 μm (a number equal to the mean free path [48]), lmf , and
so we take kmin = 2π/L. This leads to a Luttinger parameter of
Kc+ = 0.16 for the tubes suspended in air and Kc+ = 0.24 for
the tubes printed onto the silicon substrate. The smaller Kc+
for the suspended tubes indicates the action of a considerably
stronger effective Coulomb interaction for the tubes in this
configuration.

In Ref. [24] the single photon excitons, E11, were measured
for a set of 13 tubes with diameters between 0.78 and 1.18
nm. The tubes were embedded in a polymaleic acid/octyl
vinyl ether (PMAOVE) matrix with an effective dielectric
constant of κ = 2.5 [25]. The excitons were measured using
two photon spectroscopy—thus the E2g photons were also
studied in this work but will not be considered here. As the
length of tubes in the PMAOVE matrix was reported to be
L = 400 nm [49], far smaller than lmf , we take kmin = 2π/L

here. This leads to a Luttinger parameter of Kc+ = 0.26.
Because of the logarithmic dependence of Kc+ upon kmin,
Kc+ is relatively insensitive to O(1) changes of kmin.

As an ingredient to our analysis of the data in Refs. [23]
and [24] we need to determine the bare value of the gap, �0,
for each tube. We do so with a tight-binding model based
on wrapping a honeycomb lattice of nearest neighbor spacing
a0 = 1.42 Å and hopping parameter t = 3.0 eV. We do not
attempt to include curvature, twist, or stress corrections to �0

(for a discussion of these see Refs. [50] and [51]) although for
small radius tubes such corrections may not be insignificant.
But to be able to do so would require detailed characterization
of the tubes in their environment, which is not available.

As we have explained the treatment has one fitting param-
eter: the constant B governing the relationship between the
effective bandwidth of the nanotube and the tube’s diameter,
d. To find this constant B we focus on the four E11 excitonic
gaps reported in Ref. [23]. We focus on these gaps because
for these the correction due to finite bandwidth [the second
term in Eq. (9)] can safely be ignored. When we fit Eq. (22)
we find B ∼ 0.51. We will henceforth use this value for B to
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Eii for Large Radius Tubes

E11, p=1

E22, p=2

(Kc+ = 0.24, κ = 2.45)

E33, p=4

E44, p=5

(Kc+ = 0.16, κ = 1)

FIG. 3. (Color online) Comparison of the measured exciton gaps
of the first four subbands, Eii , i = 1,2,3,4 (p = 1,2,4,5 in the
notation of Ref. [33]) of four nanotubes with different chiralities
(as reported in Ref. [23]) with gaps derived from the scaling function
determined by TCSA-NRG.

determine theoretical values of the gaps for all the other single
photon excitons reported in Refs. [23] and [24].

Remarkably this relationship between the bandwidth and
the tube’s diameter leads to excellent values for the other
excitonic gaps considered in this study. To demonstrate this
we first consider all (16) of the gaps reported in Ref. [23]. Our
results for the gaps are presented in Table I and Fig. 3. We see
that the agreement between the theoretically predicted values
of the gaps and the corresponding experimentally measured
values is better than 2% for the E11, E22, E44, and one of
the E33 gaps and on the order of 5% for the remaining E33

gaps. The relatively good agreement found for the E33 and
E44 gaps is a result of taking into account the finite bandwidth
corrections coming from the subleading term in Eq. (9) where
the corrections for E33 and E44 are large [>100 meV—see
Fig. 2(b)]. These corrections in Eq. (9), inasmuch as they
are proportional to �̃2

0/
(5−Kc+)/2, depend in turn upon our

identification of  with the tube diameter. It is an important
consistency check for this ansatz in Eq. (22) that the computed
corrections lead to a good match between the experiment and
theory.

We find similar good agreement in our theoretical analysis
of the E11 excitons reported in Ref. [23]. Using the same

TABLE I. Comparison of the experimental and theoretical values of Eii of the large radius tubes reported in Ref. [23]. All energies are in
units of eV.

(n,m) Kc+, i = 1,2 �0,11 E11,Theor. E11,Expt. �0,22 E22,Theor. E22,Expt. Kc+, i = 3,4 �0,33 E33,Theor. E33,Expt. �0,44 E44,Theor. E44,Expt.

(14,13) 0.241 0.232 0.56 0.55 0.466 1.00 0.96 0.156 0.913 1.89 1.89 1.139 2.36 2.34
(19,14) 0.244 0.190 0.45 0.45 0.377 0.80 0.78 0.158 0.759 1.57 1.64 0.921 1.91 1.87
(17,12) 0.242 0.216 0.52 0.53 0.427 0.92 0.92 0.157 0.863 1.79 1.89 1.039 2.16 2.18
(18,13) 0.243 0.202 0.48 0.48 0.400 0.86 0.84 0.158 0.808 1.68 1.76 0.977 2.03 2.03
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(Kc+ = 0.26, κ = 2.5)

FIG. 4. (Color online) Comparison of the measured exciton gaps
of the first subband, E11, in a set of small radius tubes as reported in
Ref. [24] with those computed using TCSA-NRG.

relationship as before of the bandwidth to the tube diameter
(i.e., the coefficient B), we plot our predicted values for E11

against those measured in Ref. [24] in Fig. 4. We see that in
general we get good agreement between theory and experiment
for these small radius tubes (see Table II). What discrepancies
we do see (which are most pronounced for the tubes with the
smallest radius) are a likely consequence of omitted curvature,
strain, and twist effects on the bare gap, �0, for this set of
tubes (which we note again we cannot directly estimate).

B. Excitonic binding energies

We finally consider the excitonic binding energies of the
E11 excitons reported in Refs. [23] and [24]. We first plot
in Fig. 5 the excitonic binding energies as a function of
K−1

c+ . The binding energies are presented as a fraction of
the exciton gap. We see that for K−1

c+ large, the binding
energies can be many multiples of the excitonic gap itself.

TABLE II. Comparison of the experimental and theoretical values
of E11 of the small radius tubes reported in Ref. [24].

(n,m) Kc+ �0,11 E11,Theor. E11,Expt.

(8,3) 0.26 0.562 1.35 1.30
(6,5) 0.26 0.564 1.36 1.26
(7,5) 0.26 0.523 1.25 1.21
(10,2) 0.26 0.499 1.20 1.18
(9.4) 0.26 0.478 1.15 1.13
(7,6) 0.26 0.479 1.15 1.1
(8,6) 0.26 0.448 1.08 1.06
(11,3) 0.26 0.434 1.04 1.04
(9,5) 0.26 0.436 1.03 1.00
(8,7) 0.26 0.416 0.97 0.98
(9,7) 0.26 0.392 0.94 0.94
(12,4) 0.26 0.383 0.92 0.92
(11,6) 0.26 0.367 0.88 0.89
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1/Kc+
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FIG. 5. (Color online) Binding energy of the excitons as a func-
tion of K−1

c+ expressed in units of the excitonic gap.

As K−1
c+ decreases, the fractional exciton binding energy

decreases linearly in line with the linear decrease of Econt

[as seen in Fig. 1(a)]. In Fig. 6 we plot the excitonic binding
energies for the E11 excitons. Given that K−1

c+ ∼ 4 for these
gaps, we see that from Fig. 5 the binding energies roughly
equal the gaps, E11, themselves. The estimates of the binding
energies for the E11 excitons of Ref. [24] are considerably
larger than those in Ref. [39], a consequence of our much
larger estimate here of the renormalized band gaps. It would
thus be of considerable interest if these band gaps could be
measured directly. But this is a difficult task as the standard
method for measuring the particle-hole continuum, scanning
tunneling microscopy [52], involves placing the tubes on a
metallic substrate. The consequent screening of the Coulomb
interaction leads to values of Kc+ near to 1, far away from
values of Kc+ appropriate for the excitons measured in
Refs. [23] and [24].
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FIG. 6. (Color online) The predicted binding energies of the
excitonic gaps, E11, reported in Refs. [23] and [24].
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IV. CONCLUSIONS

In summary, we have presented a quantum field theoretical
formalism able to predict the absolute magnitudes of optically
active excitons in semiconducting carbon nanotubes over a
wide range of diameters, subbands, and dielectric environ-
ments. This method involves a single fitting parameter, B,
relating the effective bandwidth of the tube to the tube’s
diameter. Once this parameter is in hand, a simple scaling
function yields the excitonic gaps for arbitrary nanotubes.
We have compared the predictions of this formalism with the
excitonic data of Refs. [23] and [24] and have found good
agreement. Finally we believe the methodology introduced
here can be used to determine the absolute magnitude of
excitation gaps in other one-dimensional strongly correlated
materials.
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APPENDIX A: BOSONIZATION CONVENTIONS

In this section we outline our bosonization conventions. We
follow those of Ref. [12] with a few adjustments that will be
noted. We begin by writing the four species of fermions, ψασ

(characterized by the quantum numbers for spin σ =↑ / ↓ and
valley α = K,K ′), in terms of their right and left moving parts:

ψασ ∼ ψ+ασ eikFα x + ψ−ασ e−ikFα x . (A1)

We in turn bosonize these right and left moving fermions in
the standard way:

ψrασ = κασ√
2π

: eiφrασ : r = +,− = right,left. (A2)

The extra 1/
√

2π in comparison to Ref. [12] here arises
because we use conformal conventions in how we write the
normal ordered vertex function in terms of its non-normal
ordered counterpart [see Eq. (18)]. Here κασ are Klein factors
satisfying

{κjα,κiβ} = 2δij δαβ. (A3)

In terms of these four Bose fields, four new Bose fields are
defined (effectively separating charge and spin):

φrc+ = 1
2 (φrK↑ + φrK↓ + φrK ′↑ + φrK ′↓);

φrs+ = 1
2 (φrK↑ − φrK↓ + φrK ′↑ − φrK ′↓);

φrc− = 1
2 (φrK↑ + φrK↓ − φrK ′↑ − φrK ′↓);

φrs− = 1
2 (φrK↑ − φrK↓ − φrK ′↑ + φrK ′↓). (A4)

The first and second bosons in the above describe total charge
and spin fluctuations, respectively. The latter two bosons,
φrc− and φrs−, describe relative charge and spin fluctuations
between the two valleys of the nanotube. We note that our
definition of φLc− differs by a minus sign from Ref. [12] [this
sign was introduced to exhibit explicitly an underlying SO(8)

symmetry in a related model describing two-leg Hubbard
ladders].

From these chiral bosons, one can define pairs of conjugate
bosons in the standard fashion:

ϕi = φRi + φLi ;
θi = φRi − φLi, (A5)

which obey the commutation relations,

[ϕ(x),θ (x ′)] = −i4π�(x ′ − x), (A6)

where �(x − x ′) is the Heaviside step function.
In terms of these variables the kinetic part of the Hamilto-

nian can be written

Hkin = v0

8π

∑
i=c±,s±

{(∂xϕi)
2 + (∂xθi)

2}, (A7)

while HCoulomb becomes

HCoulomb = v0

8πK2
c+

∫
dx(∂xθc+)2 (A8)

(see Refs. [19] and [20]). For HCoulomb we have dropped terms
that are marginal. We have explicitly checked that such terms
lead only to very small corrections to the excitonic spectrum
(less than 1%) [21]. Putting the above together, we obtain
Eq. (4) of the main text:

H0 = 1

8π

∑
i=c±,s±

vi

{
Ki(∂xϕi)

2 + 1

Ki

(∂xθi)
2

}
. (A9)

Finally with these bosonization conventions, Hgap reduces to

Hgap = 4�̃0

π

[∏
i

cos

(
θi

2

)
+

∏
i

sin

(
θi

2

)]
, (A10)

as written in Eq. (7) of the main text.

APPENDIX B: CORRECTIONS TO EXCITONIC
ENERGIES DUE TO INTERSUBBAND INTERACTIONS

In this section we will compute the corrections to excitonic
energies due to interactions between subbands. We will
demonstrate that they are proportional to v4

0/c
4 where c is the

speed of light and so are small.
Consider an excitonic excitation in subband i with energy

�i . The forward scattering portion of the intersubband
Coulomb interaction (as with the intrasubband interactions,
the strongest part of the Coulomb interaction) takes the form

HinterCI =
∑
i>j

∫
dxdx ′ρi(x)Vc(x − x ′)ρj (x ′), (B1)

where ρi is the density in the i th subband. In the long
wavelength limit this can be rewritten as

HinterCI =
∑
i>j

∫
dxρi(x)ρj (x)Vc(k = 0)

= �
∑
i>j

∫
dx∂xθc+,i(x)∂xθc+,j (x), (B2)
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where � = v0/(8πKc+) and we have used in the second line
the bosonized expressions for the electron densities in the
subbands.

In second order perturbation theory the correction to �i

takes the form

δ�i = �2
∑

n

|〈�i | ⊗ 〈GSj |HinterCI |GSi〉 ⊗ |�n,j 〉|2
�i − �n,j

, (B3)

where |�n,j 〉 is some excitation in the j th subband with parity
odd symmetry (i.e., odd under θc+,j → −θc+,j ) with energy
�n,j . The lowest energy such excitations are the one-photon
excitons in subband j . The state |GSj 〉 is the ground state of
the j th subband. The matrix elements that we have to evaluate

in this sum take the form

〈�i |ρi(x)|GSi〉 = Mie
ipixpi ;

〈�n,j |ρj (x)|GSj 〉 = Mn,j e
ipj xpj,n, (B4)

where Mi and Mn,j are O(1) constants (as can be verified
numerically) and pi/pn,j are the momenta of the excitations
|�i〉/|�n,j 〉. Thus the energy correction takes the form

δ�i =
∑

n

v2
0p

4
1|Mi |2|Mj,n|2�2(

�2
i + v2

0p
2
i

)
(�i − En,j )

. (B5)

As one can see this correction vanishes as the momentum of the
exciton goes to zero. Typically the momentum of an optically
excited exciton will be equal to �i/c, implying that δ�i is
proportional to (v0/c)4 and so is very small.
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