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Quantum capacitance and compressibility of graphene: The role of Coulomb interactions
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Many-body effects on quantum capacitance, compressibility, renormalized Fermi velocity, and kinetic and
interaction energies of massless Dirac electrons in graphene, induced by Coulomb interactions, are analyzed
theoretically in the first-order, Hartree-Fock, and random-phase approximations. Recent experimental data on
quantum capacitance and renormalized Fermi velocity are analyzed and compared with the theory. The bare
Fermi velocity and the effective dielectric constants are obtained from the experimental data. A combined effect
of Coulomb interactions and Gaussian fluctuations of the disorder potential is considered.
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I. INTRODUCTION

The discovery of graphene, a two-dimensional carbon
material with effectively massless electrons, stimulated new
fundamental and applied studies in solid-state physics [1–3].
In recent years, considerable attention has been attracted to
the problem of compressibility and quantum capacitance of
graphene, which is connected both with fundamental physics
of the Coulomb-interacting gas of massless electrons and
with possible applications of graphene in electronics and
energy-storage technologies.

In the early experiments [4] on graphene electron compress-
ibility, results consistent with the model of a noninteracting
Dirac electron gas were reported. The linear dispersion and chi-
rality of graphene electrons were proposed as possible causes
of the apparent absence of electron interaction signatures [5].

The recent experiments [6–8] on measuring electron com-
pressibility or quantum capacitance in high-quality graphene
samples revealed signatures of electron interactions, consistent
with the many-body calculations [9–13] of these quantities.
The observed interaction-induced effects are closely related
to the logarithmic renormalization of the electron Fermi
velocity in graphene in the vicinity of the charge neutrality
point (CNP), which was observed by different experimental
groups [14–18] and was considered in theoretical literature
(see [19], reviews [1–3], and literature cited in [20]).

A random potential, arising in real graphene samples due to
charged impurities and corrugations, manifests itself in the for-
mation of electron-hole puddles [4,18,21–23] and qualitatively
changes graphene physics at low carrier densities near CNP.
Disorder has been proposed as a source of the observed nonva-
nishing compressibility and quantum capacitance of graphene
at CNP [8,23–29]. To describe the experimentally measured
dependencies of compressibility and quantum capacitance on
the electron density the model of Gaussian fluctuations of
the disorder potential was successfully used [23,29–33]. The
random-phase approximation with a polarizability, modified
by disorder, was used to calculate the compressibility in [12].

In the present paper, we perform a theoretical study
of quantum capacitance and related properties of graphene
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in the presence of Coulomb interactions in the first-order
approximation (FOA), Hartree-Fock approximation (HFA),
and random-phase approximation (RPA). In order to obtain
the bare Fermi velocity vF, we analyze the recent experi-
mental data on quantum capacitance and renormalized Fermi
velocity [6–8,18]. The influence of Coulomb interactions on
quantum capacitance and renormalized Fermi velocity (see
Sec. III for the definition) as well as the kinetic and interaction
energies of an electron gas in graphene are studied in FOA,
HFA, and RPA. A combined effect of Coulomb interaction
and disorder on these quantities is studied within the model of
Gaussian electrostatic potential fluctuations.

We show that both HFA and RPA are in close agreement
with the experiments at vF ≈ 0.9 × 106 m/s, although HFA
requires much larger effective dielectric constants of the
surrounding media to simulate the screening, which is lacking
in this approximation. The influence of Coulomb interactions
on the properties of the electron gas has two major features:
exchange effects push the Fermi velocity to higher values and
the quantum capacitance to lower values; correlation effects
partly compensate the exchange ones. The renormalized Fermi
velocity increases up to 50% at the lowest achievable densities
near CNP and by 10%–20% away from CNP. The quantum
capacitance is typically reduced by 10%–15%, although
it can be described within the noninteracting model with
vF ≈ 1.1 × 106 m/s. In the presence of disorder, a nonzero
quantum capacitance appears at CNP, in agreement with the
experiments, whereas the renormalized Fermi velocity turns
out to be suppressed near CNP.

This paper is organized as follows. Is Sec. II we present
theoretical models used to calculate the characteristics of the
electron gas. In Sec. III we perform an analysis of experimental
data. Many-body effects of Coulomb interactions on the
properties of the electron gas in graphene are studied in Sec. IV.
The influence of disorder is considered in Sec. V, and Sec. VI
concludes the paper.

II. THEORETICAL MODELS

We start with a description of the electron gas in graphene
in terms of a grand-canonical ensemble when the temperature
T , chemical potential μ, and area of the system S are the

1098-0121/2015/91(7)/075416(8) 075416-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.075416


YU. E. LOZOVIK, A. A. SOKOLIK, AND A. D. ZABOLOTSKIY PHYSICAL REVIEW B 91, 075416 (2015)

controlling parameters. Physically, this corresponds to a flake
of graphene brought into contact with a conductor, specifying
μ. Under these conditions, the system tends to equilibrium,
where the thermodynamic potential � = E − T S − μN at-
tains a minimum (E and S are the internal energy and entropy
of the electron gas, and N is the mean number of electrons
in the system). The electron surface density, or concentration,
n = N/S, is given by

n = − 1

S

∂�

∂μ
. (1)

The compressibility κ and the quantum capacitance per unit
area CQ can be calculated as

κ = 1

n2

dn

dμ
, CQ = e2 dn

dμ
(2)

(sometimes merely dμ/dn is referred to as the inverse
compressibility [8,9]). The quantum CQ and classical CC

capacitances form the total capacitance Ctot as C−1
tot = C−1

Q +
C−1

C ; thus the smaller of them dominates. In particular, Ctot

acquires a significant quantum correction when CQ � CC (see
insets in Fig. 6).

In a noninteracting system, the thermodynamic potential
�0 in the T → 0 limit is

�0 = g
∑
pγ

(εpγ − μ)f (εpγ ), (3)

where εpγ = γ vF|p| is the one-particle energy of an electron
in graphene with the momentum p in a conduction or valence
band at γ = ±1, respectively; vF is the bare Fermi velocity;
g = 4 is the degeneracy factor over spin and valleys; and
f (ε) = �(μ − ε) is the occupation number for a state with
energy ε at T → 0, where �(x) is the unit step function.

The electron density in the noninteracting graphene is
determined through (1) and (3) as

n0(μ) = sgn(μ)
gμ2

4πv2
F

(4)

(� ≡ 1). Here μ and n are counted, respectively, from CNP
and from the background electron density of the filled valence
band; thus n is positive in electron-doped graphene and
negative in hole-doped graphene.

The change in the thermodynamic potential δ� = � − �0

when interactions are switched on can be calculated as a sum
of closed connected diagrams [34,35].

The simplest approximation to calculate � is the first-order
approximation, where we take into account only the first-order
exchange diagram, shown in Fig. 1(a). The resulting first-order
correction to the thermodynamic potential is

δ�1 = − g

2S

∑
pp′γ γ ′

Vp−p′Fpγ p′γ ′f (εpγ )f (εp′γ ′), (5)

where Vq = 2πe2/ε|q| is the Coulomb potential, ε is the
effective dielectric permittivity of the surrounding medium,
and Fpγ p′γ ′ = [1 + γ γ ′ cos(pˆp′)]/2 is the angular factor,
accounting for an overlap of two-component spinor parts of
electron wave functions.

(a) (b)

FIG. 1. (a) The first-order exchange diagram for δ� (5). (b) The
first-order exchange diagram for the self-energy (7).

From (1) and (5) we get the first-order correction δn1 =
n − n0 to the electron density:

δn1(μ) = − g|μ|
2πv2

F

�
(1)
|μ|/vF, sgn(μ), (6)

where

�(1)
pγ = − 1

S

∑
p′γ ′

Vp−p′Fpγ p′γ ′f (εp′γ ′) (7)

is the T → 0 limit of the electron first-order exchange self-
energy, depicted in Fig. 1(b).

The explicit expressions for �
(1)
pγ , calculated beyond the

logarithmic term [19], were presented in [9,10,36–39]. This
self-energy can be calculated exactly in terms of generalized
hypergeometric functions, but its expansion

�
(1)
|μ|/vF, sgn(μ) = e2μ

2εvF

{
1

2
ln � + ln 2 − 1

4

− 2C + 1

π
+ sgn(μ)

4�

}
(8)

in powers of the dimensionless cutoff � = vFpc/|μ| (pc is
the cutoff momentum in the valence band, and C ≈ 0.916
is Catalan’s constant) up to �−1 is sufficiently accurate in
the range 6 < � < ∞, corresponding to the density range
0 < |n| < 1014 cm−2. Thus (6) and (8) allow us to determine
� and its derivatives in FOA.

The Hartree-Fock approximation, which provides more
accurate results than FOA, can be obtained by “dressing”
the electron Green’s functions in Fig. 1(a) with exchange
self-energy parts. Unfortunately, as is known [34], one
cannot simply replace any bare Green’s function in closed
diagrams with a Hartree-Fock one because that would result
in overcounting the diagrams. In fact, in order to obtain
HFA starting from the grand-canonical ensemble, we need
to calculate the infinite series of diagrams, depicted in Fig. 2,
with each diagram having a numerical prefactor dependent on
its symmetry.1

To overcome this difficulty, we can calculate � by means of
the Luttinger-Ward functional [40], where all excess diagrams,

1Note that naive calculation of all of these diagrams except the
first-order one directly at T = 0 will result in zero. Careful evaluation
of these “anomalous” [40] or “rainbow” [20] diagrams should imply
taking the T → 0 limit only after calculating all of them at T �= 0
and summing the full diagrammatic series.
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FIG. 2. The closed connected diagrams for δ� in the Hartree-
Fock approximation.

appearing in the “overcounted” thermodynamic potential, are
exactly compensated by a simple expression. In this way,
choosing the Hartree-Fock skeleton diagrams (Fig. 1), we can
calculate (similar to Appendix A in [41]) the thermodynamic
potential in the T → 0 limit:

�HF = g
∑
pγ

(
εpγ + �

(HF)
pγ

2
− μ

)
f

(
εpγ + �(HF)

pγ

)
, (9)

where the Hartree-Fock self-energy is

�(HF)
pγ = − 1

S

∑
p′γ ′

Vp−p′Fpγ p′γ ′f
(
εp′γ ′ + �

(HF)
p′γ ′

)
. (10)

The occupation numbers f (εpγ + �
(HF)
pγ ) entering into these

equations drop from 1 to 0 at the Fermi surface, where
p = pF, γ = sgn(μ). Applying (1) to (9) and subtracting the
background electron density, we obtain the electron density in
HFA:

nHF(μ) = g

S

∑
pγ

[
f

(
εpγ + �(HF)

pγ

) − �(−εpγ )
]
. (11)

In fact, expressions (9)–(11) depend on pF, rather than on μ;
therefore it is more convenient to find the Fermi momentum
pF from the equation

μ = εpF, sgn(n) + �
(1)
pF, sgn(n) (12)

and then to use Eq. (11), rewritten in the form

nHF(μ) = sgn(μ)
gp2

F

4π
. (13)

Here we used the equality �
(HF)
pF, sgn(n) = �

(1)
pF, sgn(n), following

from (7), (10), and (12). Solving (12)–(13) and integrating
nHF(μ) according to (1), we can restore the thermodynamic
potential in HFA.

The calculations in (9)–(13) may appear to be rather formal,
especially in the light of the similarity of (4) and (13), but they
demonstrate the essential difference between the first-order
and Hartree-Fock approximations: the latter is self-consistent,
which means that it actually takes into account an infinite series
of Feynman diagrams (Fig. 2) and deals with the renormalized
electron dispersion εpγ + �

(HF)
pγ instead of εpγ .

The random-phase approximation for calculating � be-
comes asymptotically exact in the limit g → ∞ of large
electron state degeneracy [42,43]. It was also argued that
RPA dominates in graphene because of taking into account

+ + + . . .

FIG. 3. The closed connected diagrams for δ� in the random-
phase approximation.

all diagrams with infrared divergences [44]. Recently, the
applicability of RPA has been confirmed by quick convergence
of expansion in RPA-screened interaction [45]. The sum of
diagrams for δ� in this approximation, shown in Fig. 3, is (see
also [11])

δ�RPA = 1

2

∑
q

{
T

∑
ωk

ln[1 − Vq�q(iωk)] − nVq

}
, (14)

where ωk = 2πT k are bosonic Matsubara frequencies. The
polarizability of the electron gas in graphene �q(ω) was cal-
culated explicitly elsewhere at real [46,47] and imaginary [11]
frequencies.

It is useful to separate (14) into the first-order exchange
part (5) and correlation part δ�corr. In order to obtain analytical
results, we expand δ�corr in powers of 1/� up to �−2:

δ�corr = S|μ|3
4π2v2

F

{
a(αgr) ln � + c(αgr) + b(αgr)

�2

}
, (15)

where αgr = ge2/εvF. The functions a(αgr), b(αgr), and c(αgr),
being smooth, can be easily tabulated and approximated in
the physically accessible range 0 � αgr � 10 (see Fig. 4). Our
results for δ�corr are close to those given in [11,39,48].

From (1) and (15) we get the correlation correction

δncorr = − sgn(μ)
μ2

4π2v2
F

{
3a(αgr) ln �

+ 3c(αgr) − a(αgr) + 5b(αgr)

�2

}
(16)

to the electron density n = n0 + δn1 + δncorr in RPA.
Note that the presented RPA is not self-consistent. The

Luttinger-Ward theorem can be used to find � in the self-
consistent RPA, which involves all diagrams of Fig. 3 with
the diagrammatic series from Fig. 2 inside each loop, i.e., all
diagrams without vertex corrections. All calculated quantities
(Green’s functions, self-energy parts, thermodynamic poten-
tial) are consistent among themselves in this approximation.
For example, calculation of the electron density at a given μ

0 2 4 6 8 10
4

2

0

a

c

αgr
0 2 4 6 8 10
0

0.1

0.2

b

αgr

FIG. 4. (Color online) The functions a(αgr), b(αgr), and c(αgr) in
the expansion (15) of the correlation part of � in RPA.
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through (1) or by solving the off-shell Dyson equation μ =
εpF, sgn(n) + �pF, sgn(n)(μ) (see [49]) will yield, unlike the usual
RPA, the same results when RPA is treated self-consistently.
However, solving a complicated integral equation for the
self-energy is required in this case.

III. ANALYSIS OF EXPERIMENTAL DATA

The basic effect of electron interactions, which is consid-
ered in this paper, is a deviation of the dependence n(μ) from
its noninteracting form (4). This effect can be analyzed in
terms of the renormalized Fermi velocity

v∗
F = |μ|/pF, (17)

which deviates from vF in the presence of interactions, or
in terms of quantum capacitance CQ, which is proportional
to dn/dμ. In this paper, we use (see also [6,14]) the term
“renormalized Fermi velocity” with the meaning of the
thermodynamic Fermi velocity (17), although sometimes this
term is referred to as the group velocity of quasiparticles on
the Fermi surface, as discussed in [9].

Our calculations depend on two parameters: the bare Fermi
velocity vF and the environmental dielectric constant ε. To
estimate them, we analyze experimental data on measured
CQ or v∗

F within HFA and RPA, as described in the previous
section. For our analysis, we use the data from four recent
experimental works [6–8,18], in which the measured v∗

F [6,18]
or CQ [7,8] were reported.

In all our calculations, we use, following [13,50], the cutoff

momentum pc = 1.095 Å
−1

, which is found by equating the
density of valence-band electrons 2/S0 to gp2

c/4π , where S0 =
5.24 Å

2
is the area of the graphene elementary cell.

We employ the following fitting procedures: first, we take
the actual values of ε, determined by the substrate material in
the experimental setup of each analyzed work [6–8,18], and
obtain vF through the least-squares fittings of the measured
v∗

F or CQ with RPA theoretical formulas. Assuming that RPA
appropriately takes into account both exchange and correlation
effects (see also [20,45]), the resulting values of vF are
expected to be generally adequate.

Second, we take these values of vF and fit the same
experimental data in HFA, obtaining new effective values of
ε. These quantities turn out to be systematically larger than
the actual material values of ε because the screening of the
Coulomb interaction, which is present in RPA and now absent
in HFA, should be mimicked by a stronger environmental
screening.

The parameters vF and ε, resulting from our fittings,
are collected in Table I together with the estimates from
the experiments. The corresponding experimental points and
theoretical curves are shown in Figs. 5 and 6. The comments on
each of the considered experimental papers [6–8,18], followed
by a short discussion, are given below.

In Ref. [6] the capacitance C between the AuTi gate
electrode and graphene flake, encapsulated in hexagonal boron
nitride (hBN), was accurately measured as a function of the
gate voltage Vg. Then C(Vg) was integrated to obtain the

TABLE I. Fitting parameters for the experimental data on
quantum capacitance and renormalized Fermi velocity, determined by
the authors of the corresponding papers and found in our study in HFA
and RPA. The RPA values of ε are taken according to experimental
conditions, and vF is given in the units 106 m/s.

Experimental fit RPA fit HFA fit

Experiment vF ε vF ε vF ε

Yu et al. [6] 0.850 8 0.892 4.5 0.892 9.01
Chae et al. [18] 0.957 3.15 0.910 3.15 0.910 8.45
Kretinin et al. [7] 1 1.039 4.5 1.039 14.04
Chen et al. [8] 0.957 4.14 1.386 4.14 1.386 9.07

electron density:

n(Vg) = 1

eS

∫ Vg

0
C(V ′

g) dV ′
g. (18)

The independently determined classical (or geometrical) ca-
pacitance per unit area CC then was used to obtain the chemical
potential μ = eVg − e2n/CC and hence v∗

F (17). Using the
first-order renormalization group result [19]

v∗
F

vF
= 1 + αgr

8
ln

nc

|n| , (19)

the effective background dielectric constant ε = 8 was ob-
tained in [6] (the assumed cutoff density nc = 1015 cm−2

corresponds to pc = 0.56 Å
−1

). This ε is much larger than
the actual dielectric constant ε = 4.5 of hBN, as expected in
the first-order approximation, neglecting the screening.

The data on v∗
F(n), presented in [6], demonstrate strong

asymmetry and anomalous behavior near CNP, which are not
discussed by the authors. We suggest a possible explanation
for this anomaly is that some nonzero charge is present on
graphene even at zero voltage due to impurities or parasitic
external voltage. This excess charge appears as an integration
constant in the right-hand side of (18).

Assuming the additional charge density, which is equiv-
alent to the electron density �n = −1.5 × 109 cm−2, and
recalculating the dependence v∗

F(n), we managed to improve
substantially agreement between the experiment [6] and our
theoretical curves, as shown in Fig. 5(a). Both approximations
reproduce the experimental points fairly well.

FIG. 5. (Color online) Experimental data (blue circles) from
(a) [6] and (b) [18] on renormalized Fermi velocity v∗

F as a function
of electron density n, fitted in the Hartree-Fock (dashed line) and
random-phase (solid line) approximations. The data from [6] are
recalculated with the additional electron density.
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FIG. 6. (Color online) Experimental data (blue circles) from
(a) [7] and (b) [8] on the quantum capacitance of graphene CQ as
a function of electron density n, fitted in the noninteracting model
(dotted line) and in the Hartree-Fock (dashed line) and random-phase
(solid line) approximations. The insets show the classical (short-
dashed line), quantum (long-dashed line, RPA fit), and total (solid
line) capacitances per unit area vs electron density n.

In [18] a graphene sample, placed on a hBN layer on
top of oxidized silicon, was studied with scanning tunneling
spectroscopy in the magnetic field. The electron and hole
renormalized Fermi velocities were extracted from Landau-
level energies at different points of the sample, chosen inside
electron and hole puddles. The authors fit the dependence
v∗

F(n) by an approximate RPA formula using the effec-
tive background dielectric constant ε = (1 + 5.3)/2 ≈ 3.15,
which originates as a half sum of the dielectric constants
of air and the hBN-SiO2 substrate layer. Our fittings of the
data from [18], based on this dielectric constant, are shown in
Fig. 5(b).

Reference [7] focuses mainly on electron-hole asymmetry;
however, measurements of quantum capacitance were carried
out there on high-quality graphene samples in the experimental
setup, very similar to that in [6]. The results of the fitting, based
on the hBN dielectric constant ε = 4.5, are shown in Fig. 6(a).
Generally, a quantum correction to the classical capacitance
in this case is rather small, except in the immediate vicinity of
CNP, as shown in the inset.

In Ref. [8] the inverse compressibility κ−1 was measured
as a function of electron density in graphene samples on SiO2

substrate, covered by a Y2O3 insulating layer. The data at |n| <

0.3 × 1012 cm−2 were excluded from our analysis because of
distorting effects of disorder, which are appreciable at these
concentrations.

The authors of [8] adopt vF = 0.957 × 106 m/s from [18]
and use the effective dielectric constant ε = (3.9 + 4.38)/2 =
4.14 to reproduce the measured κ−1 with the first-order
expression, similar to (19). We replotted the data for κ in
terms of quantum capacitance CQ [see (2)] and show our fits,
based on ε = 4.14, in Fig. 6(b). As demonstrated in the inset, a
quantum correction to the classical capacitance is significant.

Looking at Table I and comparing the values of ε, taken
according to the experimental conditions [6–8,18] and then
used in the RPA fit, with those obtained via the HFA fit, we
see, as discussed above, that in the latter case ε is larger by
4.5–5.5 (except in the case of [7], where it is larger by 9.5 for
an unknown reason). This difference, however, exceeds that
following from the simple estimate [6] εeff = ε + πge2/8vF ≈
ε + 3.46, based on a static interband screening [47].

One can also note the anomalously high values of vF,
obtained by fitting the data from [8]. Even within the authors’
theoretical model, the best agreement with the experimental
data is achieved at vF = 1.115 × 106 m/s, while the estimate
vF = 0.957 × 106 m/s, assumed in [8], provides values of κ−1

which are smaller than the experimental ones. Perhaps the
source of this anomaly is underestimated classical capacitance,
used to extract the compressibility from total capacitance.

Last, quantum capacitance CQ, in contrast to v∗
F, does not

qualitatively change its dependence on n when interactions
are switched on [see Fig. 8(a) in the next section]. As a
consequence, the experimental points on CQ can be well de-
scribed by the noninteracting dependence CQ = e2

√
g|n|/πv2

F
with vF = 1.104 × 106 m/s, ε = 4.5 for the data from [7] and
vF = 1.496 × 106 m/s, ε = 4.14 for the data from [8] (see
Fig. 6).

IV. MANY-BODY EFFECTS OF COULOMB
INTERACTIONS ON CHARACTERISTICS OF THE

ELECTRON GAS

To calculate the quantum capacitance and the renormalized
Fermi velocity of the electron gas in graphene, we choose the
value vF ≈ 0.9 × 106 m/s for the bare Fermi velocity, which is
consistent with most of the data in Table I. We also take three
characteristic values of the background dielectric constant,
which controls the interaction strength: ε = 1 (suspended
graphene), ε = 4.5 (graphene encapsulated in hBN), and ε = 8
(graphene in a strongly screening environment).

To get additional insight into the results, we consider the ki-
netic Ekin and Coulomb interaction Eint energies of the electron
gas, which can be found on the basis of the grand-canonical
ensemble as Ekin = vF(∂�/∂vF), Eint = e2(∂�/∂e2). These
energies, calculated for the ideal Dirac electron gas and for the
interacting gas in different approximations, are shown in Fig. 7.
The quantum capacitance and renormalized Fermi velocity,
calculated under the same conditions, are shown in Fig. 8.

FIG. 7. (Color online) (a) Kinetic and (b) interaction energies of
the electron gas in graphene, calculated as functions of electron
density n at different dielectric constants ε in the noninteracting
regime (dotted line) and in the first-order (dash-dotted line), Hartree-
Fock (dashed line), and random-phase (solid line) approximations.
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FIG. 8. (Color online) (a) Quantum capacitance CQ and (b)
renormalized Fermi velocity v∗

F, calculated as functions of electron
density n at different dielectric constants ε in the noninteracting
regime (dotted line) and in the first-order (dash-dotted line), Hartree-
Fock (dashed line), and random-phase (solid line) approximations.

FOA provides reasonable results only in a weakly interacting
regime (ε � 1); thus its results are not shown at ε = 1. Even
at ε = 4.5 it shows artifacts such as multiple valuedness of
Ekin(n), Eint(n), μ(n) and negative compressibility and CQ

near CNP.
In contrast to the usual electron gas with negative exchange

energy, the electron exchange self-energy in graphene (8) is
positive due to its chirality [48]. Therefore the exchange effects
in graphene tend to increase v∗

F, as seen in Fig. 8(a) for FOA
and HFA. As a consequence, CQ becomes smaller [Fig. 8(b)]
because this quantity reflects an effective density of states,
which decreases as v∗

F increases (note that the interaction-
induced change in CQ can be essentially diminished by
the proper choice of the fitting parameter vF within the
noninteracting model, as seen in Fig. 6).

For the same reason, the interaction energy Eint, consisting
of exchange energies of individual electrons, is positive in
FOA and HFA [Fig. 7(b)]. The kinetic energy Ekin decreases
in FOA due to decreasing density [Fig. 7(a)]. In HFA it does not
change in comparison to the noninteracting regime at the same
density because in both cases the ground-state wave function
is the same Slater determinant. Generally, HFA provides more
plausible and moderate results than FOA even at ε � 1, which
indicates the importance of the self-consistent treatment of the
interactions.

The difference between the RPA and FOA results demon-
strates correlation effects. As is known, electrons in the
correlated electron liquid tend to be located, on average,
farther from each other than in the mean-field picture; thus
the interaction energy decreases. At the same time, the kinetic
energy increases because of this additional correlated motion.
Both of these effects are seen in Fig. 7. From the other
point of view, the correlations partly compensate the exchange
effects [11,39] via screening of the Coulomb interaction. This
can be seen in Fig. 8 at ε = 4.5 and 8, where the RPA curves
are situated between noninteracting and HFA (or FOA) curves.
However, at ε = 1 the correlation effects, which are at least

quadratic in αgr, can even overcompensate the linear in αgr

exchange effects, resulting in the negative interaction energy
[Fig. 7(b)] and increased quantum capacitance [Fig. 8(a)].

V. DISORDER

A random disorder potential V (r), arising in the graphene
sample due to substrate charge impurities and corrugations,
leads to the formation of a spatially varying electron-
density pattern, emerging as electron and hole puddles near
CNP [4,18,21–23]. The typical size of the puddles, which was
observed in recent experiments, is 10–20 nm [18,21,22]. Thus
the local-density approximation, proposed and used [23,29–
31,33] to calculate the compressibility and quantum capac-
itance of disordered graphene, is applicable at the carrier
densities |n| > 1011 cm−2 when p−1

F � 15 nm.
In this approximation we assume that the local chemical

potential μloc(r) is established in each region of a graphene
sample in such a way that the total electrochemical potential
μ = V (r) + μloc(r) is constant throughout the sample. Fol-
lowing [23,29–33], we assume the Gaussian distribution of
areas of such regions:

ρ(V ) = 1√
2πs

e−V 2/2s2
. (20)

Thus the experimentally observed electron density in the
graphene sample can be calculated as a spatial average of
the local density n(μloc) = n(μ − V ):

〈n(μ)〉 =
∫

ρ(V )n(μ − V ) dV. (21)

The spread s in (20) can be related to the average charge-
carrier density |n| at T → 0, calculated from (21)–(20) at
CNP: 〈|n|〉 = gs2/4πv2

F. The values of s, reported in the
experiments with graphene on SiO2 [4,8,21,23–26,28,29] and
other substrates [22,27] or calculated from the corresponding
residual carrier densities, range from 10 to 130 meV. Therefore

FIG. 9. (Color online) The same quantities as in Fig. 8, calculated
as functions of the average electron density 〈n〉 in the Gaussian
disorder potential with the spread s = 50 meV. The insets in (b) show
v∗

F, calculated in RPA as a function of 〈n〉 with the following values
of s (from top to bottom): 5, 20, 50, and 100 meV.
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we assume s = 50 meV is a typical disorder strength. Similar
values are considered in theoretical works [30–33].

The quantum capacitance and renormalized Fermi velocity,
calculated while taking into account disorder by replacing
n(μ) in (2) and (17) with 〈n(μ)〉, are shown in Fig. 9. The
major effect of disorder on CQ is its smearing, leading to the
appearance of a nonzero CQ at CNP, where CQ = 0 in the
clean limit [see Fig. 8(a)]. At the same time, v∗

F demonstrates
quite unexpected behavior: it falls to zero in the immediate
vicinity of CNP. This is due to the fact that the resulting finite
density of states at CNP 〈D(E = 0)〉 = s/(21/2π3/2v2

F) implies
〈n〉 ∝ μ, so that v∗

F ∝ |μ|1/2 ∝ |〈n〉|1/2. Perhaps this can
explain the anomalous dip of v∗

F at CNP, which was observed
in [6].

The influence of disorder of various strengths on v∗
F is

shown in the inset of Fig. 9(b). As seen, the peak near CNP
still survives at s = 5 meV and disappears at s = 20 meV.
According to our estimates, this disappearance occurs at
s = 12 − 15 meV for each value of ε.

VI. CONCLUSIONS

We have considered the many-body effects of Coulomb
interactions on observable quantities of graphene such as the
quantum capacitance CQ, compressibility κ , and renormalized
(thermodynamic) Fermi velocity v∗

F. Three approximations
(FOA, HFA, and RPA) are analyzed and applied for massless
Dirac electrons.

The recent experimental data on v∗
F [6,18] and CQ [7,8]

were analyzed in RPA, with the bare Fermi velocity vF ≈
0.9 × 106 m/s obtained as the result of the least-squares fitting.
The same experimental data were described by HFA as well,
but with larger values of the background dielectric constant that
simulates the screening, which is absent in this approximation.

Our main conclusions, concerning the influence of
Coulomb interactions on CQ, v∗

F, and the kinetic and interaction
energies of the electron gas in graphene, are the following:

(a) Kinetic energy increases in the presence of the interac-
tions (in RPA) due to the correlated motion of electrons.

(b) Interaction energy is positive due to the positive
exchange energy (as opposed to the usual electron gas) [48],

while it is somewhat reduced in RPA due to the correlations,
which partly compensate the exchange.

(c) The very noticeable effect of the interactions is the
renormalization of v∗

F to higher values, which is most promi-
nent near CNP. In RPA, v∗

F increases by 50% at the lowest
achievable carrier densities n ∼ 109 cm−2 and by 10%–20%
at moderate densities n ∼ 1011–1012 cm−2.

(d) The quantum capacitance CQ decreases by 10%–15% in
the presence of interactions due to the effective reduction of the
density of states at higher v∗

F. However, generally, it changes
only quantitatively, retaining the same form CQ ∝ √

n as in the
noninteracting model. That is why experimentally measured
CQ and κ are often successfully described in the noninteracting
model [4,23,24,26,28,29,31,33,51], but with the higher Fermi
velocity vF ≈ 1.1 × 106 m/s.

The considered theoretical models can easily be generalized
to take into account a fluctuating disorder potential in the
local-density approximation. Calculations of CQ in the model
of Gaussian fluctuations with the typical spread of 50 meV
show the formation of a nonzero CQ at CNP, in agreement
with experiments. On the contrary, v∗

F acquires a dip at CNP,
which can even override the logarithmic interaction-induced
peak for a disorder potential spread exceeding 12–15 meV.
Note that we expect such a disorder-induced dip only in
the thermodynamic Fermi velocity obtained in, e.g., quantum
capacitance or cyclotron mass measurements and not in the
quasiparticle Fermi velocity, obtained in measurements of
single-particle characteristics.

Finally, we note that studies of graphene quantum capac-
itance are important because of its electronic applications
because CQ dominates in the case of an ultrathin oxide layer
between graphene and a gate (see, e.g., [52–54]). In this
case an additional screening by the metallic gate electrode
can essentially affect the many-body corrections to CQ, as
considered in [50].
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