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Spin-orbit controlled quantum capacitance of a polar heterostructure
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Oxide heterostructures with polar films display special electronic properties, such as the electronic
reconstruction at their internal interfaces with the formation of two-dimensional metallic states. Moreover, the
electrical field from the polar layers is inversion-symmetry breaking and generates a Rashba spin-orbit coupling
(RSOC) in the interfacial electronic system. We investigate the quantum capacitance of a heterostructure in which
a sizable RSOC at a metallic interface is controlled by the electric field of a surface electrode. Such a structure is,
for example, given by a LaAlO3 film on a SrTiO3 substrate which is gated by a top electrode. Such heterostructures
can exhibit a strong enhancement of their capacitance [Li et al., Science 332, 825 (2011)]. The capacitance is
related to the electronic compressibility of the heterostructure, but the two quantities are not equivalent. In fact,
the transfer of charge to the interface controls the relation between capacitance and compressibility. We find that,
due to a strong RSOC, the quantum capacitance can be larger than the classical geometric value. However, in
contrast to the results of recent investigations [Caprara et al., Phys. Rev. Lett. 109, 196401 (2012);Bucheli et al.,
Phys. Rev. B 89, 195448 (2014); Seibold et al., Europhys. Lett. 109, 17006 (2015)], the compressibility does not
become negative for realistic parameter values for LaAlO3/SrTiO3 and, therefore, we find that no phase-separated
state is induced by the strong RSOC at these interfaces.
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I. INTRODUCTION

The static capacitance of a complex metallic structure is
commonly considered to be a global quantity of the entire
system and, consequently, is supposed to characterize the
electronic state of the system rather insufficiently to deduce
microscopic properties. However, this is not always the case.
For instance, recent experiments on polar oxide heterostruc-
tures with conducting LaAlO3/SrTiO3 interfaces suggest that
the capacitance for these systems is a quantity which allows to
draw distinct conclusions on the electronic interface state [1,2].
A special characteristic of this interface is that the electrons
are subject to a sizable spin-orbit coupling [3–5]. The question
arises if spin-orbit coupling is a relevant control parameter for
the capacitance of the interface.

Here we address the fundamental issue whether spin-orbit
coupling of the interface electrons makes it possible to modify
the capacitance of the heterostructure significantly, and we
estimate the spin-orbit contribution for systems based on
LaAlO3/SrTiO3 interfaces. An enhancement of the capaci-
tance is possible in the presence of a sufficiently large Rashba-
like spin-orbit coupling (RSOC), because the RSOC permits to
alter the electronic band energies by controlling the charge car-
rier density. Such a RSOC appears to explain magnetotransport
measurements at LaAlO3/SrTiO3 interfaces [3,4,6–8], and it
has been shown within ab initio evaluations that a RSOC is
generated by the electric field of the polar LaAlO3 layers on
top of the SrTiO3 substrate [5]. The RSOC lowers the band
edge quadratically with the spin-orbit coupling parameter αR

(see Fig. 1). This even allows for a negative compressibility
assuming that αR depends on the electric field E of the
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polar LaAlO3 layers which, in turn, is related to the charge
density at the LaAlO3/SrTiO3 interface [9,10]. With their
spectacular result of a negative compressibility in the presence
of a sizable RSOC, the authors of Refs. [9–11] suggest that
this provides an intrinsic mechanism for the inhomogeneous
phases observed at LaAlO3/SrTiO3 interfaces; yet, other
scenarios for phase separation at LaAlO3/SrTiO3 interfaces
have also been investigated recently [12,13].

It is well known that a negative electronic compressibility
on one or both electrodes of a capacitor can lead to an enhance-
ment of the capacitance beyond its geometrical value [14,15].
In fact, the geometric capacitance of a two-plate capacitor,
Cgeom = εA/4πd, is modified by electronic contributions
which are taken into account in the electronic compressibility
of the plates κi = (n2

i ∂μi/∂ni)−1, the derivative of the charge
carrier density ni at plate i with respect to the chemical
potential μi . Here ε is the dielectric constant of the material
between the two electrodes of area A, and d is the thickness of
the dielectric. The kinetic contributions to the capacitance were
coined by Luryi [16] as quantum capacitance. This notation
may be extended to all electronic compressibility terms (see
Ref. [15]).

Already in the early 1990s, a capacitance enhancement
of semiconductor heterostructures was identified when the
electronic compressibility of quantum Hall systems was
investigated [14]. The enhancement of the semiconductor
capacitance could be traced quantitatively to the presence of
quantum exchange effects in the electrodes. The contribution
from electronic correlations to the capacitance is not negligible
for very dilute electron systems [15] and for electronic systems
close to half filling [17]. However, the charge density at
LaAlO3/SrTiO3 interfaces is in the intermediate range, neither
as low as in the semiconductor systems [14] nor close to half
filling. Therefore, the more sizable capacitance enhancement
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FIG. 1. (Color online) (Top) Dispersion of a planar electron
system with RSOC. The dashed line indicates the dispersion for zero
Rashba coupling. (Bottom) Occupation in k space for μ1 < 0 (left,
only the lowest band is occupied) and for μ2 > 0 (right, both bands
are occupied).

of the oxide LaAlO3/SrTiO3 heterostructure [1] and its
negative compressibility [2] cannot be explained exclusively
by exchange and correlation effects and other mechanisms
might become relevant.

To determine the thermodynamic electronic compress-
ibility, two alternative procedures are conceivable. (i) One
can either consider the interface subsystem with an external
electric field which induces the RSOC. In order to identify the
electronic compressibility of the interface electrons, one has to
keep the electric field fixed in thermodynamic derivatives. Or
(ii) one evaluates the compressibility for the entire electronic
system, for which the RSOC-generating field is an internal
field.

A scheme in the sense of (i) has been suggested by the
authors of Ref. [9]. There the electric field was set as a
function of the interface charge carrier density n and, then,
the inverse compressibility was identified from the derivative
of the chemical potential μ with respect to n, keeping any
dependence else fixed. We disagree with this approach because
there the electric field has to be kept fixed and therefore does
not contribute to the compressibility [18]. In this paper we
establish the second procedure (ii) and relate the electronic
compressibility of the entire electronic system directly to
the capacitance of the device, consisting of the interface,
dielectrics, and surface of the LaAlO3 film or a metallic top
electrode.

As indicated above, previous investigations focused on the
interface subsystem [9,10], whereas we consider the entire
system. For realistic values of the RSOC, we identify a
positive compressibility for the most part of the parameter
space, indicating that the system is thermodynamically stable.
Nevertheless, we find an increased capacitance with respect
to its geometrical value, the capacitance enhancement being
caused by the RSOC in the metallic interface.

In this article, we investigate two different models, both
building on a two-dimensional (2D) metallic system in which
a RSOC modifies the electronic state: First we analyze a
capacitor with two metallic planes, where the top electrode
is a 2D or 3D metal (gate) and the second plane is the interface
between a polar and a nonpolar insulator. The interface attains
a metallic state with RSOC upon charge transfer from the
top plate to the interface and the concomitant buildup of an
internal electric field. Finally, we study a two-layer system
with the spin-orbit coupling controlled by the filling of three
t2g orbitals at the interface. We show that the multilayered
system has a range of parameters where it has a positive
total compressibility, but its capacitance is enhanced above
its geometrical value on account of the spin-orbit coupling
in the metallic interface plane. In this analysis we adjust the
parameters to those specific for LaAlO3/SrTiO3 (LAO/STO)
heterostructures in order to explore the feasibility of spin-orbit
controlled capacitance enhancement with a polar dielectric
material.

II. RASHBA SPIN-ORBIT COUPLING
AND COMPRESSIBILITY

In a 2D free electron system subject to a RSOC γ (E × p) S,
with coupling constant γ , the dispersion ε±(k) is given by (see,
for example, Ref. [19])

ε±(k) = k2

2πN0
± αRk, (1)

where N0 = m0/π�
2 = (m0/me)/(πaBe2) is the density of

states for both spin directions in the absence of RSOC, αR

defines the strength of the RSOC, and m0 is the effective mass
of the charge carriers. The RSOC is made possible by the
absence of inversion symmetry, caused by an electric field
perpendicular to the 2D layer containing the electrons with
areal density n. The spin-orbit splitting of the dispersion,
Eq. (1), is shown in Fig. 1. If μ < 0, only the lower band
is occupied and the Fermi surface is an annulus; for μ > 0 the
two occupied bands yield two concentric circles in k space.
As the lowest energy ε−

min = −πN0α
2
R of the dispersion is

proportional to the strength of the RSOC, it decreases with
increasing strength of the symmetry-breaking electrical field.
Thus, a stronger electrical field lowers the chemical potential
for constant electron density n. In Ref. [9] it was suggested
that a negative compressibility can be obtained from exploiting
this effect.

The inverse compressibility is obtained by the second
derivative of the free energy F per area with respect to the
electron density with all external variables held fixed. Since
the symmetry-breaking electrical field (SBEF) is an external
variable in this scheme (and the field generated by the electrons
in the plane themselves is symmetric), αR is independent of n

in the thermodynamic derivatives, and there is no dependence
of the compressibility on the RSOC.

Here we propose an extended scheme in which the electric
field from the polar film, and consequently the RSOC, is
an internal parameter, i.e., a quantity that depends on the
electron density n. Then the density dependence of αR has
to be accounted for when taking the derivative of the energy
for the compressibility. In addition to the interface layer
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with a finite RSOC (L0), a second layer (L1), e.g., the
surface of the LAO film in the LAO/STO heterostructure,
comprising electrons and a positive background charge, is
placed parallel at a distance d. Eventually, both layers—each
of them electrically neutral—are connected. Since typically
both layers had different electrochemical potentials, electrons
will be exchanged between L0 and L1 until both layers are on
the same electrochemical potential. It is of no relevance for the
static capacitance how electronic charge is transferred between
the plates. However, an electric field, which is proportional to
the transferred amount of charge, is generated. This internal
field breaks the inversion symmetry and thus generates RSOC
in the respective layer.

It stands to reason that also the electrons in the surface
layer L1 experience a RSOC because the same electric field
acts on the electronic states in L1. In the case of a bare
RSOC γ = μB/�mec in γ (E × p) S for free electrons with
mass me, momentum p, and spin S in a plane subject to
a transverse electrical field E, a reasoning demanding an
equivalent treatment of layers L0 and L1 with respect to the
RSOC appears to be appropriate. However, the bare RSOC
with electric fields generated by the charged layers is orders of
magnitude too small to have a sizable impact on the electronic
reconstruction in the heterostructures. The resolution of this
apparent infeasibility of bare RSOC effects has already been
established for semiconductor heterostructures (see the book
by Winkler [19] for a comprehensive treatment) and is
implemented for the LAO/STO interfaces as follows [4,5]:
The Ti ions provide an atomic SOC, whereas an internal
electric field which displaces the Ti ions slightly out of their
in-plane positions, couples the three t2g orbitals. As spin and
orbital space couple, one has to diagonalize six bands. The
diagonalization of the six-band system generates a SOC of
Rashba type ±αRk [see Eq. (1)], even though only the lowest
of the t2g bands (the dxy) may be partially occupied. The RSOC
parameter αR has to be estimated from electronic structure
evaluations [5]. In fact, from magnetotransport measurements,
a sizable RSOC has been identified for the LAO/STO
interface electronic state [αex

R ≈ (1 . . . 5) × 10−10 eV cm ≈
(0.74, . . . ,3.7) × 10−3 e2 for different back-gate voltages],
where the value of αex

R depends on the charge carrier density
which is controlled by the internal electric field. In Sec. IV we
address the six-band situation explicitly. Until then we consider
an effective two-band situation with a RSOC that is controlled
by the internal field that depends, in turn, on the charge density.
The actual setup for the electronic surface states (layer L1) is
very different and SOC effects have so far not been found to be
relevant. Therefore, we disregard RSOC in the surface layer
L1 in our approach.

Through the mechanism outlined above, the strength of the
induced RSOC, αR, becomes density dependent: We denote
the Helmholtz free energies of the single layers as F0(n)
and F1(n1), calculated in the first stage without connection
between L0 and L1. In fact, we calculate the single-layer grand
canonical energies and then use a Legendre transformation to
obtain the Helmholtz free energies. The total free energy of
the connected system,

Ftot = F0(n) + F1(n1) + Fes(n,n1),

is the sum of the single-layer energies and the electrostatic term
Fes. The total energy Ftot is a function of the total density Q =
n + n1 only, that is, the sum of both single-layer densities: the
dependence on the single-layer densities is eliminated by the
condition that n has to minimize the total free energy, which is
equivalent to the equality of the electrochemical potentials of
both layers. Note that, as the layers are connected, αR becomes
a function of the electric field generated by L1 and thus of Q

and n(Q).
Since both layers are coupled through the electric field

and are supposed to be in electrical contact, only the inverse
compressibility of the total system,

κ−1 = Q2 d2 (F/A)

dQ2
, (2)

is a well-defined thermodynamic quantity. Here F = F (Q,V )
is an appropriate Legendre transform of Ftot(Q,n) with respect
to the interface charge density n: the thermodynamic variable
is then the voltage bias V between interface and surface (see
Appendix D). The electronic compressibility derives from
the second derivative of the electronic energy with respect
to the volume. In the case of 2D electron systems (as in the
considered heterostructure) it is the area instead of the volume.
This translates into the second derivative with respect to the
electronic areal density Q. The second derivative in Eq. (2) is
to be taken with respect to the total dependence on Q, that is,
also the Q dependence of the internal field in the polar film
enters. The positivity of κ then represents a stability criterion
with respect to charge separation in the plane directions.

III. POLAR MATERIAL WITH A RSOC INTERFACE
TO A NONPOLAR INSULATOR

To approach a polar system with a surface and an interface
to a nonpolar insulator, we first present a model system that
consists of three 2D layers [Fig. 2(a)] but only two of them
comprise mobile electrons: The planes at the bottom and at
the top have areal charge densities of −ne and −(Q − n)e,
respectively. The electrons may be transferred between these
two planes to minimize the free energy, while the plane
sandwiched between them—with a distance d1 to the bottom
and d2 to the top—holds immobile, fixed charges of density Q.
This charge density Q compensates the charge of the other two
planes and therefore keeps the system neutral. The dispersion

FIG. 2. (Color online) (a) Multilayered system with static (in-
duced) charges (red/blue), electrical potential perpendicular to the
layers (orange), and electric fields (green). (b) Electrostatic equivalent
system which relates to the configurational buildup of a polar LAO
film on top of an LAO/STO interface layer.
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of the electrons in the bottom layer (L0) is given by Eq. (1),
while the top layer (L1) is described as an electron system
with a density of states (DOS) of N1. If n �= 0, an electric field
perpendicular to L0 exists which derives from the total charge
of the two other layers. This field induces the RSOC in the
bottom layer and is proportional to the electron density n of
L0. The electrostatic energy per area of this layout is

Fes(Q,n)/A = 2πd1e
2

ε1
n2 + 2πd2e

2

ε2
(Q − n)2 , (3)

where εi are the dielectric constants of the material between
the planes (see Appendix B). This arrangement is an effective
model for the oxide heterostructure LAO/STO, where polar
layers with a distance dl

1 and dl
2 between them alternate

[Fig. 2(b)]. Due to electronic reconstruction, electrons from
the surface relocate to the former empty layer at the LAO/STO
interface and occupy Ti3d states [20,21]. We assume that the
effective distances to the sandwiched layer are equal, i.e.,
d1/ε1 = d2/ε2 ≡ d/(2ε). In LAO, the distances d1 and d2

are approximately equal but ε1/ε2 is not accurately known.
Therefore, we take a layer-independent dielectric constant
ε for the LAO film. This simplification is of no qualitative
consequences for the further evaluation; the results depend on
an effective distance d/ε.

There are various models for the density dependence of
αR (cf. Ref. [19]). In general, the strength of the RSOC
αR is taken to be proportional to the SBEF: αR ∝ E. The
SBEF E is induced by the charge carrier density +ne [see
Fig. 2(a)] and can be expanded as E(n) = E0 + E · n + O(n2),
where E · n = E1/2. The factor 1/2 accounts for the fact that
the SBEF is generated by the charge carrier density +ne

at the sandwiched layer and not by the electron density −ne at
the LAO/STO interface L0. The field E0 refers to an electric
field that is already present in the absence of a charge density
+ne; it may be produced by dipolar distortions in the LAO
layer next to L0. With this expansion of E(n), one can also
decompose

αR(n) = α0 + α1 n + O(n2). (4)

A more adequate determination of αR(n) is given in the context
of the six-band model for the LAO/STO interface in Sec. IV.

In order to implement the difference in chemical potentials
of the electronic systems at the interface L0 and surface L1,
we introduce a term −V0 n in the total free energy Ftot:

Ftot(Q,n) = F0(n) + F1(Q − n) + Fes(Q,n) − eV0 nA. (5)

The potential V0 may be determined from electronic structure
evaluations; we use it phenomenologically to tune the electron
density at layer L0 to the experimentally observed values.

The thermodynamic relation ∂Ftot/∂n = eAV (Q,n) is
used to find the function n(Q,V ) [here we still consider V = 0,
and n(Q,0) ≡ n(Q)]. Since n(Q) is limited to the interval
[0,Q], it is possible that the boundary values n = Q or n = 0
yield the global minimum of F (Q,V ). If neither all nor no
charge resides at the bottom layer, an analytical expression for
the stability of the total system can be derived (Appendix D):

κ > 0 ⇐⇒ ∂n

∂Q
< 1. (6)

We would like to point out that a system with κ < 0 can still
be stabilized by a mechanism not related to the electronic
system in L0 and L1 (and thereby yield a positive total
compressibility). In this case, an enhancement of the total
electronic charge in L1 causes an amount of charge larger than
the added charge to flow to the RSOC layer L0. The distribution
of charge between L0 and L1 is controlled by the electric field
which is, in turn, determined by the positive capacitance of the
system. On the contrary, if the system cannot be stabilized (that
is, the total compressibility is negative), then it is expected to
develop a phase-separated (inhomogeneous) state in the plane.
This latter scenario is not investigated here but we comment
in our conclusions on the proposition [9–11] of RSOC-driven
phase separation.

We do not discuss the temperature dependence of the
capacitance and therefore reduce our considerations to zero
temperature in the following evaluations. The free energy per
area of the top 2D layer (L1),

F1(Q − n)/A = 1

2N1
(Q − n)2 , (7)

depends on the electron density transferred to the bottom
layer. Here we assumed an interactionless electron system
in L1, characterized by a DOS N1. With N1 → ∞ (that is,
the mass of the charge carriers in L1 increases beyond limits,
m1 → ∞), a localized state can be generated technically. The
surface of the LAO/STO heterostructure is insulating. Then, an
additional metallic layer on top of the heterostructure produces
a capacitor. The top electrode can be a gold or YBa2Cu3O7

(YBCO) film, which connects well with the topmost AlO3

layer (see Appendix C). There the capacitance increase is
slightly smaller than for a 2D electrode due to the finite
screening length in the 3D film but the qualitative results are
the same as presented in this section for the 2D top electrode.

We reemphasize that the top layer L1 must be included
necessarily in order to render the correct electrostatics which
then yields the proper total compressibility and capacitance.
However, as long as interaction or spin-orbit effects are
negligible in L1, the impact of L1 is determined by two
parameters, only: the DOS N1 at the surface electrode and the
energetic displacement −eV0 between interface and surface
electronic levels. The latter controls trivially the electronic
density n at the interface. The former yields the kinetic term
in the quantum capacitance and is known to produce a slightly
increased effective distance between the electrodes (see, e.g.,
Refs. [15,16,22–24]). Consequently, the material properties
of the surface electrode do not affect the discussed physical
nature of the heterostructure qualitatively, except for adjusting
the carrier density at the interface.

The energy per area of the layer with RSOC (with αR as
density-independent constant), calculated in Appendix A 1, is

F
≶
0 (n)/A =

{
n3

6πN3
0 α2

R
− π

2 N0α
2
Rn, μ < 0,

n2

2N0
− πN0α

2
Rn + π2

6 N3
0 α4

R, μ > 0.
(8)

When taking the density dependence of αR into account, we
expand αR(n) in n [cf. Eq. (4)] and keep terms up to linear
order in n:

α ≡ α0 + α1 n. (9)
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FIG. 3. (Color online) (a) Inverse compressibility over plate distance d/ε and strength of RSOC α = α0 + α1 n. The blue plane indicates
κ−1 = 0. Here we take m0 = 0.7 me, m1 = me, Q = 1e−/uc = 6.6 × 1014/cm2, V0 = 0, and α0 = 0. (b) Phase of the system: P1+ (yellow),
P2 (green), P10 (cyan), and P20 (blue).

One has to distinguish between the case where only the lower
band of the RSOC split bands is occupied, F<

0 (see Fig. 1
with μ < 0), and the case where both bands are occupied, F>

0
(Fig. 1 with μ > 0). Since μ = 0 corresponds to n = πN2

0 α2
R,

the first case equals either n < n− or n > n+, with

n± = 1

2π (N0α1)2

(
1 − 2πN2

0 α0α1 ±
√

1 − 4πN2
0 α0α1

)
.

(10)

This means that also for large densities n > n+, all electrons
are in the lower band, because the minimum energy of the
bands, Fmin = −πN0(α0 + α1 n)2/2, decreases for increasing
density.

With the total energy given by Eqs. (3), (7), and (8),
we calculate the minimizing density n(Q) numerically, and
analytically for α0 = 0. We identify six different solutions for
n(Q) and determine the respective compressibility.

n = 0 (P0). The bottom layer L0 is empty and the total
compressibility is given by the compressibility of the top layer.

0 < n < n− (P1−). This phase exists only for α0 > 0.
All electrons of the bottom layer are in the lower band.
The compressibility is calculated numerically according to
Eq. (D5b).

n− < n < min(Q,n+) (P2). Both bands of the bottom layer
are occupied. The compressibility is calculated numerically
according to Eq. (D5b).

n = Q < n+ (P20). All electrons reside in the bottom layer,
and both bands are occupied. If n = Q is inserted into the total
energy Ftot and the second derivative with respect to Q is taken,
the inverse compressibility is

κ−1
P20

= Q2

N0

[
1 − 2πN2

0 α1(2α0 + 3α1Q)

+ 2π2N4
0 α2

1(α0 + α1Q)2 + 2πe2N0
d

ε

]
. (11)

n+ < n < Q (P1+). All electrons of the bottom layer are in
the lower band. The compressibility is calculated numerically
according to Eq. (D5b).

n+ < n = Q (P10). All electrons reside in the bottom layer,
but only the lower band is occupied. Inserting n = Q into Ftot

yields for the total compressibility

κ−1
P10

= Q2

N0

[
α2

0Q

πN2
0 (α0 + α1Q)4

− πN2
0 α1(2α0 + 3α1Q) + 2πe2N0

d

ε

]
. (12)

In Fig. 3(a) we display the inverse compressibility in the
respective phases as a function of the effective plate distance
d/ε and of α1 for α0 = 0 and a total charge of one electron
per areal unit cell of the LAO/STO structure. The transition
to a regime of negative compressibility is indicated by the
transparent blue plane: The area below the blue plane exhibits
negative compressibility, which can occur for all phases except
P0. For phase P2, however, the negative compressibility
regime is small, restricted to very small d/ε (less than
∼0.2 aB) and large RSOC [α1 � 10 (eaB)2]. For large effective
plate distances both layers are always occupied, since the
electrostatic term is then dominating. In the reverse case—for
small very d/ε—the electrostatic cost for transferring all
electrons to one layer is negligible. Then, as n+ decreases
with increasing α1, only one band in L0 is occupied for strong
RSOC.

For α0 = 0 the phase boundary between P1+ and P10 is
given by

πe2d

ε
=

(
3πN2

0 α2
1Q

)2 − 1

12π N3
0 α2

1 Q
.

This relation can be used to show analytically that κP10 is
always negative. One deduces from Eq. (11) for phase P20 that
also κP20 < 0. Obviously, the phases P10 and P20 display a
“phase separation between the layers” (the index 0 indicates
that all mobile charge carriers are in layer L0). Moreover,
the negative compressibilities (κP10 < 0, κP20 < 0) signal that
these phases are thermodynamically unstable and that a phase
separation within plane L0 is expected.

When no charge resides on the surface—as it
is the case in phases P10 and P20—one could expect that
the compressibilities of Eqs. (11) or (12) are identical to
the compressibilities calculated for one isolated layer in
Ref. [9] (apart from the contribution of the electrostatic energy
which straightforwardly produces the geometrical inverse
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FIG. 4. (Color online) Inverse compressibility, areal density, and capacitance for a two-band interface model as a function of the bias voltage
V , for which e/aB corresponds to 27.2 V in SI units. Here m0 = 0.7 me, m1 = me, d/ε = 10 aB, Q = 1e−/uc, α0 = 0, and α1 = 20 e2a2

B for
a two-layer system. (a) Inverse compressibility of the total system obtained as analytical solution for the one-band case (blue line). Density n

on the interface layer (red line). (b) Differential capacitance per area calculated analytically (blue line), geometric capacitance per area (black
dashed), capacitance per area without RSOC (brown dashed line), and capacitance e	n/	V per area (orange line). The background color
indicates the phase of the system according to the caption of Fig. 3, while violet corresponds to P0.

capacitance). This is, however, not the case: Our results
differ from those of Ref. [9], as explained in Appendix E.
This discrepancy can be traced back to the inclusion of a
n-dependent RSOC αR(n) either directly in the free energy
or in a later stage in the chemical potential. We calculate
the inverse compressibility through the second derivative of
the free energy with respect to Q = n, whereas the authors
of Ref. [9] identify the inverse compressibility through a
first derivative of the chemical potential. The latter approach
misses a non-negligible contribution from the derivative of
the energy with respect to the density in αR(n). For the phase
P10, for example, the latter approach results in an inverse
compressibility that is three times smaller than our result for
phase P10. Moreover, those phases which do not have all
electrons transferred from the surface L1 to the interface L0
cannot be addressed by the single-layer scheme in Ref. [9],
and we identify them from the free energy which comprises
an n-dependent RSOC αR(n).

The application of a voltage bias V between interface and
surface, i.e., between L0 and L1, can be used to tune the
electron density on the interface and hence also the phase of
the system (see Fig. 4): As n increases, so does the strength of
the RSOC α, and the band minimum is shifted to lower energies
until only one band is partially occupied and the system is in
state P1+. This process increases the compressibility that stays
positive even if all charge is transferred to the interface (P10).
This does not contradict the analytical analysis from above,
which was for V = 0.

As for the phases P0 and P10, note that κP0 is independent
of α0, α1, and N0, as no charge is in L0, and that κP10 does
not depend on the second electrostatic term in Eq. (3), as no
charge is in L1. This observation explains the sharp transitions
in κ(V ) in Fig. 4(a).

The differential capacitance Cdiff is derived in Appendix D:

A/Cdiff = 1

e

∂V

∂n
= ∂2

nF0 + ∂2
nF1 + ∂2

nFes

Ae2
. (13)

The term ∂2
nFes yields the geometrical capacitance Cgeo =

Aε/4πd. The total capacitance is enhanced above the geo-
metrical value if the sum of the inverse capacitances of the
single layers is negative. In Fig. 4 we compare Cdiff , the
capacitance C = e	n/	V , the geometric capacitance Cgeo,
and Cα=0 = A/(4πd/ε + 1/e2N0 + 1/e2N1), the capacitance
for an interface without RSOC. It is evident that the differential
capacitance is enhanced above the capacitance of a system
without RSOC for finite interface electron densities. Moreover,
both Cdiff and C increase beyond Cgeo for sufficiently large V

[Fig. 4(b)]. However, this does not signify a negative compress-
ibility κ [cf. Fig. 4(a)]—although the partial compressibility
of the interface my be negative (the latter is not a well-defined
thermodynamic quantity). As elaborated in Appendix D, the
connection between the compressibility of the system and its
differential capacitance is

κ−1 A = Q2 ∂2F

∂Q2

(
1 − Cdiff

e2A2

∂2F

∂Q2

)
, (14)

where F (Q,V ) is the Legendre transform of Ftot(Q,n):
F (Q,V ) = Ftot(Q,n(Q,V )) − eAV n(Q,V ). With the gen-
eral assumptions that the total energy Ftot of the system is
a functional of n and Q − n exclusively, and that n is not a
boundary value (Q or 0) then the compressibility of the system
is related to the differential capacitance through

1

Q2
κ−1 = e2A

Cdiff

(
1 − ∂n

∂Q

)
∂n

∂Q
, (15)

where both κ and Cdiff are functions of Q and V . The first
factor on the right-hand side is what one should expect for a
single metallic electrode: The electronic compressibility is the
capacitance of the electrode up to a factor e2Q2A. The further
two factors with the derivative ∂n/∂Q account for the charge
redistribution between surface and interface, which, of course,
depends implicitly on the RSOC (see Appendix D).
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Finally, we discuss the size of the experimental values of
the control parameters. We use m0 = 0.7 me for the effective
mass of the electrons at the LAO/STO interface. This value
results from the multiband evaluation [4], addressed in the next
section: A light mass m
 = 0.7 me and a heavy mass mh =
15 me were identified from angle-resolved photoemission
spectroscopy (ARPES) measurements [25] for the electrons
of the dxy , dxz, and dyz bands. Joshua et al. illustrated in the
Supplemental Material of Ref. [4] that, within the multiband
model, the electrons of the lowest resulting band acquire an
effective mass of m0 = 0.7 me close to the band minimum.

Estimating α0 and α1 has the largest uncertainty:
Caviglia et al. [3] concluded from their magneto-
transport experiments that αex

R ≈ (1, . . . ,5) × 10−12 eV m ≈
(0.74, . . . ,3.7) × 10−3 e2 in the range of back-gate voltages
where the superconducting dome is formed. For a more
negative bias the interface becomes depleted and the RSOC
is nearly constant with a low value of α0 � 10−12 eV m ≈
0.74 × 10−3 e2. We neglect this rather small constant con-
tribution with respect to the term linear in the bias. The
RSOC increases approximately linearly with bias between
values corresponding to the low-density foot and top of the
superconducting dome (compare Fig. 3 in Ref. [3]). The
difference in charge carrier density at the foot and the top
of the dome [26] is ≈0.015 e−/uc = 9.9 × 1012/cm2, so that

α1 ≈ 4 × 10−12 eV m

9.9 × 1012 cm−2
≈ 4.0 × 10−23 eV cm3

≈ 10 (eaB)2. (16)

We do not know the exact values for the density at which αex
R

was measured. Therefore, α1 ≈ 10 (eaB)2, as deduced from the
experiment of Caviglia et al. [3], might be somewhat smaller
but certainly not more than one order of magnitude.

IV. MULTIBAND LAYER WITH SPIN-ORBIT COUPLING

The free electrons at the LAO/STO interface reside predom-
inantly in the titanium 3d orbitals of the first TiO layer. For a
refined description of the interface we use a six-band model for
the three spin-split t2g orbitals [4,5,27]. Within this formalism,
the emergence of a strong Rashba-like SOC is explained
naturally through the breaking of inversion symmetry at the
interface, which couples the atomic SOC of the Ti atoms to
the interband hopping. The Hamiltonian can be written in the
dyz, dzx , dxy basis as

H = Hk + HSO + Hz. (17)

The first term is the intraorbital hopping,

Hk =

⎛
⎜⎜⎝

k2
x

2πNh
+ k2

y

2πNl
0 0

0 k2
x

2πNl
+ k2

y

2πNh
0

0 0
k2
x+k2

y

2πNl
− 	E

⎞
⎟⎟⎠ ⊗ σ0,

(18)

Ni = mi/(π�
2) is the DOS for light (m
) or heavy (mh)

electrons and 	E the splitting between the dxy and the
dyz, dzx orbitals. The contribution from atomic spin-orbit

coupling is

HSO = 	SO

∑
i=x,y,z

Li ⊗ σi, (19)

L =
⎛
⎝

⎛
⎝0 0 0

0 0 i

0 −i 0

⎞
⎠ ,

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠ ,

⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠

⎞
⎠ �,

(20)

where 	SO is the strength of the atomic SOC, σ0 is the 2 × 2
identity matrix, and σi are the 2 × 2 Pauli-matrices. Due to
the confining potential at the interface and its asymmetry, the
d orbitals are deformed and hence no longer orthogonal. This
allows (antisymmetric) interorbital hopping between dxy and
dxz orbitals along the y direction and between dxy and dyz

orbitals along the x direction, presented by

Hz = 	z

⎛
⎝ 0 0 −ikx

0 0 iky

ikx −iky 0

⎞
⎠ ⊗ σ0. (21)

We assume that the magnitude of the hopping is proportional
to the asymmetry inducing electrical field. In our modeling,
the origin of this electric field is the (positive) charge on the
surface that compensates for the electrons transferred from the
surface to the interface system. Therefore, we write

	z = 	z,0 + 	z,1 n. (22)

The term proportional to n is generated through the asymmetry
inducing electrical field, and the n-independent term 	z,0 can
be traced to dipolar distortions in the LAO layer next to the
interface. The diagonalization, which can be done analytically
only for kx = ky = 0, yields three spin-split doublets. Hz,
which originates from the deformation, vanishes at k = 0 and
the doubly degenerate energies are

ε1(kx = 0,ky = 0) = 1
2 (−	E + 	SO − S) , (23a)

ε2(kx = 0,ky = 0) = −	SO, (23b)

ε3(kx = 0,ky = 0) = 1
2 (−	E + 	SO + S) , (23c)

with S =
√

	2
E + 2	E	SO + 9	2

SO.

For a nonzero 	z, the degeneracies are lifted. Moreover,
crossings between different doublets are avoided [4,5] [see
Fig. 5(a)]. With increasing 	z, the splitting between the
formerly degenerated bands becomes larger and the point of
lowest energy in k space moves to larger values of k [cf.
Fig. 5(b)].

The shape of the bands depends, analogously to the two-
band model with RSOC [cf. Eq. (1)], on the electron density.
We add a top gate as in Sec. III and perform the same min-
imization of the energy of the combined system with respect
to n for different applied voltages. The results are shown in
Fig. 6, where we chose the light and heavy electron masses
m
 = 0.7 me and mh = 15 me, respectively (in accordance
with the ARPES [25] measurements for SrTiO3 surfaces). The
energy splitting is taken to be 	E = 50 meV, according to
the x-ray measurements in Ref. [28]. Alternatively, we also
consider 	E = 150 meV, which is in better agreement with
various ab initio evaluations (see, e.g., Ref. [5]). The atomic
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FIG. 5. (Color online) Energy bands for m
 = 0.7 me, mh = 15 me, 	SO = 10 meV, 	E = 50 meV, 	z,0 = 0.61 × 10−3 e2, and 	z,1 =
8.29 e2a2

B. The bands are plotted from the � point to the X point (continuous curves) and to the M point (dashed curves). The highest occupied
energy level for the densities n = 2 × 1013/cm2 (a) and n = 2 × 1014/cm2 (b) is indicated by the brown curve.

SOC was estimated from transport experiments [3,4,6] and ab
initio calculations [29] to be 	SO = 10–25 meV; we chose the
lower boundary of 10 meV.

The k-dependent energy splitting 	E(k) induced by 	z in
the lower and upper doublet increases linearly for small k; i.e.,
it is Rashba-like: 	E(k) = α(	z)k (cf. Fig. 7). This can be
employed to fit the parameters 	z,0 and 	z,1 to the estimates
of α0 and α1 made from experimental results in the previous

chapter: By writing

α(n) = α(	z(n)) = b(	z,0 + 	z,1n), (24)

we identify b	z,0 ≡ α0 and b	z,1 ≡ α1, where b is obtained
from fitting α(	z) to the numerically calculated 	E(k). For
	E = 50 meV and 	SO = 10 meV this yields b ≈ 3.3 and
we find 	z,0 ≈ 2.5 × 10−3e2 and 	z,1 ≈ 33 e2a2

B. Although
this estimation for 	z,0 and 	z,1 neglects the dependence of

FIG. 6. (Color online) Inverse compressibility, areal density, and capacitance for a six-band interface model as a function of the bias voltage
V . Here m
 = 0.7 me, mh = 15 me, m1 = me, d/ε = 10 aB, Q = 1e−/uc, and 	SO = 10 meV, and e/aB corresponds to 27.2 V in SI units.
(a) Inverse compressibility of the total system (blue line) and density on the interface (red line) for 	z,0 = 0.61 × 10−3 e2, 	z,1 = 8.29 e2a2

B,
	E = 50 meV, and V0 = −1.149 e/aB. The background colors indicate the number of occupied bands: two (yellow), four (green), and five
(purple). The brown circles refer to systems with bias values V that correspond to the densities n of Figs. 5(a) and 5(b), respectively. (b)
Differential capacitance per area for three different sets of parameters with n = 2 × 1013/cm2 at V = 0, which is provided by V0 = −1.149 e/aB

(blue line), V0 = −1.149 e/aB (green line), and V0 = −1.155 e/aB (red line). For small k, the energy splitting 	E (as in Fig. 7) for the blue and
red curve corresponds to α1 = 2.5 e2a2

B and for the green curve to α1 = 5.0 e2a2
B. For the dotted part of the curves, a k-space region around the

k = 0 wave vector is unoccupied. The geometric capacitance per area (black) and the differential capacitance per area for V0 = −0.781 e/aB,
	z,0 = 0.3 × 10−3 e2, and 	z,1 = 0 (brown) are also shown.
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FIG. 7. (Color online) Energy splitting between the two lowest
bands (blue lines), the third and fourth band (green lines), and the
two highest bands (red lines). Here the parameters are m
 = 0.7 me,
mh = 15 me, 	SO = 10 meV, 	E = 50 meV, 	z,0 = 0.61 × 10−3 e2,
	z,1 = 8.29 e2a2

B, and n = 2 × 1014/cm2, as for the right side of
Fig. 5. The energy splitting is plotted from the � point to the X point
(continuous curves) and to the M point (dashed curves).

	E on the angular direction in k space, it gives a reasonable
approximation for α(n) as long as the charge density is small,
such that 	E(k) ∝ k holds. For larger densities, for which this

proportionality fails around the Fermi momentum (i.e., it is not
Rashba-like, cf. Fig. 7), the above estimation is no longer valid.
The capacitance and compressibility of the system is given
mostly by the electrons from the lowest doublet, because for
low densities the higher bands are unoccupied or considerably
less occupied than the lowest two bands. For larger densities,
on the other hand, the variation of the electron number upon
changing V or Q is largest in the lowest doublet [since then
the DOS is larger in the lower doublet; cf. Fig. 5(b)].

The differential capacitance Cdiff for different gate voltages
V is displayed in Fig. 6(b). The difference of the chemical
potentials in the interface and the metallic top layer, V0, was
set to a value that gives a charge density n = 2 × 1013/cm2

for V = 0. For 	z,1 = 0, i.e., a density-independent band
structure, the capacitance increases with voltage [see brown
line in Fig. 6(b)] until the Fermi energy reaches a value
where the deviation from a parabolic band structure becomes
negligible and, consequently, the DOS is constant. Notice that
the capacitance derived from the microscopic model is smaller
than the geometric capacitance, since the kinetic energy of the
charge carriers in the electrodes adds a positive term to the
inverse capacitance (see, e.g., Ref. [15]).

A nonzero 	z,1 enhances Cdiff , even above the geometrical
capacitance if 	z,1 is sufficiently large. With increasing voltage
V , the density n at the interface increases [Fig. 6(a)], and
hence 	z. This flattens the dispersion of the lower doublet
and thereby enhances the effective mass at kF (see Fig. 5),
which causes the increase of capacitance above the value for
	z,1 = 0 [cf. Fig. 6(b)]. For large 	z, the energy minima of
the two lowest bands are far from the zero point and k = 0 is
not occupied. In this regime, 	E(k) is no longer linear in k

FIG. 8. (Color online) Inverse compressibility for V0 = 0 (a) and for V0 = −31 V (c), both as functions of the effective interface-surface
distance d/ε. Here m
 = 0.7 me, mh = 15 me, m1 = me, Q = 1e−/uc, 	SO = 10 meV, 	E = 50 meV, and 	z,0 = 10−3 e2. The plots below,
i.e., panels (b) and (d) display the interface electronic density n for the respective potentials V0.
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and the estimations for 	z,0 and 	z,1 are no longer valid. This
region is indicated by the dots of the differential capacitance
in Fig. 6(b).

Within the regime where the bands become flatter with
increasing density, negative compressibility may appear. The
inverse compressibility for different values of 	z,1 is shown
in Fig. 8 as a function of distance between the interface
and surface. Evidently, Fig. 8(a), which presents the inverse
compressibility for the six-band model corresponds to Fig. 3(a)
for the two-band model. For a small effective distance d/ε, all
charge resides on the interface [Fig. 8(b)], the compressibility
is negative, and κ−1 increases nearly linearly with the distance.
This is understood by setting n = Q in Eq. (3)—the only term
in the total energy with a dependence on d/ε—and taking the
total second derivative with respect to Q. For large distance
the electrostatic energy dominates and the total energy is
minimized by n ≈ Q/2. Inserting this into Eq. (3) yields half
the gradient of the n = Q regime; see Fig. 8(a).

In Fig. 8(a) the inverse compressibility is displayed for
V0 = 0, whereas in Fig. 8(c) the potential is V0 = −31 eV.
For V0 = 0 and 	SO = 0, the lower band edge at the interface
is shifted by −	E = −50 meV with respect to the band
edge of the surface electrode. Then the electrons tend to
go to the interface if no other effect such as the RSOC
interferes, provided that the electrostatic energy is small, and
the compressibility can be negative for sufficiently large 	z,1.

However, the behavior of κ−1 as a function of d/ε changes
drastically when we adjust V0 to −31 V so that n = 2 ×
1013/cm2 for d/ε = 10 aB and 	z,1 = 33 e2a2

B. Then n is in
the range of carrier densities established for the LAO/STO
interface with d/ε � 10 aB. The inverse compressibility first
increases linearly with d/ε because n = 0 in the regime of
small distances [see Fig. 8(c)]. There is a small offset due to
the finite compressibility of the surface electronic state. Then,
with a further rise in d/ε, the polar-catastrophe mechanism
induces a finite electron density at the interface [Fig. 8(d)],
and the inverse compressibility decreases sharply [Fig. 8(c)]
because a small but finite n reduces the electrostatic term
linearly with n [see Eq. (3)]. Eventually, κ−1 increases towards
its limiting linear behavior for large d/ε as in Fig. 8(a). This
analysis allows us to conclude that the compressibility stays
strictly positive even for large values of the RSOC if the
system parameters are adjusted within a range that is consistent
with parameter values previously identified for the LAO/STO
heterostructure.

For a thorough determination of the compressibility of the
LAO/STO heterostructure additional effects may be relevant:
These include oxygen vacancies, their distribution between the
planes, as well as the lateral extension of the 2D electron liquid
at the interface. However, these effects influence primarily the
charge carrier density. As the charge carrier density is adjusted
to the experimental values through a bias V0 in our analysis,
we expect that the evaluation of the compressibility remains
valid.

V. CONCLUSIONS

Low-dimensional charge states at interfaces of complex
oxides have been explored intensively in recent years, and
it is a combination of scientific and technological interest

which drives the research in this field. This is also valid
for the work presented in this article: We explored the
electronic charge redistribution in a heterostructure of a
polar and a nonpolar insulator, the paradigmatic realization
of which has become the LAO/STO interface of a polar
LAO film on the nonpolar substrate STO. Understanding the
quantum phenomena that control the electronic reconstruction
at the interface, and thereby also the charge redistribution
between surface and interface, may provide a possible strategy
to control capacitances by the electronic properties of the
conducting electrodes, as opposed to the standard search for
dielectrics with high dielectric constant [30].

Sizeable capacitance enhancements and negative electronic
compressibility have been observed for LAO/STO [1,2].
Recently, these findings were related to a strong RSOC [9–11].
The RSOC is generated by an electric field that, in turn, is
controlled by the electronic charge density −en at the interface.
In fact, a band structure, which depends on the density of the
band electrons themselves, allows for a decreasing chemical
potential with increasing charge carrier density, assuming that
the RSOC strength is sufficiently large. Such a dependence
of the chemical potential on the carrier density represents
a negative compressibility. Thus, instead of the standard
explanation for a negative compressibility in low-density
semiconductor systems [14] or in oxide heterostructures [1,15]
through exchange and correlation effects, it may be that
spin-orbit effects play an essential role.

However, in order to settle the realization of a negative
compressibility and the possible formation of an inhomoge-
neous charge-separated state, one has to investigate at least
the compressibility of the complete electronic system (in
the case that all electronic subsystems are coupled). The
compressibility of other subsystems which are not comprised
of mobile electrons may also contribute and keep the total
compressibility positive. In this article we included not only
the mobile interface electrons, but also the surface charges with
their respective field. This is to be considered as a minimal
setup for two reasons: (1) The RSOC is controlled by the
electric field of the charges at the surface, and (2) this electric
field and the charge carriers of the surface electrode contribute
to the compressibility of the interface-surface system.

A remarkable relation, which only involves the capacitance
of the interface itself, C0, and the geometric capacitance
Cgeom = εA/4πd of the interface-surface system, makes
it possible to determine if this system attains a negative
compressibility,

κ < 0 ⇐⇒ C−1
0 + 2

πd

A ε
< 0, (25)

where C−1
0 = (1/eA)2 ∂2F0/∂n2 is found from the second

derivative of the interface free energy F0 with respect to the
interface electronic density n. This relation was derived in
Appendix D under the conditions that the interface-surface
capacitance C−1

diff = (1/eA)2 ∂2F/∂n2 is positive and that n

does not assume a boundary value (that is, neither n =
0 nor n = Q holds). Here F is the free energy of the
entire heterostructure. The relation (25) is remarkable in two
respects: First, the compressibility κ can become negative even
when the capacitance Cdiff is positive, and second, this stability
criterion does not depend explicitly on the compressibility of
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the surface, even though the total inverse compressibility κ−1

contains a contribution from the surface electron system. Both
statements can be traced back to the special interface-surface
setup in which the capacitance is not equal to the total
compressibility [see Eq. (15)].

The relation (25) can be cast into a more intuitive form
(Appendix D):

κ > 0 ⇐⇒ ∂n

∂Q
< 1.

This inequality obviously expresses the fact that the system
is stable if an additional overall electronic charge δQ does
not induce a charge transfer δn larger than the added overall
charge. The compressibility is negative and the electronic state
may charge separate only if ∂n/∂Q > 1.

In order to be explicit, we considered first a two-band model
for the interface electronic system (Sec. III and Appendix C).
The bands are split by a RSOC that depends on the charge
density of the surface electronic system. The charge densities
at interface and surface were calculated from the minimization
of the total free energy. This simple model permits to identify
a series of electronic phases that depend on the occupation
of the interface split bands. The second derivatives of the
free energy with respect to the total electronic density Q

and the interface electronic density n yield (phase-dependent)
compressibility and capacitance, respectively. A negative
compressibility arises only for very small effective distances
d/ε between interface and surface and strong RSOC [see
Fig. 3(a); for example, for an RSOC parameter α1 ∼ 10 (eaB)2

the effective distance has to be d/ε � 0.2 aB]. Even for RSOC

parameters twice as large as the largest RSOC estimated from
magnetotransport measurements for LAO/STO, the compress-
ibility stays positive [cf. Fig. 4(a)] also for large but sensible
values of a bias voltage V . This differs from the findings
of Refs. [9,10]. The discrepancy originates most prominently
from the electrostatic term 2 πd/A ε in relation (25), which is
entirely absent in Refs. [9,10]. The more complete treatment
of our work yields a compressibility that is positive for the
parameter set of the LAO/STO heterostructure and therefore
retains the stability of the electronic interface-surface system.

There is also a more technical difference. Here the
compressibility is found from the second derivative of the
free energy [see relation (2)]. In Refs. [9,10], however,
the compressibility is calculated from the derivative of the
chemical potential, which was identified from a model with
fixed, density-independent RSOC. Only for the derivative
of the chemical potential, which yields κ−1, the RSOC was
generalized to include the density dependence. Evidently, the
two approaches lead to diverse results even when the analysis
is restricted to a single-layer model without a surface term (see
Appendix E).

In this article we addressed explicitly the dependence
of the capacitance of the heterostructure on the RSOC. As
reiterated above, the differential capacitance Cdiff is not the
compressibility in this scheme. The differential capacitance
is technically found from the second derivative of the free
energy with respect to the charge density n at the interface.
So Cdiff is an internal capacitance of the heterostructure, the
capacitance between interface and surface. A 3D conducting
film may be deposited on the surface to have a metallic

FIG. 9. (Color online) Compressibility κ (a), interface electronic density n (b), and capacitance Cdiff (c), each in dependence on the polar
charge density Q. Here m
 = 0.7 me, mh = 15 me, m1 = me, d/ε = 10 aB, 	SO = 10 meV, 	E = 50 meV, and 	z,0 = 10−3 e2. The parameter
	z,1 (for the hybridization between dxy and dxz,yz orbitals) controls the density dependence of the RSOC. The voltage V0 allows to tune the
interface charge density. In order to attain a charge density compatible with experiments one has to choose a negative voltage; the lowest
value of V0 for given 	z,1 corresponds to an interface electronic density of 2 × 1013/cm2; it is nearly identical for the three sets. The value
of Q = 1e−/uc for the LAO polar film is specially marked in the plots. At the point where the system undergoes a transition from n = 0 to
0 < n < Q, the inverse compressibility displays a sharp drop as a function of Q. Note that the differential capacitance is only defined for
0 < n < Q, that is, when a gate bias can transfer charges from the surface to the interface.
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electrode (gold or YBCO; see Appendix C). The kinetic
contribution to the capacitance suppresses the capacitance
below its geometrical value when exchange effects and RSOC
can be neglected. However, we find that a strong RSOC can
enhance the capacitance with increasing gate bias to values
beyond the geometric capacitance. Hence, experiments can
verify a RSOC through a capacitance enhancement.

A six-band model is more realistic to investigate the
capacitance of LAO/STO heterostructures (Sec. IV). Most
importantly, it makes it possible to derive a Rashba-like SOC
through the coupling of an atomic SOC (at the Ti sites) to the t2g

bands in the presence of field controlled inversion symmetry
breaking at the interface. The two-band model is interpreted as
an effective model for sufficiently small filling when only one
t2g orbital is occupied and the splitting of the bands is still linear
in momentum k, that is, “Rashba-like.” However, already for
density-independent RSOC and low filling, the capacitance
as a function of bias voltage V behaves differently than in
the two-band model. The capacitance increases perceivably
[Fig. 6(b), dashed brown line] for the six-band model, whereas
it is constant with respect to V for the two-band model in the
absence of a density dependence of the RSOC. In order to find
capacitances larger than the geometric capacitance Cgeom, one
has to include the density dependence of the band structure.

However, one has to realize that in the regime of stronger
gate bias V , a variable number of bands are occupied [see
Fig. 6(a)] and the splitting of the SOC band pairs is not
anymore linear in k (see Fig. 7, the middle band pair
has anyway no linear splitting, even for k → 0). Then the
capacitance as a function of V depends strongly on the
chosen parameter set (t2g band splitting, effective masses,
SOC, orbital deformation). We could identify bias-induced
capacitance enhancements of the order of 5% for parameter
sets compatible with the LAO/STO heterostructure, but a
30% enhancement as observed in experiments [1] appears
to be beyond the present modeling. It should be noted that
those experiments are in a regime of very low charge carrier
densities and, therefore, it is expected that electronic exchange
is much more prominent, an effect which would have to be
included.

For a realistic value of the effective distance between
interface and top gate, d/ε = 10 aB, the total compressibility
of the system stays positive even for large values of the
parameter 	z,1 that controls the density dependence of the
hybridization between the dxy orbital and the dxz,yz orbitals.
There is no instability which produces a phase separation on
account of a Rashba-like SOC.

We portray the basic capacitive properties of a polar
heterostructure in Fig. 9 by relating the compressibility, the
relative value of the interface electronic density, and the
differential capacitance to a variable polar charge density.
The value of Q = 1e−/uc for the LAO/STO heterostruc-
ture is marked. We assigned 	z,1 = 33 e2a2

B to the largest
value of the RSOC that is still compatible with experiments
(see Sec. IV). The potential V0 controls the shift of the
interface t2g bands with respect to the surface states: The lowest
value of V0 (for each of the three sets of curves for given
	z,1 in Fig. 9) adjusts the value of the interface electronic
density n to 2 × 1013/cm2, which is in the physical range
of electronic densities. This corresponds to n/Q � 0.03 in

Fig. 9(b). It is obvious from Fig. 9(a) that for Q = 1e−/uc and
for the LAO/STO values of V0 the compressibility is well in
a positive range. However, it is conceivable that for other het-
erostructures with a polarity of Q = 2e−/uc and large RSOC,
that is sizable 	z,1, a phase separation is attainable with this
mechanism and a considerable enhancement of the differential
capacitance over the geometrical value can be achieved [cf.
Fig. 9(c)].
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APPENDIX A: CALCULATION OF THE ENERGIES

1. Single layers

For a single layer the strength of the RSOC αR depends on
external fields only, so that αR is not a function of the density n

in that layer. Hence, we obtain the relation between number of
electrons N and chemical potential via the energy dispersion,
Eq. (1):

N =
∑

k,λ=±
�[μ − ελ(k)]

= A

2π

∫ ∞

0
dk k

∑
λ=±

�

{
μ −

[
(k − λπN0αR)2

2πN0
− ζ

]}
.

(A1)

With the abbreviation ζ ≡ −2ε−
min = πN0α

2
R/2 and assuming

μ + ζ � 0 (otherwise the Heaviside functions and hence the
integrals are zero), we get

N = A

2π

∫ ∞

0
dk k

∑
λ=±

�[
√

2πN0μ + (πN0αR)2

− |k − λπN0αR|]. (A2)

In our analysis we have to distinguish between μ > 0 and
μ < 0, where both bands or one band is occupied, respectively.

μ < 0:

4πn =
∫ πN0αR+

√
2πN0μ+(πN0αR)2

πN0αR−
√

2πN0μ+(πN0αR)2
dk 2k

= 4πN0αR

√
2πN0μ + (πN0αR)2 (A3a)

⇒ μ = n2

2πN3
0 α2

R

− π

2
N0α

2
R = n2

(2N0)2ζ
− ζ. (A3b)

μ > 0:

4πn =
∫ √

2πN0μ+(πN0αR)2+πN0αR

0
dk 2k

+
∫ √

2πN0μ+(πN0αR)2−πN0αR

0
dk 2k

= 4πN0μ + 4 (πN0αR)2 (A3c)
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⇒ μ = n

N0
− πN0α

2
R = n

N0
− 2ζ. (A3d)

The same distinction has to be made for the calculation of the
free energy.

μ < 0:

F<
0 =

∑
k,λ=±

ελ(k)�[μ − ελ(k)]

= A

2π

∫ πN0αR+
√

2πN0μ+(πN0αR)2

πN0αR−
√

2πN0μ+(πN0αR)2
dk

(
k3

2πN0
− αRk2

)

= 2A

3

(
πN0αRμ − π2N2

0 α3
R

)√
2πN0μ + (πN0αR)2

(A4a)

= A

(
n3

6πN3
0 α2

R

− π

2
N0α

2
Rn

)
. (A4b)

Note that the λ = −1 term is zero, since the square root√
2πN0μ + (πN0αR)2 is always smaller than |k + πN0αR|

for negative μ. For μ > 0 this term yields the integral with the
smaller upper bound.

μ > 0:

F>
0 = A

2π

∫ √
2πN0μ+(πN0αR)2+πN0αR

0
dk

(
k3

2πN0
− αRk2

)

+ A

2π

∫ √
2πN0μ+(πN0αR)2−πN0αR

0
dk

(
k3

2πN0
+ αRk2

)

= A

(
1

2
N0μ

2 − π2

3
N3

0 α4
R

)
(A5a)

= A

(
n2

2N0
− πN0α

2
Rn + π2

6
N3

0 α4
R

)
. (A5b)

APPENDIX B: ELECTROSTATIC ENERGY

We calculate the electrostatic energy of a system similar
to a LAO/STO multilayer; cf. Fig. 2. Before electronic
reconstruction, positive and negative charged planes alternate
in the z direction and the lowest layer is both electrically neutral
and free of electrical fields. If an electron charge density −en

is transferred from the top to the bottom layer [Fig. 2(a)], an
additional field proportional to n is superimposed. Note that
for the RSOC only the asymmetric fields are relevant, so that
the field of the electrons in the bottom layer does not contribute
to RSOC there. Even if there is only a field in the upper half
space, the field important for SOC in the plane is the field
originating from the surface in the complete space.

The electrostatic energy of a system with l alternating
(double) layers can be calculated via the energy stored in the
fields: The electric field E of a planar charge density eσ (where
e is the electronic charge) is given by

E = 2π

ε
eσ (B1)

and the energy per area between two plates with charge density
±eσ and a distance dl between them is

Fes/A = 1

2

ε

4π

(
4π

ε
eσ

)2

dl = 2πe2dl

ε
σ 2. (B2)

Hence, the energy per area of l double layers with charge
density ±eQ in an external field, which is generated by a
charge density ±en, is

Fes/A = 2πe2
(
ldl

1

)
ε1

(Q − n)2 + 2πe2
(
ldl

2

)
ε2

n2. (B3)

Figure 2(b) shows an equivalent circuit for l = 3.

APPENDIX C: THREE-DIMENSIONAL LAYER ON TOP
OF A RSOC LAYER

In some experimental setups, a 3D top gate is deposited
on top of the LAO/STO heterostructure (see, for example,
Ref. [1]). The electrode connects with the topmost AlO2 layer
and the electrons therein should be treated as a 3D electron
system.

This setup requires one to consider an inhomogeneous
system with field penetration in the top electrode as in
Ref. [23]. We assume a space-independent DOS N (EF )
within the electrode on the ground that this does not modify
the qualitative aspects (in fact, modifications are tiny if the
electronic system is not close to a van Hove singularity). Then
the kinetic term from the electrode free energy F1 translates
into a correction of the effective distance in the geometric
capacitance: The effective distance d/ε is increased by λTF,
the screening length (see Refs. [15,22,23,31–34]). So, instead
of implementing an inhomogeneous electron system in the
energy F1 of the top electrode, one may cast the electrostatic
energy into the form [cf. Eq. (3)]

Fes/A = πde2

ε
n2 + π

(
d

ε
+ 2λTF

)
e2 (Q − n)2 . (C1)

We assume here that the number of electrons in the 3D film
is much larger than the number of unoccupied sites in the
interface layer with RSOC, so that even though charge is
transferred to the bottom layer, the volume density nV in the
metal remains approximately unchanged. This condition can
always be fulfilled by a sufficiently thick metallic layer. Then
the screening length is approximately constant, characteristic
of the used electrode material.

In Thomas-Fermi theory λTF depends on the volume
electron density nV and the dielectric constant εc of the ion
cores in the metal,

λTF =
√

εc

4πe2N (EF )
=

√
εcEF

6πe2nV

, (C2)

where N (EF ) is the 3D DOS at the Fermi energy. Table I
shows the screening lengths for Au, Ag, and YBa2Cu3O7.

Note that Q and nV are fixed, as they are determined by the
polarity of the LAO layers and the choice of the top gate film. In
contrast, the electron density n is found from the minimization
of the free energy.

In Fig. 10 the differential capacitance Cdiff and C =
e	n/	V are displayed for Au as top gate. We assumed
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TABLE I. Material properties and resulting screening lengths λTF

for gold, silver, and YBCO. Here nV is the volume electron density
and εc the dielectric constant of the ion cores in the metal.

EF (eV) εc nV (1021 cm−3) λTF

Au 5.53 [35,36] 6.9 [37] 59.0 [35,36] 1.57
Ag 5.49 [35,36] 2.5 [34] 58.6 [35,36] 2.99
YBa2Cu3O7 1.0 [38] 25 [38] 2,..., 6 [38] 7.4,...,12.8

a screening length of 1.57 aB for gold. For the weakest
RSOC, α1 = 0.1 e2a2

B, the capacitance is not altered notably
in comparison to the case without RSOC. For the largest
value α1 = 10 e2a2

B [see estimation in Eq. (16)], we find a
capacitance increase of approximately 8% in a voltage range
0–100 V. This is the capacitance increase with respect to
the case of zero RSOC. The increase with respect to the
geometrical capacitance is 5% for a gold top electrode.

Different screening lengths cause sizable differences in
magnitude of the capacitances: The screening length in a
YBa2Cu3O7 film is ∼10 aB, and the capacitance increase is
approximately 3% in the voltage range 0–100 V. The increase
with respect to the geometrical capacitance is only 1% for the
YBCO top electrode.

FIG. 10. (Color online) Differential capacitance per area (solid
lines) for a gold electrode on top of the LAO/STO heterostructure
which is terminated by an AlO2 layer. Dashed lines refer to C =
e	n

	V
. Here mSTO = 0.7 me, d/ε = 10 aB, Q = 1e−/uc, and α0 = 0. V0

ensures that the density on the interface is 2 × 1013 cm−2 [see Eq. (5)
for the significance of V0]. The gold electrode has a thickness of
150 aB, mAu = 1.1 me, λTF = 1.57 aB and the capacitance Cα=0/A =
6.67 × 10−3 a−1

B for zero RSOC. The system is in phase P2 for all
plotted values of α1, except for the α1 = 10 e2a2

B curve, where the
system is in phase P1+ to the right of the kink at V = 8.8 e/aB. The
horizontal dashed brown line indicates the geometric capacitance.

APPENDIX D: RELATION BETWEEN COMPRESSIBILITY
AND CAPACITANCE AND STABILITY CRITERION

In this section we assume that the electron density at the
interface, n, does not take one of the boundary values, 0 or
Q. Moreover, we assume that the appropriate free energy is
minimal with respect to n(Q,V ) (see below).

The Helmholtz free energy Ftot of the system is a function
of the total electron density Q and the electron density on the
interface n [cf. Eq. (5)]:

Ftot(Q,n) = F0(n) + F1(Q − n) + Fes(Q,n) − eV0nA.

The partial derivative of Ftot(Q,n) with respect to n is the
voltage between the plates:

∂Ftot

∂n
= eAV (Q,n). (D1)

This thermodynamic relation may be used to identify n(Q,V ).
We introduce a Legendre transformation of Ftot with respect
to the variable n,

F (Q,V ) = Ftot(Q,n(Q,V )) − eAV n(Q,V ), (D2)

where F (Q,V ) depends on the total electron density Q and the
external potential V between interface and surface electrode.

The differential capacitance can be derived either from
Eq. (D1)

A/Cdiff(n) = ∂V (Q,n)

e ∂n
= 1

e2 A

∂2Ftot

∂n2
, (D3)

where we suppress the label for the variable Q in Cdiff , or from
the Legendre transform Eq. (D2):

Cdiff(V )/A = e ∂n(Q,V )

∂V
= − 1

A

∂2F

∂V 2
. (D4)

Of course, the two capacitances from Eqs. (D3) and (D4) are
identical in the sense that Cdiff(n(V )) = Cdiff(V ) holds.

On the other hand, the inverse compressibility κ−1(Q,V )
in dependence on an external voltage V is the second total
derivative of F with respect to the total electron density:

κ−1 A/Q2 = d2F (Q,n(Q,V ))
dQ2

(D5a)

= d

dQ
[∂QF + ∂nF (∂Qn)]

= ∂2
QF + 2∂n∂QF (∂Qn) + ∂2

nF (∂Qn)2

+ ∂nF
(
∂2
Qn

)
. (D5b)

Note that ∂nF ≡ ∂F/∂n is not a derivative with respect to a
thermodynamic variable. In fact, the thermodynamic variables
are Q and V for F . The partial derivative of F with respect
to n is identified from the right-hand side of Eq. (D2). The
thermodynamic potential F is minimal with respect to all
values of the internal variable n, a necessary condition for
thermodynamic stability.

According to Eqs. (D2) and (D1), the last term on the right-
hand side of Eq. (D5a) is zero. Under a further assumption
we can derive more elaborate relations between differential
capacitance and compressibility: The dependence of the total
free energy Ftot on the total electron density Q shall be
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exclusively of the form Q − n, so that also

∂2F

∂Q2
= − ∂2F

∂Q∂n
(D6)

is valid. This assumption is reasonable, since Q − n is the
electron density in the surface layer, which should be the
only density-dependent quantity that determines the energy of
the surface system. Hence, we only demand the electrostatic
energy not to have some unusual form. Note that, while
Ftot(Q,n) = Ftot(Q − n,n) is sufficient for the derivation
below, only Eq. (D6) is necessary. Under the validness of
this relation the compressibility becomes

κ−1 A/Q2 = ∂2F

∂Q∂n

(
2

∂n

∂Q
− 1

)
+ ∂2F

∂n2

(
∂n

∂Q

)2

. (D7)

We use the total derivative of the first condition Eq. (D1),

0 = d

dQ

∂F

∂n

= ∂2F

∂Q∂n
+ ∂2F

∂n2

(
∂n

∂Q

)
, (D8)

to replace ∂Q∂nF in the compressibility above:

κ−1 A/Q2 = ∂2F

∂n2

(
∂n

∂Q

) (
1 − ∂n

∂Q

)

= e2A2

Cdiff

∂n

∂Q

(
1 − ∂n

∂Q

)
. (D9)

This relation between the compressibility and differential
capacitance can be further analyzed to deduce a stability
criterion, i.e., the condition for positive compressibility. Since
we assumed that the density n obtained from Eq. (D1) yields
a minimum of the free energy,

∂2F

∂n2
> 0, (D10)

the differential capacitance Cdiff is positive, which is a
necessary criterion for the stability. Note that the second
partial derivatives of F and Ftot (with respect to n and Q)
are equal. Hence, there is an additional condition to keep the
compressibility positive:

κ > 0 ⇐⇒ 0 <
∂n

∂Q
< 1. (D11)

The system is unstable if adding of electrons causes either
electrons to flow from the interface to the surface (∂Qn < 0)
or more than the added electrons to flow to the interface (∂Qn >

1). As we show below, the first alternative does not occur in our
model. ∂Qn < 0 is, in principle, the reverse case of ∂Qn > 1,
i.e., when the isolated surface system would display a negative
compressibility.

Furthermore, Eq. (D8) can be solved for ∂Qn,

∂n

∂Q
= − ∂2F

∂Q∂n

/
∂2F

∂n2
. (D12)

This result inserted into the compressibility Eq. (D9) yields

κ−1 A/Q2 = − ∂2F

∂Q∂n

(
1 + ∂2F

∂Q∂n

/
∂2F

∂n2

)
(D13a)

= ∂2F

∂Q2

(
1 − ∂2F

∂Q2

/
∂2F

∂n2

)
(D13b)

= ∂2F

∂Q2

(
1 − Cdiff

e2A2

∂2F

∂Q2

)
. (D13c)

We consider a system where the electrons in the surface
electrode are not subject to a RSOC or other effects which may
produce a negative compressibility. Correspondingly, we may
assume that ∂2F1/∂Q2 > 0. As the electrostatic contribution
to the free energy also generates a positive second derivative
with respect to Q, the free energy F has to obey

∂2F

∂Q2
> 0. (D14)

Since ∂n∂QF is negative [Eq. (D6) with relation (D14)] and
∂2F/∂n2 is positive in the considered regime, Eq. (D8) shows
that ∂Qn has to be positive in our model.

We consider the regime of positive capacitance. Is it then
possible to identify a negative compressibility of the complete
electronic system? In fact, according to Eq. (D13b) and the
positivity of ∂2F/∂Q2, the compressibility is negative if

κ < 0 ⇐⇒ ∂2F

∂n2
<

∂2F

∂Q2

⇐⇒ ∂2Ftot

∂n2
<

∂2Ftot

∂Q2

⇐⇒ ∂2(F0 + F1)/A

∂n2
+ 4

πde2

ε
<

∂2F1/A

∂n2
+ 2

πde2

ε

⇐⇒ ∂2F0/A

∂n2
+ 2

πde2

ε
< 0. (D15)

This inequality does not involve properties of the surface
system explicitly. With the assumption that Cdiff is positive, one
finds that the compressibility of the heterostructure is negative
if the sum of the inverse compressibility of the interface system
(times n2) and half the inverse geometric capacitance 2πde2/ε

is smaller than zero.
We emphasize that the inverse capacitance is a sum, the

terms of which are generated by the second derivatives of
different contributions to the Helmholtz free energy Ftot in
Eq. (D3), consistent with previous analyses (e.g., Ref. [15]).
The inverse compressibility is not the sum of these terms: It is
the asymmetric setup that causes (Cdiff/A)−1 �= κ−1/(e2Q2).
However, the relation (D15) contradicts the identification of
a negative compressibility in Refs. [9,10]: There the authors
missed the “electrostatic compressibility” 2πde2/ε entirely
and the compressibility of the interface electronic system was
evaluated differently (see Appendix E).

In our model the total free energy Ftot is of the form
presented in Eq. (5), which reads with the abbreviation
D ≡ πde2/ε = (e2/4) A/Cgeom

Ftot(Q − n,n) = F0(n) +
(

1

2N1
+ D

)
(Q − n)2A

+ Dn2A − eV0nA. (D16)

Due to the analytical form of ∂2
QFtot = (1/N1 + 2D)A,

Eq. (D13b) yields a direct relation between the measured
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FIG. 11. (Color online) Differential charge transfer ∂n/∂Q (a)
and the corresponding interface electronic density n (b), both with
respect to 	z,1, which tunes the density dependence of the RSOC. The
density n is controlled by V0. Here m
, = 0.7 me, mh = 15 me, m1 =
me, d/ε = 10 aB, Q = 1 e−/uc = 6.6 × 1014/cm2, 	SO = 10 meV,
	E = 50 meV, and 	z,0 = 10−3 e2. We find Cdiff > Cgeom for ∂Qn >

41/80. The jump to the horizontal line with ∂n/∂Q = 1 in (a) takes
place when all electronic charge is accumulated at the interface;
see (b).

differential capacitance and the total compressibility,

1

Q2
κ−1 =

(
1

N1
+ 2D

) [
1 − Cdiff

e2A

(
1

N1
+ 2D

)]
, (D17)

and the transfer of charge to the interface is

∂n

∂Q
=

(
1

e2N1
+ 1

2

A

Cgeom

)
Cdiff

A
. (D18)

Obviously, for the symmetric case without RSOC and with
equal DOS at the interface and surface electrode, N0 = N1,
one finds ∂n/∂Q = 1

2 and, consequently, n2κ = Cdiff/(e2A).
For effective interface-surface distances d/ε � 10 aB, the

electrostatic term 2D = e2

2 A/Cgeom dominates over the in-
verse compressibilities 1/N0,1, and the charge transfer ∂n/∂Q

is close to 1
2 for vanishing RSOC. Therefore, sizable deviations

of ∂n/∂Q from 1
2 can be indicative of a substantial RSOC in

these systems. With the measurement of Cdiff and knowledge
of Cgeom and N1 one can determine ∂n/∂Q and κ through
Eqs. (D18) and (D17), respectively.

The electronic transfer ∂n/∂Q is displayed in Fig. 11
as a function of the density-dependent hybridization, which
effectively controls the strength of the RSOC (see Sec. IV).
The limiting value of ∂n/∂Q = 1 is reached, when for large
RSOC all additional charge carriers are accumulated at the
interface (horizontal lines in Fig. 11).

APPENDIX E: COMPRESSIBILITY FOR THE PHASE
WITH CHARGE-DEPLETED SURFACE ( Q = n)

The first derivative of the energy with respect to the electron
density n yields the chemical potential while the second
derivative generates the inverse compressibility κ−1. We take
the strength of the RSOC αR to be density dependent, and the
density dependence is implemented already in the free energy.
However, Caprara et al. [9] determined the chemical potential
from a model with given αR, then introduced the density
dependence of αR at that level and calculated the inverse
compressibility κ−1

C from the first derivate of the chemical
potential with respect to n.

Here we compare the resulting compressibilities κ and κC

of these two approaches. Therefor we use the abbreviation
ζ ≡ πN0α

2
R/2, which equals the lowest energy in the disper-

sion Eq. (1), and rewrite the energy Eq. (8) of a layer with
RSOC:

F
≶
0 (n)/A =

{
n3

12N2
0 ζ

− ζn, μ < 0,

n2

2N0
− 2ζn + 2

3N0ζ
2, μ > 0.

(E1)

For density-independent αR and hence density-independent ζ ,
the chemical potential μ is given by

μ
≶
C = dF

≶
0

Adn
=

{
n2

4N2
0 ζ

− ζ, μ < 0,
n
N0

− 2ζ, μ > 0.
(E2)

Caprara et al. [9] then set αR = αR(n), and their inverse
compressibility is

(κ≶
C )−1 = n2 dμ

≶
C

dn
= n2

{
n

2N2
0 ζ

− ζ ′[( n
2N0ζ

)2 + 1
]
,

1
N0

− 2ζ ′.
(E3)

Here ζ ′ = dζ/dn and ζ ′′ = d2ζ/dn2. In contrast, if we set
αR = αR(n) already in the energy F

≶
0 in Eq. (E1):

μ≶ = dF
≶
0

Adn
=

{
μ<

C − ζ ′[ n3

12N2
0 ζ 2 + n

]
, μ < 0,

μ>
C − ζ ′[2 − 4

3N0ζ
]
, μ > 0.

(E4)

(κ<)−1 = (κ<
C )−1 + n2

{
n2

2N2
0 ζ 2

[
n(ζ ′)2

3ζ
− ζ ′

2
− nζ ′′

6

]}

− n2(ζ ′ − ζ ′′n), (E5a)

(κ>)−1 = (κ>
C )−1 + n2

{
−2ζ ′ + 4

3
N0[(ζ ′)2 + ζ ζ ′′] − 2nζ ′′

}
.

(E5b)

For αR = α1n this simplifies to

(κ≶
C )−1 = n2

{
−πN0α

2
1n, μ < 0,

1
N0

− 2πN0α
2
1n, μ > 0,

(E6)

and

(κ≶)−1 = n2

{
−3πN0α

2
1n, μ < 0,

1
N0

− 6πN0α
2
1n + 2π2N3

0 α4
1n

2, μ > 0.

(E7)
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As one can see from Eqs. (E5b) and (E7), (κ<
C )−1 and (κ<)−1

differ by a factor of 3. The deviation for (κ>)−1 is less since
1/N0 dominates (E5b) and (E7) for realistic values of n, α1,
and N0.
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