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Diffusion of Ga adatoms at the surface of GaAs(001) c(4 × 4)α and β reconstructions
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Diffusion of a Ga adatom at the As-rich, low temperature c(4 × 4) reconstructions of a GaAs(001) surface is
analyzed. We use a known energy landscape for the motion of a Ga adatom at two different α and β surface
phases to calculate diffusion tensor by means of the variational approach. A diffusion coefficient describes the
character of low density adatom system motion at the surface. The resulting expressions allow us to identify the
main paths of an adatom diffusion and to calculate an activation energy of this process. It is shown that diffusion
at the α surface is slower and more anisotropic than for the β surface.
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I. INTRODUCTION

Surface diffusion is a control factor of layer by layer crystal
growth, one of the basic processes in the construction of
nanotechnological devices. The analysis of surface diffusion
is based on the determination of adsorption sites, adparticle
binding energy at each of these sites, and barriers for thermally
activated jumps between them. When all these parameters
are calculated, the next step is to describe the particle
diffusion process in this energy landscape. Development of
ab initio calculations in the last few years resulted in a
very accurate description of the surface energy landscape at
various systems [1–14]. For many crystals, important because
of their applications in nanotechnology or biotechnology,
the full energy map at the specific surface orientations and
reconstructions were done. The system which is often a
subject of study is the surface GaAs(001) in its various phases
such as high temperature (2 × 4) [15,16] or low temperature
c(4 × 4) [16–27] reconstructions. This semiconductor is very
important in the production of solar cells or microwave circuits
used in cellular phones. In this study we use, presented in
Refs. [1] and [2], results of ab initio calculations of the energy
landscape of As-rich c(4 × 4)β and c(4 × 4)α phases for a
Ga adatom. On the basis of these data we derive a diffusion
coefficient for Ga atoms and compare diffusive motion at both
surface structures.

The first observations of GaAs(001) surfaces at low
temperatures and at the excess of As atoms established the
existence of the c(4 × 4)β structure [17–21] and then the
asymmetric phase c(4 × 4)α [20–27] was found. It is generally
accepted now that the As-rich c(4 × 4) surface is divided
into two phases: the c(4 × 4)α phase (terminated by Ga-As
dimers) which depending on the As pressure exists up to
400–550 K and the c(4 × 4)β phase (terminated by As-As
dimers) between 400 and 770 K [16,20]. Incorporation and
then diffusion of Ga atoms control the growth process in
As-rich conditions. That is why detailed knowledge of the
Ga adatoms diffusion is so important. The experimental study
of adatom diffusion is a complex problem. Even for more
popular surface reconstruction (2 × 4) there are not many
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measurements that lead to the evaluation of the diffusion
coefficient [28–30], whereas for the surfaces we study here,
two types of (4 × 4) reconstruction, there are almost no such
data. In such a situation theoretical analysis of the adatom
diffusion becomes an important tool in the description of
the GaAs surface dynamics. The first step is a derivation
of the surface energy structure from an adatom perspective.
Further study can be based on some qualitative analysis of the
diffusion barriers [1,2], Monte Carlo simulation data [20,31–
33], molecular dynamics process [34,35], or derivation of
analytic formulas [15,33,35–38].

The analytic formulas have an advantage over other meth-
ods in that they give results as a function of temperature and of
all other model parameters. We propose a variational approach
that was first shown to work for a many-particle diffusion
process [39–43]. Below we explain how the variational
approach can be used in the calculation of the tracer diffusion
coefficient, which also describes diffusion in the system of
low density. For systems of low density correlations can be
neglected. However, the analysis of adatom motion is still not
easy because the reconstructed surface of GaAs(001) c(4 × 4)
in both α and β versions contains many adsorption sites
for Ga adatoms and a complicated lattice of possible jumps
between them. Calculation of effective diffusion coefficients
in different directions and the analysis of possible modes of
particle motion is very difficult when an adatom diffuses over
the surface of a complex energy landscape [36–38]. It appears
that on using proper variational analysis we end up with one
formula for a diffusion tensor, which then can be analyzed
further. The presented approach allows for systematic study of
the diffusive particle motion over the surface with a definite
pattern of energies of an adatom at lattice sites and the energy
barriers for jumps between them. The same procedure can
be easily applied to the more complex situations like dimer
or cluster diffusion [44] or diffusion in three-dimensional
(3D) systems [45,46] when only an appropriate potential
energy surface is calculated, providing all positions of local
equilibrium sites and energy barriers for jumps.

Below we present a general method of calculation, then
we show how it works in the case of the GaAs(001) surface
in two different c(4 × 4)β and c(4 × 4)α reconstructions of
the surface. We show that diffusion decreases and becomes
more anisotropic when β reconstruction of the surface
changes to α type. Experimentally, the reentrant behavior
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in the high-energy electron diffraction (RHEED) oscillation
during GaAs growth can be interpreted as the evidence
for particle mobility change coming from the first to the
second phase [20,47]. The final expressions for the diffusion
coefficient allow us to identify main diffusion paths in all
cases. The effective activation energy value can be calculated
for the diffusion coefficient and for each diffusion path
separately.

II. CALCULATION OF THE DIFFUSION COEFFICIENT

To describe the random walk of single or uncorrelated
adatoms over a crystal surface we define the tracer diffusion
tensor [36,48]

Dn,m = lim
t→∞

1

4t
〈�rn(t)�rm(t)〉, (1)

where �rn[m](t) is the adsorbate displacement after time t with
respect to the initial position, along the coordinate n[m] = x,y.
Definition (1) in an experimental situation corresponds to the
diffusion coefficient for the adatom system of low density.
The adatom diffusion which we want to describe is realized
in random walk motion between different adsorption sites
located at the crystal surface. To analyze this motion let
us divide the lattice of the adsorption sites at the crystal
surface into unit cells. We assume that each cell contains m

sites located in positions �rα
j = �rj + �aα; α = 1, . . . ,m, where

�rj describes the given cell location and �aα is a location of
the site within the cell. The particle at the site described
by parameters (j,α) has the energy E(α). The equilibrium
probability of finding an adatom at this site is equal to
Peq(α) = ρ exp[−βE(α)]/

∑
γ exp[−βE(γ )], where the sum

is over all sites in the unit cell, β = 1/(kBT ) means the inverse
temperature parameter, and ρ is the density of particles at the
surface calculated as a number of particles divided by the
number of unit cells.

The diffusion motion consists of a series of thermally
activated jumps. The adsorbate in an initial adsorption state
α after a given time escapes to another adsorption site γ with
a transition probability per unit time W (j,α; l,γ ). In order to
determine the transition probabilities, we apply the transition
state theory (TST) [49], according to which W (j,α; l,γ ) are
functions of the difference between energy barrier Ẽ(j,α; l,γ )
for the particle jump between sites j,α and l,γ and E(α), the
particle energy at the initial adsorption site

W (j,α; l,γ ) = Wα,γ = ν exp{−β[Ẽ(j,α; l,γ ) − E(α)]}.
(2)

Both energies can be derived from ab initio calcula-
tions [1,32,50]. Proper expression for the diffusion prefactor
ν is a more complex issue. Within TST approach it can be
written as ν = kbT Za/(hZS), where h is Planck’s constant and
Za,ZS are partition functions related to the phonon modes at
the adsorption well and saddle point, respectively. Now, when
we calculate these functions within a harmonic approximation
temperature dependence cancels out [11,35,37,38,49]. More
elaborate calculations done for metallic surfaces in Ref. [51]
show that ν can be constant or even weakly decreasing as a
function of temperature. The phonon modes are not expected
to vary much from site to site. Hence, as a first approximation

we can assume that the prefactor is site independent. Thus
in our calculations below ν does not depend on temperature
and has the same value for each site. We assume that ν =
1013 s−1, close to the value of surface phonon frequencies in
a GaAs crystal. This value can be easily changed in the final
results, because as it is the same for each jump, it comes
to be one constant that stays before the diffusion coefficient.
Hence, in the following all temperature dependence of the
effective activation energies and effective prefactors for the
total diffusion coefficient is a result of different activation
energies for individual jumps. From the other side our final
formulas do not depend on the specific form of the transition
probability (2), hence they allow us to use different ν values if
only known.

Activation energies depend on the site from which adatom
jumps and on the jump direction. Note that a particle can
jump within one cell or between two different cells j and l, so
energy Ẽ depends on parameters j,α; l,γ where l = j when
both sites belong to the same elementary cell or j �= l when
the particle changes cell on jumping. E(α) depends only on
the type α of the site within a given cell. The structure of
all possible transitions at the surface can be quite complex,
especially when they happen between sites of different energy
located irregularly within the cell.

The diffusion coefficient defined by (1) refers to single
particle motion and we assume that our low density system
is a collection of independently moving single particles. The
probability that the particle occupies a given site changes with
time according to the classical master equation

d

dt
P (j,α; t) =

∑
l,γ

[Wγ,αP (l,γ ; t) − Wα,γ P (j,α; t)], (3)

where Wγ,α describes the rates of all possible adatom jumps
over the lattice and fulfills the detailed balance condition

Wγ,αPeq(γ ) = Wα,γ Peq(α). (4)

All components W can be gathered in one matrix Ŵ with
elements −∑

l,γ Wα,γ at the diagonal location (j,α; j,α) and
Wγ,α out of the diagonal.

In order to analyze the character of particle diffusion it
is convenient to make a Fourier transform of the master
equation (3) based on the fact that an infinite surface over which
the particle is wandering consists of periodically repeated
cells. In the wave vector �k space the vector describing the
probability of the site occupation has components Pα(�k; t) =∑

j exp(i�k�rα
j )P (j,α; t). Each component α of this vector

corresponds to one of the sites within the unit cell. We now
have m equations for m different components of the occupation
probability vector

d

dt
Pα(�k; t) =

∑
γ �=α

M(γ ; α)Pγ (�k; t) + M(α; α)Pα(�k; t). (5)

Matrix M̂ is created from matrix Ŵ after transformation into
k space which gives

M(α; α) = −
∑

l,γ �=α

Wα,γ , M(γ ; α) = Wγ,αei�k(�rγ

l −�rα
j ), (6)
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where formulas are written for one, arbitrary cell j and
summation goes over all sites within this cell and over all
neighboring cells l. Note that off-diagonal elements M(γ ; α)
are �k dependent.

To solve the set of Eq. (5) we should find m eigenvalues
and eigenvectors of matrix M̂ . Each eigenvalue describes one
dynamical mode responsible for the relaxation of the initial oc-
cupation probability towards equilibrium values. The diffusion
tensor (1) can be obtained from the one particular eigenvalue of
the transition rate matrix (6). It can be demonstrated [36,39,52]
that for the master equation (5) there is one and only one
eigenvalue λD(�k) such that lim|�k|→0 λD(�k) = 0 and the real
part of all the other eigenvalues is negative. This particular
eigenvalue λD is a diffusional eigenvalue, which means that it
is proportional to �k2 and can be expressed as

lim
|�k|→0

λD = lim
|�k|→0

�wM̂ �v
�w�v = −�kD̂�k, (7)

where �w is the left eigenvector and �v is the right one. The
matrix M̂ is not Hermitian but its elements are related to each
other by the rule M∗(γ ; α)Peq(γ ) = M(α; γ )Peq(α) resulting
from the local equilibrium balance (4). As a result eigenvectors
of matrix M̂ are connected by relation w∗

αPeq(α) = vα .
Equation (7) is our main formula used to derive the diffusion
matrix D̂ (1). On inserting explicit expressions (6) into (7) and
taking into account normalization∑

α

wαvα =
∑

α

wαw∗
αPeq(α) = ρ (8)

we can write

�kD̂�k = 1

ρ
lim

|�k|→0

∑
α,γ

wγ M(α,γ )vα

= 1

ρ
lim

|�k|→0

∑
α,γ

(
wα − ei�k(�rγ

l −�rα
j )wγ

)
Wα,γ vα. (9)

And when consequences of detailed balance for M(α,γ ) and
eigenvectors �w,�v are taken into account we have

�kD̂�k = 1

ρ
lim

|�k|→0

[∑
α>γ

(
wα − ei�k(�rγ

l −�rα
j )wγ

)
Wα,γ Peq(α)w∗

α

+ (
ei�k(�rγ

l −�rα
j )wγ − wα

)
Wα,γ Peq(α)w∗

γ e−i�k(�rγ

l −�rα
j )

]

= 1

ρ
lim

|�k|→0

∑
α>γ

∣∣wα − ei�k(�rγ

l −�rα
j )wγ

∣∣2
Wα,γ Peq(α). (10)

Our diffusional eigenvalue λD in the limit of small �k is
proportional to �k2 and has the lowest absolute value of all
eigenvalues. It can be found by the variational method by
assuming a properly parametrized eigenvector. We choose

vα = Peq(α)ei�k �φα , wα = e−i�k �φα . (11)

The above form of eigenvectors provides proper normalization
and introduces variational parameters �φα that are coupled to
wave vector �k so they can influence the diffusion coefficient.
A similar choice of variational parameters was shown to
be a good one in the description of collective diffusion at
nonhomogeneous surfaces in Refs. [40–43].

On using explicit expression for eigenvectors (11) in
Eq. (10) we obtain a variational formula for the diffusion
coefficient D̂var,

�kD̂var�k = lim
|�k|→0

∑
α>γ

Wα,γ Peq(α)
∣∣ei�k �φα − e

�k(�rγ

l −�rα
j +�φγ )

∣∣2

=
∑
α>γ

Wα,γ Peq(α)
[�k( �φγ + �rγ

l − �rα
j − �φα

)]2
. (12)

Now, for the final expression for D̂var we should minimize
the above equation with respect to all independent parameters
�φα . Each separate type of the surface site α has its individual
vector of phases, so all together we have two times more
phases than sites in the elementary cage. However, one of the
vector parameters �φ can be set to �0, because as it can be seen
in (12) only phase differences count, which means that we can
move all phases by the same quantity without changing the
result. Moreover, phases for some sites are identical due to the
system symmetry. In such a way the number of parameters
can be reduced and as a result the problem is simplified.
In the following sections we will show how the procedure
works in practice for studying diffusion of Ga adatoms over
the GaAs(001) c(4 × 4) surface.

III. DIFFUSION COEFFICIENT FOR THE Ga ADATOM
AT THE GaAs(001) c(4 × 4)β RECONSTRUCTION

Systematic study of energies of a Ga atom at binding sites of
GaAs(001) c(4 × 4)β surface reconstruction and of barriers for
diffusion between them have been shown in Ref. [32]. Lately,
a more detailed map of the surface energy was presented in
Ref. [1]. We used the energy pattern calculated in this last
article as a basis to the analysis of the diffusion behavior of an
adsorbed Ga atom.

The scheme of the lattice for Ga adsorption sites at
the GaAs(001) c(4 × 4)β surface is shown in Fig. 1 with
numeration from Ref. [1]. When the Ga atom was relaxed from

FIG. 1. (Color online) Binding sites of Ga atoms at the
GaAs(001) c(4 × 4)β surface. Site placement and numeration on
the base of Ref. [1].
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FIG. 2. Energy landscape cross section along the marked path in
Fig. 1. It contains all the possible Ga adatom jumps at the surface.
Energy data from Ref. [1].

3 Å above the surface seven different types of minimum energy
sites were found. The lowest one with number 7 (described
also as 6 [1]) lies in the trench between As dimers at the
reconstructed surface and so do four other sites: 8a,8b and
9a,9b. As it was shown in Ref. [1] position and depth of the
adsorption sites at hills of As dimers depends on the height
from which the Ga atom is relaxed. However, if we stay at a
height of 3 Å, the surface is not deformed and there is only
one additional adsorption site at the surface in two versions
4a and 4b. With the same numbers and different letters we
marked sites of the same depth and the same jump rates out
of the site, however with different space orientation, rotated
or reflected like in the cases of 8a and 8b (see Fig. 1). All
energies that decide about jump rates between our sites can
be presented along the path marked in Fig. 1 and the energy
landscape along this path is shown in Fig. 2. It can be seen that
the site of the lowest energy is 7 and there are four different
adsorption site energy values at this surface. All together there
are seven sites—one of energy E7, and two types of energies
E4,E8, and E9 in one elementary cage.

Calculated energy barriers determine the probability of
each single particle jump. An analysis of barrier heights
allows us to find the easiest jump path, which has been
done in Ref. [1]. However, when we look for the path with
minimal energy barriers, it does not necessarily reflect the
possible diffusional behavior of a single particle. When the
particle moves randomly in the potential landscape like this in

Figs. 1 and 2 it jumps forward and backward with frequency
proportional to the jump rate. As it can be seen when the
particle jumps down, into the site of lower energy, its return
is more difficult due to a higher energy barrier. It means that
not only transition rates of jumps but also site occupation
probabilities at equilibrium should be important in the long
distance diffusive motion. Our formula (12) contains all
transition rates as well as equilibrium occupation probabilities
for all possible sites. The diffusion coefficient matrix describes
long distance particle diffusion at equilibrium conditions.
Below we calculate a tensor of diffusion coefficients for single
particle motion by using the variational approach. Then we
compare diffusion in different directions and finally identify
dominant diffusion paths. As we will see only some of them
agree with the paths of minimal energy barriers.

In Fig. 1 we plot all transitions between sites that are taken
into account in the calculations below. Energy barriers for
these transitions were taken from Ref. [1]. There is one more
possible transition path not shown in Fig. 1 but calculated in
Ref. [1]. It is the path directly from site 7 through low lying
site 5 to site 4 with the activation energy as high as 1.10 eV. In
comparison with other energy barriers for jumps in the systems
this transition rate can be neglected at experimentally achieved
temperatures. As a result there is also no need to consider any
additional sites, like 5, hence we end up with four different
energies of adsorption sites.

According to the rules of statistical mechanics equilibrium
probability at given site is

P α
eq = ρe−βEα

2e−βE4 + e−βE7 + 2e−βE8 + 2e−βE9
(13)

when the site occupation is normalized within elementary
cage

∑
α P α

eq = ρ. Equilibrium probabilities (13) should be
then put into the variational formula (12) for the diffusion
matrix. In general there are two variational parameters φα

x

and φα
y per each site type—one coupled to the direction

kx and the other to ky . The lattice has reflection symmetry
with respect to the directions x and y and according to this
symmetry φ9a

x,y = −φ9b
x,y—closest bonds are inverted in both

directions, whereas φ8a
x = −φ8b

x , φ8a
y = φ8b

y and inversely for
site 4, φ4a

x = φ4b
x ,φ4a

y = −φ4b
y . As mentioned before phases at

one of the sites can be set freely, so the number of parameters
is reduced to six. Axes x and y are the main directions of
the diffusional tensor D̂ for the lattice with the described
symmetry, hence only diagonal parameters Dxx = Dx and
Dyy = Dy are nonzero and each value at the diagonal depends
only on parameters coupled to the corresponding direction.
Finally, the following values of diffusion coefficients were
found:

Dβ
x = 2

[
(W87W89 + 4W84W87 + 2W84W89)P 8

eq

2W84 + W87 + 2W89

+W49P
4
eq

]
a2, (14)

Dβ
y = 2

[
W89P

8
eq + W49(W44 + W48)P 4

eq

W44 + W48 + W49

]
a2, (15)
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FIG. 3. (Color online) Diffusion Ga adatom paths along the x

direction at the GaAs(001) c(4 × 4)β surface.

where Wα,β is given by Eq. (2) and appropriate energies can
be found in Fig. 2. Lattice unitary length a = 5.6 Å.

In the above expressions each of the terms can be under-
stood as a contribution of a certain path to the total diffusion.
Let us note that among all paths only one in direction x

(between sites 4 and 9) and one in direction y (between sites
8 and 9) are independent from the other ways of diffusion.
The remaining transition rates of Eqs. (14) and (15) are all
connected in one component. The numerator of both these
expression is a sum of separate terms. For example, in Eq. (14)
we can write the first component as a sum of three terms, each
of them containing two different rates in the numerator and
the same rates in the denominator plus an additional third

FIG. 4. (Color online) Diffusion Ga adatom paths along the y

direction at the GaAs(001) c(4 × 4)β surface.

one. Thus we can say that each of these terms represents a
path which goes through the main two links and is slightly
modified by the presence of the other ways of diffusion. We
can now plot all possible ways of diffusion. There are four
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FIG. 5. (Color online) Dependence of the diffusion coefficients
Dx and Dy on the temperature for the Ga atom at the GaAs(001)
c(4 × 4)β surface.

paths in the x direction and three paths in the y direction. We
show them in Figs. 3 and 4.

At first let us analyze diffusion along direction x. The first
plotted path contains only W87 and W89 transition rates and it
is the same path as was identified as the one with the lowest
activation energies for jumps in Ref. [1]. In Fig. 5 we plotted the
temperature dependence of a total diffusion coefficient in both
directions and the contribution to this value of each identified
path. Our results confirm that the path found in Ref. [1] is
the most important for a large temperature range. The next
important path for the diffusion coefficient is the one that goes
through the hill site 4. Diffusion along this path becomes larger
than the first one at higher temperatures. As explained above
these paths are not entirely independent, they are linked by the
denominator in one expression. This expression also contains
the third path, which has the lowest diffusion values. The
independent path (49) is not the fastest one, but it is interesting
because it bypasses site 7, the one of the lowest energy, which
means that once the particle comes out of the lowest energy site
it can slide over states with higher energy. Such an independent
path and avoiding site 7 is the most important one in direction
y. It appears that due to the symmetry of the lattice all possible
paths along direction y bypass the lowest site as can be seen
in Fig. 4. However, according to plots in Fig. 5 only one path
has significant effect on the overall diffusion in direction y.

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

 200  300  400  500  600  700  800  900  1000
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

D
β [c

m
2 /s

]

D
β x/

D
β y

T[K]

Dx
β

Dy
β

Dx
β/Dy

β

FIG. 6. (Color online) Comparison of the diffusion coefficients
Dβ

x and Dβ
y as a temperature function in logarithmic scale. The scale

of the anisotropy coefficient is shown on the right.

It is interesting to compare diffusion along the x and y

directions. Components in both directions are plotted in Fig. 6.
It can be seen that diffusion in the x direction is faster than
that in direction y. Note that this difference seems to be small
only due to the logarithmic scale used in this figure. In the
same figure ratio between Dx and Dy is plotted in linear scale.
For low temperatures the ratio is close to one, i.e., in Fig. 6
it is close to a thin horizontal line at this level. This agrees
with Monte Carlo simulations in Ref. [32] where diffusion
at temperature 470 K was found to be isotropic. However, at
higher temperatures diffusion becomes an anisotropic process
with Dx almost two times higher than Dy .

When we ignore in (14) and (15) all contributions from
sites located at the dipole structure we have expressions

Dx = 2
W87W89P

8
eq

W87 + 2W89
a2, Dy = 2W89P

8
eqa

2, (16)

which can be explicitly used to reproduce Monte Carlo (MC)
data from Ref. [32]. When we put into the above formulas
the exact energy barriers that were used in Ref. [32] we
get Dx = 1.857 × 10−8 cm2/s and Dy = 1.859 × 10−8 cm2/s
comparing with MC results 1.74 × 10−8 cm2/s in direction x

and 1.66 × 10−8 cm2/s in direction y.
In order to analyze the diffusion process more precisely we

use parametrization

Dx = νxe
−βEA

x

, Dy = νye
−βEA

y

, (17)

where both activation energy EA and prefactor ν can weakly
depend on temperature. We calculate activation energies by
using the formula

EA = −∂ ln D

∂β
. (18)

In Fig. 7 we plot the temperature dependence of activation
energies for both coefficients Dx and Dy . It can be seen that
the activation energy does not change much within the range
of temperature, which is important in the experiment. In both
directions it starts with the same value 0.72 eV then Ex

A slightly
goes up, has its maximum at 1000 K, and then decreases,
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FIG. 7. (Color online) Temperature dependence of the activation
energies calculated with use of (18) for total diffusion coefficients
Dβ in both directions.

whereas E
y

A goes down within the presented temperature
range. It is interesting that even if Dy is lower than Dx , the
effective activation energy responsible for this direction is also
lower that Ex

A. It means that this is not an activation energy but
a prefactor ν that decides the observed anisotropy. Looking
at curves in Fig. 5 it is easy to understand that diffusion in
the x direction is dictated by the (789) direction at lower
temperatures and then it is more and more dependent on the
second channel (487), whereas diffusion along the y direction
is given almost totally by one, dominant component (89).
The number of important diffusion paths contributes to the
prefactor, thus compensating the effect from the activation
barrier difference.

We can see that at the surface with several adsorption sites
and a complicated lattice of transitions a few of the most
important paths can be identified. In close to equilibrium
conditions particles diffuse along these paths. We have shown
that the activation energy that characterizes the given diffusion
path is not a simple sum of energy barriers for individual
jumps between successive adsorption sites. The equilibrium
diffusion coefficient strongly depends on the occupation
probabilities that always accompany corresponding transition
rates. However, the slowest jump in a row is the one that decides
the value of the diffusion coefficient. Such property can be seen
in the shape of our formulas, where sums of the reciprocals of
successive rates are present. Moreover, the diffusion process
does not necessarily happen through the lowest adsorption site,
like our (89) path for diffusion along the y direction.

IV. DIFFUSION COEFFICIENT FOR Ga ADATOM
AT GaAs(001) c(4 × 4)α RECONSTRUCTION

Let us take into regard c(4 × 4)α reconstruction of the
same GaAs(001) surface [2,24]. The unit cell at this surface is
similar to this in the β reconstruction, but with slightly different
positions of atoms at the top layer. As a result adsorption sites
have completely different locations and energies [2]. Thus
the symmetry of the energy landscape for the Ga adatom is
changed as can be seen in Fig. 8. Note that we now have 11
different adsorption sites out of which nine (1, 2, 3, 4a, 4b,

FIG. 8. (Color online) Binding sites of Ga atoms at the
GaAs(001) c(4 × 4)α surface. Site placement and numeration ac-
cording to Ref. [2].

FIG. 9. Energy landscape along the marked paths in Fig. 8. They
contain all the possible jumps of the Ga adatom at the surface. Energy
data from Ref. [2].
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FIG. 10. (Color online) Different Ga adatom diffusion paths in
direction x over the GaAs(001) (4 × 4)α reconstructed surface.

5a, 5b, 6a, 6b) lie within trenches and two, namely 7a and
7b, at dimer hills. The lattice has inverse symmetry only with
respect to the axis x. There is no symmetry in the perpendicular
direction. The cross section of the potential energy landscape
along the two paths marked in Fig. 8 is presented in Fig. 9.

FIG. 11. (Color online) Possible Ga adatom diffusion paths in
direction y over the GaAs(001) (4 × 4)α reconstructed surface.

Our calculations of the diffusion coefficient start with
formulas for equilibrium probabilities:

P α
eq = ρe−βEα∑7

i=1 e−βEi

. (19)

Variational vector (11) is constructed with two independent
phases for each lattice site. According to the lattice symmetry
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FIG. 12. (Color online) Diffusion coefficient of the Ga adatom in
the x direction over the GaAs(001) (4 × 4)α reconstructed surface.
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FIG. 13. (Color online) Diffusion coefficient of the Ga adatom in
the y direction over the GaAs(001) (4 × 4)α reconstructed surface.

φ3
y = φ1

y = 0 and φa
x = φb

x , φa
y = −φb

y for sites 4, 5, 6, and 7.
Finally, diffusion coefficients come out as

Dα
x = W14W

′
14θ1 + W14W̃14P

4
eq + 2W ′

14W̃14θ4

2W14 + W ′
14 + W̃14

a2, (20)

Dα
y = W14W

′′
14P

1
eqP

1
eq + W14W43P

1
eqP

4
eq

W14P 1
eq + W ′′

14P
1
eq + W43P 4

eq

a2, (21)

where
1

W14P 1
eq

= 1

W16P 1
eq

+ 1

W65P 6
eq

+ 1

W54P 5
eq

,

1

W ′
14P

1
eq

= 1

2W17P 1
eq + 2W57P 5

eq

+ 1

2W74P 7
eq

,

(22)
1

W̃14P 1
eq

= 1

2W43P 4
eq

+ 1

W32P 3
eq

+ 1

W21P 2
eq

,

1

W ′′
14P

1
eq

= 1

W17P 1
eq + W57P 5

eq + 2W77P 7
eq

+ 1

W74P 7
eq

.

In the above expression all particle transitions plotted in Fig. 8
were taken into account, but two of them, namely (57) and
(17), were approximated by a simple sum as if they both came
out from site (1). This is an approximation of very fast jumps
between (1) and (5), i.e., much faster than both jumps (57)
and (17) which is true in our case. Formulas obtained with this
approximation are not far from the exact solution, but they have
a simpler structure and give an opportunity to analyze different
diffusion paths over the surface. These paths are plotted in
Figs. 10 and 11.

It can be seen that there are three possible ways over
which a particle diffuses in the x direction and two in
the y direction. Their contributions to the global diffusion
coefficient are presented in Figs. 12 and 13. The fastest paths
in both directions come along the trench and do not climb
the hill. Diffusion along axis x happens mainly through two
channels—first, the more important one inside the trench, and
the second one also visits dimer hills. Both these channels
were identified in Ref. [2] on the basis of energy differences
for consecutive jumps. The fastest path in the y direction comes
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FIG. 14. (Color online) Comparison of diffusion coefficients in
the x and y directions for the GaAs(001) (4 × 4)α reconstructed
surface as a temperature function in logarithmic scale. The scale of
the anisotropy coefficient is shown on the right.

through sites (16543) and covers almost totally the value of
diffusion coefficient Dy . This last diffusion channel was not
proposed before as a possible diffusion path [2], whereas it
is important and an interesting example of particle way that
avoids the lowest energetically site (now it is site 2).

An anisotropy of the particle diffusion at the reconstructed
surface (4 × 4)α is shown in Fig. 14. Within the whole plotted
range of temperatures diffusion is larger in the x direction
(parallel to dimers) than in the y direction (perpendicular to
dimers). The blue dashed line shows ratio between Dx and Dy

coefficients. It starts from 2 at low temperature and increases
to 2.2 for higher temperatures. Thus comparing these values
with those calculated for the surface (4 × 4)β in Fig. 14 we
conclude that the diffusion anisotropy is higher at α surface
reconstruction. It means that the change of surface symmetry
affects the symmetry of the diffusion coefficient of single Ga
particles. When we compare activation barriers for diffusion
along directions x and y in Fig. 15 we find the same situation
as at the previously described surface, namely Ex

A is larger
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FIG. 15. (Color online) Temperature dependence of the activa-
tion energies calculated with use of (18) for total diffusion coefficients
Dα in both directions.
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than E
y

A. We again can explain this fact through the number
of possible diffusion ways. Activation energies compared for
diffusion over surfaces α and β are lower for more a complex
structure of α symmetry in both directions. We can understand
such property as the dependence of the diffusion coefficient on
a larger number of transition rates in the α phase. As a result
the overall diffusion coefficient has a relatively low activation
energy value and a low prefactor ν.

V. CONCLUSIONS

We have calculated diffusion coefficients for two versions
of c(4 × 4) reconstructed surface of GaAs(001) β and α re-
constructions. On using a variational formula for the diffusion
coefficient we were able to derive a global expression for the
elements of the diffusion coefficient tensor on the basis of the
derived in ab initio calculations energy landscape of adsorption
sites and energy barriers [1,2]. In the coordinate system used
here our diffusion tensor has only diagonal elements. Diffusion
along the direction parallel to the dimer orientation (x) is
higher in all cases. However, at low temperatures at the β

surface phase diffusion is almost isotropic. The anisotropy
increases with temperature and is higher for the α surface
phase.

There are not many experimentally measured values of
the diffusion coefficient even for the more popular (2 × 4)
GaAs surface reconstruction and there are almost no data for
the (4 × 4) reconstructed surfaces. Yet as it was discussed in
Ref. [20] some results from RHEED oscillations allow us to
derive a conclusion about rapid enhancement of the diffusion
coefficient which can be caused by the change of surface

reconstruction as it was shown in Ref. [47] and which is also
qualitatively consistent with the results of our calculations.
The value of the diffusion coefficient can be rather compared
with the MC data. We have found that our results agree with
data from Ref. [32].

The structure of the diffusion coefficient as a sum of
different components allows for identification of different
diffusion paths. Some of these paths agree with ones guessed
from the observation of the energy barrier for successive
jumps. The method also allows for finding other paths not
so obvious while the energy structure is studied. It appears
that α structure is far more asymmetric than β structure. And
also when we compare values of coefficients it comes out that
diffusion over the surface with lower symmetry (4 × 4)α is
of one order of magnitude lower than that for the surface of
(4 × 4)β symmetry. It appears that changes of surface structure
towards the system of lower symmetry can be noted in the
decrease of the diffusion process. A faster, more effective
diffusion process at a given temperature is characteristic for
the surface β, the reconstruction of higher symmetry.

A general variational approach that was presented in this
work allows for systematic study of the diffusive particle
motion. We have shown how it works at surfaces. It can also be
easily applied to describe bulk tracer diffusion, more complex
phenomena like cluster diffusion, or any other diffusion
process for which an appropriate potential energy surface can
be determined.
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