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Electron-phonon deformation potential interaction in core-shell Ge-Si and Si-Ge nanowires
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We settle a general expression for the Hamiltonian of the electron-zone-center optical phonon deformation
potential (DP) interaction in the case of nonpolar core-shell cylindrical nanowires (NWs). On the basis of a
long-range phenomenological continuum model for the optical modes and by taking into account the bulk
phonon dispersions, we study the size dependence and strain-induced shift on the electron-phonon coupling
strengths for Ge-Si and Si-Ge NWs. We derive analytically the DP electron-phonon Hamiltonian and report
some numerical results for the frequency core modes and vibrational amplitudes. Our approach allows for the
unambiguous identification of the strain and confinement effects on the optical phonons at the � point. We explore
the dependence of mode frequencies, phonon amplitudes, and hole-DP scattering rate on the spatial symmetry
and the structural parameters of these core-shell structures, which constitute a basic tool for the characterization
and device applications of these novel nanosystems.
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I. INTRODUCTION

Semiconductor nanowires are at the focus of intense
research due to their potential design of nanoscale devices,
with applications in electronics, photonics, and nanosensors;
in addition, they constitute unique systems to explore novel
low-dimensional phenomena, with great basic interest [1–3].
The experimental progress on the fabrication of core-shell
nanowires has expanded the possibilities for tailoring the
physical properties of these structures. Systems composed
by Si, Ge, and their solid solutions, are among the most
studied and emerging as natural choices for integration with
Si-based electronics. The successful synthesis of Si-Ge core-
shell nanowires [4] and the variety of applications foreseen for
these materials have boosted the interest of many researchers
[5–14]. Distinct physical properties, such as the separation
of electron and hole carriers or the dramatic reduction of
the thermal conductivity, are attained in Ge-Si core-shell
nanowires (NWs). Furthermore, with this cylindrical geometry
it is possible to achieve much higher strains between the two
materials without losing crystalline coherence [15], which can
be of interest to modify the carrier mobility and effective
masses in these nanostructures. However, there are limits to
the wire diameters that can be grown without yielding defects,
such as dislocations at the interface and shell corrugation, in
order to relax the stress [16]. The crystalline orientation of
the nanowire is another parameter to be considered. In fact,
the study of acoustic phonons in strained Si-Ge nanowires
has been recently addressed by means of a phenomenological
continuum model [17]. Strain may affect the lifetimes of
spin qubits in gate-defined quantum dots in semiconductor
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nanowires and it has important consequences on the electronic
and optical properties, not only due to the rehybridization
of the electronic bands [18], but also because of induced
changes in the spin relaxation lifetime due to spin-phonon
coupling [19].

In order to characterize core-shell nanowires, Raman
spectroscopy, a nondestructive technique, as well as infrared
polarizability (IRP) are widely used to provide information on
the phonon response region, the differences between various
confined optical vibrations, their angular momentum, depen-
dence size and structural effects, and type of semiconductors
involved in a structure. In order to elucidate the Raman
selection rules, electronic scattering rates, confinement, and
the strain effects in these systems, the knowledge of the
electron-phonon Hamiltonian (EPH) as well as the zone-
center optical modes of the nanostructure are necessary. By
employing a continuum model, we aim at a description of
EPH and the dependence of the optical modes on wire radii
and phonon symmetry for nonpolar materials.

It is well known (see Ref. [20], and references therein) that
in III-V and II-VI semiconductor nanostructures, the Fröhlich-
like long-range electrostatic potential is the most relevant
interaction. Since Si-Ge and Ge-Si are nonpolar materials,
the electrostatic contribution due to the anion-cation atomic
vibrations is absent. Consequently, the dominant contribution
to the EPH is the mechanical deformation potential (DP)
[21]. In this sense, for a reliable description of the interaction
between nonpolar vibrations and electronic quasiparticles, it is
necessary to have knowledge of phonon displacement vectors
and their spatial symmetries. For the particular case of the
electron-optical phonon Hamiltonian at the � point, these
characteristics determine other physical properties, such as
hole scattering, transport, Raman efficiency, IRP, and Raman
selection rules. Hence, a straightforward explicit expression
for the EPH, as well as the understanding of its physical
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relevance, represent a central issue for the investigation of
these novel structures.

In this work we study the zone-center optical modes
and the corresponding electron-optical phonon deformation
potential Hamiltonian of core-shell nanowires based on Si
and Ge. We address the frequencies, phonon amplitudes,
and symmetry dependence on core modes with respect to
the relative dimensions of the system, i.e., core radius,
shell thickness, ratio between core and shell radii, and the
subsequent stress which builds up at the core-shell interface.
We analyze the coupling between modes and the dispersion
relations for these structures. We focus on core modes, for
which the strain is homogeneous, in contrast to shell modes,
which present a radial dependence on strain, thus, making
it more difficult to distinguish between the contributions of
strain and confinement for characterization purposes [15,22].
To this end, we employ a continuum approach, as has
been done for other systems [23–25], including core-shell
nanowires of polar semiconductors [26,27]. As in the polar
case, both core and shell components develop strain due to
the different lattice constant between the two materials. We
include this effect in our model, so that frequencies at the
center of the Brillouin zone of the bulk material are shifted
with respect to the unstrained case. Therefore, a macroscopic
treatment of the phonon confinement frequencies and their
spatial eigensolutions becomes a powerful tool to tackle the
electron-optical phonon Hamiltonian in cylindrical core-shell
NWs.

This work is organized as follows: Section II addresses
the main formalism used to obtain the optical deformation
potential Hamiltonian interaction for cylindrical nanowires.
Furthermore, we provide an explicit analytical equation for
the hole scattering matrix elements in terms of the 4×4
Luttinger Hamiltonian, deformation potential tensor, and
phonon field displacements. Section III presents the details
of the phenomenological model. A brief review is given in
Sec. III A, showing the equations of motion and the explicit
form of the basis set for the solutions. Section III B details for
the inclusion of strain effects on the vibrational frequencies
of the corresponding bulk materials. In Sec. IV we present
analytical results for particular cases of the phonon dispersion
relations with higher symmetry, which allows us to evaluate
the frequency shifts due to confinement effects and strain, as
well as the coupling between vibrational modes. Additionally,
numerical results for Ge-Si and Si-Ge nanowires are shown.
Section V is devoted to an analysis of the zone-center-phonon
symmetry on hole scattering rates due to a deformation
potential interaction Hamiltonian in the NWs. Finally, we draw
our conclusions in Sec. VI.

II. ELECTRON-OPTICAL PHONON INTERACTION
IN CORE-SHELL NANOWIRES

In nonpolar semiconductors, the deformation potential is
a short-range interaction [21]. Thus, in the framework of the
Born-Oppenheimer linear approximation, the electron-phonon
interaction can be written as

He-ph = �u · ∂H

∂ �u . (1)

Here, �u is the phonon field displacement and ∂H/∂ �u takes into
account the perturbation of the electronic Hamiltonian by the
optical phonon modes at the center of the Brillouin zone.

At the � point of the Brillouin zone, the matrix elements
between s-like conduction band states is zero and, in conse-
quence, there is no deformation potential interaction between
electrons in the conduction band and optical phonons. For the
p-like valence band, the �D = ∂H/∂ �u components in cylindri-
cal coordinates can be expressed, in matrix representation, as
follows (see Appendix A):

Dêr
= du0

a0

⎛
⎜⎜⎜⎝

0 −eiθ 0 0

−e−iθ 0 0 0

0 0 0 eiθ

0 0 e−iθ 0

⎞
⎟⎟⎟⎠ , (2)

Dêθ
= idu0

a0

⎛
⎜⎜⎜⎝

0 −eiθ 0 0

e−iθ 0 0 0

0 0 0 eiθ

0 0 −e−iθ 0

⎞
⎟⎟⎟⎠ , (3)

and

Dêz
= idu0

a0

⎛
⎜⎜⎜⎝

0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎠ , (4)

with d being the optical DP constant as defined by Bir and
Pikus [21], a0 the lattice constant, u0 = (�Vc/V Mω0)1/2 the
unit of phonon displacement, Vc the volume of the primitive
cell, M the atomic mass, V the volume of the nanowire,
and ω0 the bulk optical phonon frequency at the � point.
The Hamiltonian for the electron-phonon interaction in the
occupation number representation can be expressed as [28]

He-ph =
∑

α′
h,αh,j,kz

M
(j )
α′

h,αh
[a†

j (kz) + aj (−kz)]c
†
α′

h
cαh

, (5)

where aj (kz)†[aj (−kz)] and c
†
α′

h
(cαh

) denote the phonon and
electron creation (annihilation) operators in the j branch
with wave vector kz (−kz) and state α′

h (αh), respectively.
In Eq. (5), M

(j )
α′

h,αh
represents the amplitude probability of

scattering between the electronic states αh → α′
h due to the

interaction with an optical phonon with a vector displacement
�u(j ). This probability amplitude is given by [29]

M
(j )
α′

h,αh
= 1√

Nj

〈α′
h|�u(j ) · �D|αh〉, (6)

where Nj = ‖�u(j )‖ is a normalization constant.
We consider infinite cylindrical core-shell nanowires with

core radius a and shell radius b, so that the shell thickness
is given by b − a. We choose the axis of the wire along
the z direction of the cylindrical coordinates (r,θ,z). In the
framework of the envelope function formalism for the 4×4
Luttinger Hamiltonian [30] in the axial approximation, and
taking into account stress effects due to lattice mismatch
[21,31,32], the fourfold wave function of the �8 valence band
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states can be expressed as

〈�r|αh〉 =

⎛
⎜⎜⎜⎜⎜⎝

F (1)
νh

(r)|v3/2〉
F

(2)
νh+1(r)eiθ |v1/2〉

F
(3)
νh+2(r)e2iθ |v−1/2〉

F
(4)
νh+3(r)e3iθ |v−3/2〉

⎞
⎟⎟⎟⎟⎟⎠ ei(khz+νhθ). (7)

Here, each component of the spinor is characterized by the
set of quantum numbers αh = (νh,lh,kh), where νh is the
z component of the angular momentum, lh is the radial
quantum number, and kh is the z component of the wave
vector. Functions F (i)

νh
(r) = A(i)

νh
Jνh

(r) (i = 1, . . . ,4) for r < a

and F (i)
νh

(r) = B(i)
νh

Jνh
(r) + C(i)

νh
Nνh

(r) for a < r < b, where
Jνh

(r), Nνh
(r) are the Bessel and Neumann functions [33]. The

constants A(i)
νh

,B(i)
νh

,C(i)
νh

and energy Eνh,lh (kh) are determined
by the matching boundary conditions at r = a and r = b. In
consequence, the scattering matrix elements (6) can be cast as

M
(j )
α′

h,αh
= 1√

Nj

&⎛
⎜⎜⎜⎜⎜⎝

F
(1)
ν ′
h

(r)|v3/2〉
F

(2)
ν ′
h+1(r)eiθ |v1/2〉

F
(3)
ν ′
h+2(r)e2iθ |v−1/2〉

F
(4)
ν ′
h+3(r)e3iθ |v−3/2〉

⎞
⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
�u(j )

· �Dei(νh−ν ′
h)θ

∣∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎜⎝

F (1)
νh

(r)|v3/2〉
F

(2)
νh+1(r)eiθ |v1/2〉

F
(3)
νh+2(r)e2iθ |v−1/2〉

F
(4)
νh+3(r)e3iθ |v−3/2〉

⎞
⎟⎟⎟⎟⎟⎠

'

δk′
h,kh±kz

, (8)

where the momentum conservation along the z direction is
written explicitly. The influence of the geometric factors, as
well as the strain and bulk parameters on the matrix elements
(8), are embedded in the phonon dispersion relations and the
corresponding displacement vectors.

III. PHENOMENOLOGICAL CONTINUUM APPROACH
IN CYLINDRICAL GEOMETRY

In order to derive a comprehensive expression for the
electron-phonon DP matrix elements (8), it is required to
discuss the phonon dispersion relations as a function of radii
a and b, wave vector kz, and influence of the strain effects
across the core-shell surface, as well as the spatial symmetry
properties of the phonon displacement vector. In the following,
we study the confined phonon frequencies, the mixing of
phonon modes as a consequence of the cylindrical spatial
geometry, and their corresponding displacement vector, based
on a unified macroscopic continuum theory where the medium
properties are considered to be piecewise [34,35].

A. Equations of motion and basis for the solutions

Although the continuum approach employed in this work
has been reported elsewhere [25,27,36,37], for the sake
of completeness and further applications focusing on the
electron-phonon DP Hamiltonian, we briefly recall the main
features of the model, in particular, for nonpolar media and

cylindrical core-shell geometry. Considering a harmonic time
dependence for the oscillations, the equations of motion for
the optical modes in an isotropic nonpolar media are given
by [38] (

ω2 − ω2
0

)�u = β2
L∇(∇ · �u) − β2

T ∇×∇×�u. (9)

In these expressions, βL and βT describe the quadratic
dispersions of the LO- and TO-bulk phonon branches of the
optical modes in the long-wave limit, respectively. Applying
the Helmholtz’s method of potentials [27,36,39], one can find
a general basis of solutions for the problem, namely,

�uT 1 =

⎛
⎜⎝

ikz

qT
f ′

n (qT r)

− nkz

qT

1
qT r

fn(qT r)

fn(qT r)

⎞
⎟⎠ ei(nθ+kzz),

�uT 2 =

⎛
⎜⎝

in
qT r

fn(qT r)

−f ′
n (qT r)

0

⎞
⎟⎠ ei(nθ+kzz), (10)

�uL =

⎛
⎜⎝

f ′
n (qLr)

in
qLr

fn(qLr)
ikz

qL
fn(qLr)

⎞
⎟⎠ ei(nθ+kzz),

where the vector components are in cylindrical coordinates,
(ur,uθ ,uz); the prime denotes the derivative with respect to
the argument; n is an integer label related to the angular
dependence of the modes; kz is the continuum wave vector
along the cylinder axis; and the wave vectors qL,T are given by

q2
L,T = ω2

0 − ω2

β2
L,T

− k2
z . (11)

If q2
L,T > 0 (q2

L,T < 0) and r < a, the function fn = Jn

(In) order-n Bessel (infield) function. For a < r < b, fn

is a linear combination of Jn or Neumann Nn functions
(In or MacDonald Kn). It is straightforward to check that
the longitudinal solution verifies ∇×�uL = �0, whereas the
transverse solutions satisfy ∇ · �uT 1 = ∇ · �uT 2 = 0, as they
should be. Particular cases of this basis have been used to
study phonon modes in nonpolar nanotubes [36,40] and in
solid nanowires with only one material at kz = 0 [34,35].

In cylindrical geometry, neither the amplitudes �uT 1, �uT 2,
nor �uL represent independent solutions for the phonon modes
of the core-shell nanostructures. Nevertheless, the explicit
form of the basis (10) allows us to elucidate the uncoupled
modes and their polarization for special symmetries, such as
n = 0 or kz = 0.

A direct evaluation of Eq. (8) requires one to obtain
the general solution of the problem. This solution can be
written as a linear combination of the basis vectors (10),
whose coefficients are determined by imposing the appropriate
boundary conditions. If the bulk optical frequencies of core
and shell materials are very different, it is a valid assumption
that states are completely confined in the core or in the
shell regions. This approach is fulfilled for Si and Ge,
whose characteristic optical phonon frequencies are 521 and
301 cm−1, respectively [41]. In addition, we will assume a
large separation between the optical branches of shell and the
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DARÍO G. SANTIAGO-PÉREZ et al. PHYSICAL REVIEW B 91, 075312 (2015)

host material. Thus, the amplitude of the oscillations should
be zero at the surfaces S (r = a and r = b), i.e., �u|S = 0.

B. Strain-induced shift of bulk modes

Core-shell silicon and germanium NWs should present
large strain fields due to the lattice mismatch at the interface.
This effect has been measured by Raman spectroscopy
[5,8,22], as well as the strain-induced frequency shift as a
function of core radius and shell thickness [6]. The frequency
shift can be estimated by solving the secular equation [42]

∣∣∣∣∣∣∣
pε11 + qeε11 − λ 2tε12 2tε13

2tε21 pε22 + qeε22 − λ 2tε23

2tε31 2tε32 pε33 + qeε33 − λ

∣∣∣∣∣∣∣ = 0,

(12)

where p, q, and t are the phonon deformation potential
values, εij (i,j = 1,2,3) the strain components in Cartesian
coordinates, eεii = tr{ε} − εii , tr{ε} is the trace of the strain
tensor, and λ = ω2 − ω2

0 is the strain-induced frequency shift.
In the present work we will deal with nanowires grown along
the [011] direction. A detailed procedure for the evaluation of
the shift λ in the above-mentioned crystallographic direction
and analytical expressions for εcore

ij and εshell
ij are given in

Refs. [22,43]. Here we present the corresponding solutions,

λL = (
3
4p + 5

4q + 1
2 t

)
εcore
rr + (

1
4p + 3

4q − 1
2 t

)
εcore
zz ,

λT 1 = (
1
2p + 3

2q − t
)
εcore
rr + (

1
2p + 1

2q + t
)
εcore
zz , (13)

λT 2 = (
3
4p + 5

4q + 1
2 t

)
εcore
rr + (

1
4p + 3

4q − 1
2 t

)
εcore
zz .

Notice that the frequency shift in the core only depends
on the ratio γ = b/a, and not on the particular values of the
core and shell radii. However, for the shell, εshell

rr and εshell
θθ

depend on the coordinate r . For this reason, λshell
1 and λ shell

2
are nontrivial functions of r and θ . As in this work we focus
on core modes, it is sufficient with the expressions (13) shown
above.

Studies by Raman spectroscopy prove that strain is partially
relaxed, at least for the core diameters experimentally obtained
to this date. In order to model this effect, Singh et al.
[5] introduced an axial relaxation parameter ρ in the misfit
factor, εm = εcore

zz − ε shell
zz . In the framework of this heuristic

approach, the misfit strain is rewritten as εm → εm(1 − ρ).
This parameter varies between 0 and 1, so that when ρ = 0, the
system is fully strained. Since all the experimental information
available up to now deals with nanowires with partially relaxed
strain, we take for our numerical evaluations a relaxation
parameter ρ = 0.5, avoiding the unrealistic overestimation of
the strain. The results for fully strained NWs are very similar,
save for the larger shift due to strain effects.

Once the phonon bulk frequencies are corrected including
strain through the replacement ω2

0 → ω2
0 + λi (i = L,T 1,T 2)

in the corresponding expressions (11), we calculate the
phonon dispersion relations using Eq. (14). In the following,
we address some numerical results focusing on the higher
symmetry modes.

IV. DISPERSION RELATIONS FOR
CORE-SHELL NANOWIRES

We study the core modes in Ge-Si and Si-Ge systems and,
in particular, we analyze the coupling for different values of n

and kz, as well as the frequency shift due to confinement as a
function of the core and shell radii a, b, and the wave vector
kz. Taking a linear combination of the basis functions (10)
and applying the boundary condition �u|r=a = 0, the general
dispersion relations for core phonons are obtained by solving
the transcendental equation

Jn(μT 1)

[
J ′

n (μL)J ′
n (μT 2) − n2

μLμT 2
Jn(μL)Jn(μT 2)

]

=
ek

2
z

μLμT 1
Jn(μL)

[
J ′

n (μT 1)J ′
n (μT 2)

− n2

μT 1μT 2
Jn(μT 1)Jn(μT 2)

]
, (14)

whereekz = kza and μ2
i = q2

i a
2 + λi(γ )a2/β2

i (i = L,T 1,T 2).
From the above equation, immediately we obtain the

following symmetry properties: (i) for n = 0 and kz = 0, the
triple degeneracy of the optical modes is broken, and we have
three independent subsets of confined modes for L, T 1, and
T 2; (ii) for n 	= 0 and kz = 0, the degeneracy is partially lifted:
L and T 2 modes are coupled, while T 1 remains uncoupled;

(iii) for n = 0 with kz 	= 0, the bulk degeneracy is also split
into two subsets, one belonging to the independent transversal
T 2 phonon mode, and the other corresponding to the cou-
pled longitudinal and transverse L − T 1 modes; and finally,
(iv) for n 	= 0 and kz 	= 0 all the L, T 1, and T 2 phonon vector
amplitudes are mixed.

These results, stemming from the peculiarities of the
cylindrical geometry, have profound consequences on the
EPH. According to these symmetries, which are characterized
by the azimuthal label n and wave vector kz, four different
physical situations can be distinguished in relation to the EPH,
which will be of use to analyze subsequent calculations of the
dispersion relations for core-shell Ge-Si and Si-Ge NWs.

Table I shows the input parameters employed in the
calculations. In the following the values given in Table I are
assumed to be size independent, a hypothesis that should
not be valid for very small radii. Dimensionless quadratic
curvature parameters for the transversal (β2

T ) and longitudinal
(β2

L) bulk optical phonon bands, along the [011] crystallo-
graphic direction used here, are 6.33×10−12, 11.53×10−12

and 17.59×10−12, 31.95×10−12 for Ge and Si, respectively.

TABLE I. Bulk parameters for Ge and Si with diamond structure.
ω0 is given in cm−1, the Young’s modulus E in 1012 dyn/cm2, and
the lattice constant a0 in nanometers.

ω0 p/ω2
0 q/ω2

0 t/ω2
0 E ν a0

Ge 301a −1.47b −1.93b −1.11b 1.28c 0.21c 0.566c

Si 521a −1.83b −2.33b −0.71b 1.59c 0.23c 0.543c

aReference [41].
bReference [42].
cReference [48].
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These values have been fitted to the neutron dispersion data
collected in Ref. [44], originally reported in Refs. [45,46]
(Si) and [47] (Ge). As is well known, the transversal optical
phonons are nondegenerate along the [011] crystallographic
direction, showing different βT 1 and βT 2 curvatures. For Si and
Ge bulk semiconductors βT 1 ≈ βT 2. Thus, in the framework
of the isotropic approximation, we have chosen for βT the
average between βT 1 and βT 2 values.

A. Modes with n = 0 and kz = 0

First, we focus on the uncoupled modes with n = 0 and
kz = 0. By inspection of the basis for the solutions, it is clear
that for this case all modes L, T 1, and T 2 are completely
decoupled. By imposing the boundary condition of complete
confinement, the frequencies of core modes are found to be

ω2
L = ω2

0 − β2
L

(
μ

(m)
1

)2

a2
+ λL(γ ),

ω2
T 1 = ω2

0 − β2
T

(
μ

(m)
0

)2

a2
+ λT 1(γ ), (15)

ω2
T 2 = ω2

0 − β2
T

(
μ

(m)
1

)2

a2
+ λT 2(γ ),

where μ
(m)
i (i = 0,1) are the roots of Ji(μ

(m)
i ) = 0, with

m = 1,2, . . . .
The second term in the right-hand side of Eqs. (15) gives

the effect of confinement. Obviously, it is always negative,
producing a downshift of the modes. The confinement term
for these uncoupled modes varies with 1/a2. The third term is
the effect of strain, λi , which depends on the ratio γ and the
crystallographic direction.

In the present case, He-ph is decoupled into three indepen-
dent Hamiltonians, HL

e-ph, HT 1
e-ph, and HT 2

e-ph, which characterize
the three orthogonal phonon displacements along the radial
(êr ), axial (êz), and azimuthal (êθ ) directions, respectively.

Figure 1 shows the core modes as a function of the core
radius a in a core-shell system for fixed shell thickness. The
left panel presents the Ge-Si case, and the right panel depicts
results for the Si-Ge nanowire. Recall that the role of the
shell is essential to obtain the shift of the core bulk frequency,
as explained in Sec. III B but, besides that, it does not play
any role for the core modes, due to the boundary condition
of complete confinement. There is an overall increase of the
core mode frequencies in the left panel of Fig. 1, in which
Ge is the core material, while the modes are downshifted in
the right panel of Fig. 1, where Si is the core medium. This
is related to the difference of lattice constants: as can be seen
in Table I, the lattice constant of Si is smaller than that of Ge,
thus the strain always produces a redshift in the Si region of
the wire, and a blueshift in the Ge part, no matter whether they
constitute the core or the shell. The highest frequency mode of
the Ge-core case (left panel) shows an increase of frequency for
diminishing a in a substantial radius range, which indicates the
importance of strain for this mode. Comparison of the results
of Fig. 1 to the frequencies obtained for fixed shell/core ratio
γ (not shown) allows us to conclude that for increasing values
of a and fixed shell thickness, the frequencies tend to the bulk
core value, whereas for γ fixed confinement effects disappear,

FIG. 1. (Color online) Frequencies of the core modes with n = 0
and kz = 0 as a function of the core radius a in a core-shell system
grown in the [011] direction. Left panel: Ge-Si. Right panel: Si-Ge,
for fixed shell thickness b − a = 1 nm.

leaving the strain as the main contribution. As in Fig. 1, Ge
core modes are blueshifted due to strain, whereas the Si modes
are redshifted. The higher frequency mode of this latter panel
also shows a blueshift for diminishing radius, which signals
the prevalence of strain effects for this mode.

In a nanowire with fixed core radius, the frequency
dependence is due to the strain, which varies with the shell
radius via the ratio γ . As discussed above, the NW with Ge
core always shows an increasing blueshift of all modes with
increasing strain, due to the smaller Si lattice constant. For the
same reason, all modes of strained Si-core NWs are redshifted.

B. Modes with n �= 0 and kz = 0

In the case of modes without axial symmetry, i.e., n 	= 0,
we find for kz = 0 that L and T 2 modes are coupled, while the
T 1 mode remains uncoupled. The dispersion relation for the
latter is given by

ω2
T 1 = ω2

0 − β2
T

(
μ(m)

n

)2

a2
+ λT 1(γ ), (16)

where Jn(μ(m)
n ) = 0 with m = 1,2, . . . . The coupled L − T 2

modes fulfill the equation

J ′
n(μL)J ′

n(μT 2) − n2

μLμT 2
Jn(μL)Jn(μT 2) = 0, (17)

with

μ2
L = [

ω2
0 + λL(γ ) − ω2] (

a

βL

)2

, (18)

μ2
T 2 = [

ω2
0 + λT 2(γ ) − ω2

] (
a

βT

)2

. (19)
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FIG. 2. (Color online) The same as Fig. 1 for n = 1.

Here we have only two independent blocks in the EPH.
One corresponds to HT 1

e-ph and the other to a mixture of
uL and uT 2 amplitudes, with phonon polarization vector
on the (êr , êθ ) plane, which leads to HL−T 2

e-ph . Figure 2
shows the core modes with n = 1 and kz = 0 as a function
of the core radius for fixed shell thickness. Notice that
the uncoupled T 1 modes behave as for the n = 0 case.
The coupled L − T 2 modes are closer in frequencies com-
pared to the n = 0 case. This behavior holds for varying core
radius if the same shell/core ratio is maintained.

C. Modes with n = 0 and kz �= 0

Now we consider the dependence of the mode frequencies
with the wave vector, kz 	= 0. We focus on the n = 0 modes that
results in an uncoupled T 2 mode and coupled L − T 1 mode.
The uncoupled transverse mode is given by J1(μ(m)

1 ) = 0,
which leads to the dispersion relation

ω2
T 2 = ω2

0 − β2
T

(
μ

(m)
1

)2

a2
+ λT 2(γ ) − β2

T k2
z . (20)

Equation (20) is just like the bulk dispersion relation, except
for the shifts due to the spatial confinement (βT μ

(m)
1 )2/a2 and

the strain, λT 2(γ ). The coupled L − T 1 modes are obtained
from Eq. (21):

J ′
0(μL)J0(μT 1) −

ek
2
z

μLμT 1
J0(μL)J ′

0(μT 1) = 0, (21)

with

μ2
L = [

ω2
0 + λL(γ ) − ω2] (

a

βL

)2

−ek2
z, (22)

μ2
T 1 = [

ω2
0 + λT 1(γ ) − ω2

] (
a

βT

)2

−ek2
z. (23)

If kz 	= 0, the axial symmetry is broken and for n = 0, the
amplitudes uL and uT 1 are coupled, so we obtain the HL−T 1

e-ph
which describes the electronic interaction with phonons
polarized on the (êr , êz) plane. In addition, we have a HT 2

e-ph
term for the uncoupled T 2 optical modes.

V. ELECTRON-OPTICAL PHONON SCATTERING RATE

As stated above, near the � point of the Brillouin zone the
conduction band does not play a role in the electron-optical
phonon deformation potential Hamiltonian, and the hole states
are the only contribution to He-ph. Hence, it becomes important
to understand how the structure of the He-ph is unfolded by the
symmetry properties of the degenerate valence bands in NWs
with cylindrical geometry. Notice that the influence of the
geometric factors, as well as the strain and bulk parameters
on the hole-phonon matrix elements (8) are embedded in the
phonon dispersion relations and the corresponding phonon
displacement vector. Hence, on the basis of the calculated
frequencies and phonon amplitudes, explicit expressions for
the DP matrix elements (6) can be carried forward. From
Eq. (8) and the previous discussions, it becomes clear that
the hole-phonon scattering rate depends on the phonon polar-
ization. Since we are in a cylindrical geometry, it is not possible
to decouple the phonon modes in a set of three independent
polarizations. In the following sections we illustrate some
cases of interest for the hole scattering caused by the phonon
polarization along the axial, radial, and azimuthal directions.

A. Phonon modes polarized along the growth direction

For phonon modes polarized along the cylinder axis, we
have to consider the z component of the vector amplitude �u(j ).
Thus, from the basis vectors shown in Eq. (10) we have

u(êz)
z = Uze

inθ = [Jn(μT 1r/a)Jn(μL) − Jn(μLr/a)Jn(μT 1)]

× einθ /
√

Nz . (24)

Consequently, combining Eqs. (4) and (7), the amplitude (8)
can be cast as

M
(êz)
α′

h,αh
= idu0

a0

(
δν ′

h,νh+n+2
[−〈

F
(1)
ν ′
h

∣∣Uz

∣∣F (3)
νh+2

〉
− 〈

F
(2)
ν ′
h+1

∣∣Uz

∣∣F (4)
νh+3

〉] + δν ′
h,νh+n−2

[〈
F

(3)
ν ′
h+2

∣∣Uz

∣∣F (1)
νh

〉
+ 〈

F
(4)
ν ′
h+3

∣∣Uz

∣∣F (2)
νh+1

〉])
δk′

h,kh±kz
. (25)

This scattering rate is ruled by the combination of longitudinal
L and transverse T 1 amplitudes. In the particular case of
kz = 0, as is required, for example, in infrared spectroscopy
measurements, the hole transition is assisted by a pure
transversal T 1 optical phonon. Figure 3 shows the contribution
of the amplitude uz to the H

(êz)
e-ph. The left panel is devoted to the

three first modes (m = 1,2,3) with n = 0,1 and kz = 0. Notice
that the uz is independent of the core-shell materials involved.
The right panel presents the elongation for n = 0 and kz 	= 0
for Ge-Si and Si-Ge NWs.

B. Polarization along the radial direction

The vector component u(êr )
r is a mixture of the three

amplitudes uL, uT 1, and uT 2; thus, employing Eq. (10) we
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FIG. 3. (Color online) Core phonon amplitude Uz for Ge-Si and
Si-Ge core-shell NWs. Left panel: n = 0, 1, and kz = 0. Right panel:
n = 0 and kza = π/2. In the calculation a = 2 nm and b = 4 nm.

have

u(êr )
r = Ure

inθ = [AT 2J
′

n (μT 2r/a) + AT 1Jn(μT 1r/a)

+ J ′
n (μLr/a)]einθ/

√
Nr, (26)

where the constants AT 1 and AT 2 are given in Appendix B.
This allows us to reduce the matrix elements (8) to

M
(êr )
α′

h,αh
= du0

a0

(
δν ′

h,νh+n+2
[ − 〈

F
(1)
ν ′
h

∣∣Ur

∣∣F (2)
νh+1

〉
+ 〈

F
(3)
ν ′
h+2

∣∣Ur

∣∣F (4)
νh+3

〉] + δν ′
h,νh+n−2

[ − 〈
F

(2)
ν ′
h+1

∣∣Ur

∣∣F (1)
νh

〉
+〈

F
(4)
ν ′
h+3

∣∣Ur

∣∣F (3)
νh+2

〉])
δk′

h,kh±kz
. (27)

FIG. 4. (Color online) Same as in Fig. 3 for core phonon ampli-
tude Ur .

FIG. 5. (Color online) Core phonon amplitude Uθ for Ge-Si and
Si-Ge core-shell NW and kz = 0. Left panel: n = 0. Right panel:
n = 1. In the calculation a = 2 nm and b = 4 nm.

Notice that even for kz = 0 the H
(êr )
e-ph presents a mixture of the

L − T 2 modes. Only for n = 0 is there a pure longitudinal
oscillation along the radial direction.

C. Polarization along the azimuthal direction

From the basis given in Eq. (10) we have

u
(êθ )
θ = Uθe

inθ = [BT 1Jn(μT 1r/a) − J ′
n (μT 2r/a)

+BLJn(μLr/a)]einθ/
√

Nθ, (28)

where the coefficients BT 1 and BL are reported in Appendix B.
With this latter expression, the scattering matrix element with
a deformation potential D(êθ ) becomes

M
(êθ )
α′

h,αh
= idu0

a0

(
δν ′

h,νh+n+2
[ − 〈

F
(1)
ν ′
h

∣∣Uθ

∣∣F (2)
νh+1

〉
+〈

F
(3)
ν ′
h+2

∣∣Uθ

∣∣F (4)
νh+3

〉] + δν ′
h,νh+n−2

[〈
F

(2)
ν ′
h+1

∣∣Uθ

∣∣F (1)
νh

〉
−〈

F
(4)
ν ′
h+3

∣∣Uθ

∣∣F (3)
ν ′
h+2

〉])
δk′

h,kh±kz
. (29)

The dependence on r of the phonon elongations Ur and Uθ

which appear in H
(êr )
e-ph and H

(êθ )
e-ph are shown in Figs. 4 and 5,

respectively. For both Si-Ge and Ge-Si NWs we take n = 0,1,
kza = 0,π/2 and m = 1,2,3.

Notice that the deformation potential scattering amplitudes
(8) of the special reported cases given by Eqs. (25), (27), and
(29) take into account the phonon symmetries of Ge-Si and Si-
Ge NWs and the corresponding strain effects. All information
about the shell structure is carried out in the calculated phonon
frequency ωm,n = ωm,n[a,λi(γ )].

VI. CONCLUSIONS

In this work we present a study of the nonpolar zone-
center optical phonons and the electron-phonon deformation
potential interaction in core-shell cylindrical nanowires. The
vector phonon displacement field �U is derived by solving a
system of coupled differential equations providing a general
basis for the solutions of the problem. It is found that the modes
show mixed torsional, axial, and radial characters, depending
on the physical conditions involved. Thus, in general, the
He-ph cannot be decoupled into pure transversal or longitudinal
motions depending on the phonon propagation direction with
respect to the nanowire axis.
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An important application of the above developed theory is
the Raman selection rules. The first-order phonon resonant
Raman tensor of a core/shell NW is proportional to the
scattering amplitude [49], MFI , between the initial (|I 〉) and
final (|F 〉) states as given by

MFI ∼
∑
μ1μ2

〈F | êF · �p |μ2〉 〈μ2| He-ph |μ1〉 〈μ1| êI · �p |I 〉
(�ωs − Eμ2 )(�ωl − Eμ1 )

,

(30)

where ωl (ωs = ωl − ωm,n) is the incident frequency light
(Stokes Raman shift with a phonon of frequency ωl − ωm,n)
and polarization êI (êS), �p is the single-particle momentum,
and |μi〉 = |αei〉|αhi〉 (i = 1,2) are the intermediate free-
electron hole pair states with energy Eμi

. Here, |αe〉 =
|ke,νe〉|Fνe

〉|S↑(↓)〉, with |Fνe
〉 being a proper combination of

the cylindrical real Bessel functions as r < a or a < r < b, and
|S↑(↓)〉 is the Bloch function in the conduction band with spin
parallel (antiparallel) to the NW axis along the z axis. By intro-
ducing the electron-hole wave functions and electron-phonon
interaction given by Eqs. (2)–(4) [50], we are able to obtain the
Raman selection rules. In the dipole approximation, where the
phonon wave vector kz ≈ 0, and considering backscattering
configuration from the quantum wire along the z-growth
direction Z(êF ,êI )Z [51], we choose the phonon propagating
direction to be z with amplitude u

(êz)
z and HT 1

e-ph for the pure T 1
transversal phonons. In this case, from Eq. (30) and taking into
account the cylindrical symmetry of the electron-hole wave
functions |μi〉, it is possible to show that the DP interaction
for the T 1 confined phonon is Raman forbidden in any parallel
êF ‖êI or perpendicular êF ⊥ êI configurations. Notice that the
ωT 1

n,m mode is IFP active with quantum number n = 1. Now, if

we consider the scattering configuration X
′
(Y ′,Z)X′, we are

in the presence of a combination of L and T 2 modes (see
Sec. IV B) and EPH HL−T 2

e-ph [52].
Regarding the Raman intensity, as long as the phonon

amplitude U has typical dimensions scaling as the core size
a, and the deformation coupling constant in Eqs. (2)–(4) is
proportional to a−3/2, the magnitude of deformation potential
Hamiltonian will be proportional to 1/

√
a. Hence, the Raman

intensity increases as the core radius decreases, and in
consequence the effects of the mechanical boundary conditions
become important. Similar results have been reported and
observed experimentally in spherical quantum dots [20].

For the case of dressed nonpolar Si-Ge based NWs with
complete confinement, the shell has a role on the frequency
shift of the core optical modes through the strain. The
employed basis (10) for the solutions of the problem allows
one to study the influence of the longitudinal and transversal
mixture on He-ph as a function of the confinement and wave
vector kz. We also give explicit analytical expressions of the
He-ph for the cases of torsional, axial, and radial phonon
propagations. Moreover, electronic transitions in the valence
are assisted by phonons if the angular momentum quantum
numbers for the involved hole states fulfill the selection rule
�ν = n + 2 related to the emission or absorption of one
confined phonon.

Finally, for a complete treatment of the electron-phonon
Hamiltonian, the evaluation of the overlapping integrals

between the phonon vector displacement and electronic states
become necessary. Nevertheless, the general structure of the
fourfold wave function given by Eq. (8) and the symmetry
properties discussed in Sec. V remain valid. This settles
the basis for considering different effects on the electronic
states as, for example, the influence of external fields and the
electron-hole Coulomb interaction, among others. The present
model allows for the study of optical phonon deformation
potential as a function of the structural parameters, which
contains crucial information for the characterization of core-
shell nanowires.
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APPENDIX A: DEFORMATION POTENTIAL

The electron-deformation potential Hamiltonian (5) is
written as

uêx
(r)Dêx

(r) + uêy
(r)Dêy

(r) + uêz
(r)Dêz

(r). (A1)

The matrix elements of Eq. (6), in terms of the envelope
functions (7) and the valence band Bloch functions vj (r),
are proportional to

〈
vj (r)

∣∣ �D(r)|vi(r)〉, where it is assumed
a rapid spatial variation of the Bloch functions in the unit cell
in comparison with the envelope functions F

(j )
ν (r). Hence,

the deformation potential �D(r) can be characterized by the
matrix elements between valence-band-edge wave functions
|vj 〉. For the diamond structure, the degenerate valence bands
present �8 symmetry at the � point of the Brillouin zone. The
inclusion of the spin-orbit interaction splits the valence band
degeneracy into fourfold j = 3/2, mZ = ±3/2, ± 1/2, and
twofold j = 1/2, mZ = ±1/2 degenerate states, with j the
total angular momentum and mZ the z component [53]. The
fourfold multiplet j = 3/2 valence-band-edge wave functions
are given by [54]

|v−3/2〉 = i√
2
|(X − iY )〉|↓〉,

|v−1/2〉 = 1√
6
|(X − iY )〉|↑〉 +

√
2

3
|Z〉|↓〉,

|v1/2〉 = i√
6
|(X + iY )〉|↓〉 − i

√
2

3
|Z〉|↑〉,

|v3/2〉 = 1√
2
|(X + iY )〉|↑〉, (A2)

where |↑〉 (|↓〉) denotes the spin parallel (antiparallel) to
the growth direction z and the functions |X〉, |Y 〉, and |Z〉
transform as atomic p-like functions. Under the symmetry
operations of the representation �8, the only nonzero elements
of the deformation potential �D are 〈Y |Dx |Z〉, 〈Z|Dy |X〉,
〈Y |Dz|X〉, and equivalents [49]. Thus, we have for each
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component of �D in matrix representation

Dêx
= du0

a0

⎛
⎜⎝

0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ , (A3)

Dêy
= idu0

a0

⎛
⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠ , (A4)

Dêz
= idu0

a0

⎛
⎜⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞
⎟⎠ . (A5)

Now, under the unitary transformation

T =
⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠ , (A6)

we transform Eq. (A1), and the tensor components �D in
cylindrical coordinates can be expressed in terms of the

components Di (i = êr ,êθ ,êz) as

Dêr
= cos θDêx

+ sin θDêy
,

Dêθ
= − sin θDêx

+ cos θDêy
, (A7)

Dêz
= Dêz

.

Equations (2)–(4) are derived from Eqs. (A7).

APPENDIX B: PHONON AMPLITUDES

The coefficients for the phonon elongation Ur in Eq. (26)
are given by

AT 1 = −
(

ek
2
z

μT 1μL

Jn(μL)J ′
n (μT 2)

J 2
n (μT 1)

+ J ′
n (μL)

Jn(μT 1)

)
(B1)

and

AT 2 =
ek

2
z

μT 1μL

Jn(μL)

Jn(μT 1)
. (B2)

For the amplitude Uθ in Eq. (28) we obtain

BT 1 =
ek

2
z

ek
2
z + μ2

T 1

J ′
n (μT 2)

Jn(μT 1)
, (B3)

BL = μ2
T 1

ek
2
z + μ2

T 1

J ′
n (μT 2)

Jn(μL)
. (B4)
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L. Chico (unpublished).

[44] K. Hummer, J. Harl, and G. Kresse, Phys. Rev. B 80, 115205
(2009).

[45] G. Nilsson and G. Nelin, Phys. Rev. B 6, 3777 (1972).
[46] J. Kulda, D. Strauch, P. Pavone, and Y. Ishii, Phys. Rev. B 50,

13347 (1994).
[47] G. Nilsson and G. Nelin, Phys. Rev. B 3, 364 (1971).
[48] S. Adachi, Properties of Group-IV, III-V and II-VI Semiconduc-

tors (Wiley, Chichester, 2005).
[49] M. Cardona, Light Scattering in Solids II (Springer, Berlin,

1982).
[50] The free electron-hole space of solutions |αe〉|αh〉 is no

longer valid if the electron-hole Coulomb interaction is con-
sidered. Nevertheless, the main conclusions related to Ra-
man selection rules are valid. The Coulomb interaction will
modify the value of the oscillator strength and overlapping
integrals 〈α′

e,h|U |αe,h〉.
[51] We denote by X, Y, Z, X′, and Y ′ the [100], [010], [001], [110],

and [110] crystallographic directions with [001] the quantization
axis.

[52] In bulk semiconductors this configuration allows the transversal
TO phonon, while in NWs a mixture of modes is obtained as a
consequence of the reduced symmetry.

[53] Due to symmetry reasons, the contribution of the conduction
band at the � point is zero.

[54] Ch. Kittel, Quantum Theory of Solids (J. Wiley & Sons,
New York, 1963).

[55] C. T. Giner and F. Comas, Phys. Rev. B 37, 4583 (1988).

075312-10

http://dx.doi.org/10.1103/PhysRevB.54.11575
http://dx.doi.org/10.1103/PhysRevB.54.11575
http://dx.doi.org/10.1103/PhysRevB.54.11575
http://dx.doi.org/10.1103/PhysRevB.54.11575
http://dx.doi.org/10.1103/PhysRevB.84.195314
http://dx.doi.org/10.1103/PhysRevB.84.195314
http://dx.doi.org/10.1103/PhysRevB.84.195314
http://dx.doi.org/10.1103/PhysRevB.84.195314
http://dx.doi.org/10.1103/PhysRevB.47.7602
http://dx.doi.org/10.1103/PhysRevB.47.7602
http://dx.doi.org/10.1103/PhysRevB.47.7602
http://dx.doi.org/10.1103/PhysRevB.47.7602
http://dx.doi.org/10.1088/0953-8984/7/9/006
http://dx.doi.org/10.1088/0953-8984/7/9/006
http://dx.doi.org/10.1088/0953-8984/7/9/006
http://dx.doi.org/10.1088/0953-8984/7/9/006
http://dx.doi.org/10.1103/PhysRevB.69.035419
http://dx.doi.org/10.1103/PhysRevB.69.035419
http://dx.doi.org/10.1103/PhysRevB.69.035419
http://dx.doi.org/10.1103/PhysRevB.69.035419
http://dx.doi.org/10.1103/PhysRevB.69.075213
http://dx.doi.org/10.1103/PhysRevB.69.075213
http://dx.doi.org/10.1103/PhysRevB.69.075213
http://dx.doi.org/10.1103/PhysRevB.69.075213
http://dx.doi.org/10.1103/PhysRevB.73.075425
http://dx.doi.org/10.1103/PhysRevB.73.075425
http://dx.doi.org/10.1103/PhysRevB.73.075425
http://dx.doi.org/10.1103/PhysRevB.73.075425
http://dx.doi.org/10.1103/PhysRevB.80.115205
http://dx.doi.org/10.1103/PhysRevB.80.115205
http://dx.doi.org/10.1103/PhysRevB.80.115205
http://dx.doi.org/10.1103/PhysRevB.80.115205
http://dx.doi.org/10.1103/PhysRevB.6.3777
http://dx.doi.org/10.1103/PhysRevB.6.3777
http://dx.doi.org/10.1103/PhysRevB.6.3777
http://dx.doi.org/10.1103/PhysRevB.6.3777
http://dx.doi.org/10.1103/PhysRevB.50.13347
http://dx.doi.org/10.1103/PhysRevB.50.13347
http://dx.doi.org/10.1103/PhysRevB.50.13347
http://dx.doi.org/10.1103/PhysRevB.50.13347
http://dx.doi.org/10.1103/PhysRevB.3.364
http://dx.doi.org/10.1103/PhysRevB.3.364
http://dx.doi.org/10.1103/PhysRevB.3.364
http://dx.doi.org/10.1103/PhysRevB.3.364
http://dx.doi.org/10.1103/PhysRevB.37.4583
http://dx.doi.org/10.1103/PhysRevB.37.4583
http://dx.doi.org/10.1103/PhysRevB.37.4583
http://dx.doi.org/10.1103/PhysRevB.37.4583



