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Exciton band structure of monolayer MoS2
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We address the properties of excitons in monolayer MoS2 from a theoretical point of view, showing that
low-energy excitonic states occur both at the Brillouin-zone center and at the Brillouin-zone corners, that binding
energies at the Brillouin-zone center deviate strongly from the (n − 1/2)−2 pattern of the two-dimensional
hydrogenic model, and that the valley-degenerate exciton doublet at the Brillouin-zone center splits at finite
momentum into an upper mode with nonanalytic linear dispersion and a lower mode with quadratic dispersion.
Although monolayer MoS2 is a direct-gap semiconductor when classified by its quasiparticle band structure, it
may well be an indirect gap material when classified by its excitation spectra.
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I. INTRODUCTION

In monolayer form the group-VI transition-metal dichalco-
genides (TMDs) like MoS2 are an interesting class of
semiconductors, and one that has recently received consid-
erable attention [1–17]. In these materials conduction and
valence bands are both dominantly d-electron in character
and have band extrema located at the triangular lattice
Brillouin-zone corners K and K ′. Because their structure
breaks inversion symmetry, coupling is allowed between real
spin and valley pseudospin [3] and gives rise to valley-
dependent optical selection rules [4–6]. Because of relatively
large carrier effective masses, reduced screening, and carrier
confinement in a single atomic layer, their electron-hole
interactions are much stronger than in conventional semi-
conductors. Monolayer TMDs therefore host exceptionally
strongly bound excitons and trions that have been extensively
studied both experimentally and theoretically [7–15].

In this paper we report on a theoretical study of ex-
citon energies and wave functions in MoS2 as a function
of momentum across the full Brillouin zone. We identify
important aspects of two-dimensional (2D)-TMD exciton
physics that are controlled by mirror, threefold rotational, and
time-reversal discrete symmetries. We calculate the optical
conductivity, which reflects the properties of excitons with
zero center-of-mass momentum and exhibits a set of peaks
split by electron-hole binding energies as usual, but also
by large valence-band spin-orbit coupling energies. The spin
splitting of the valence band is conventionally used to classify
absorption peaks into A and B series. The exciton energy
pattern is distinctly different from that of a 2D hydrogenic
model. In particular the four A2p states are lower in energy
than the corresponding 2s states, and not degenerate.

Finite-momentum excitons are optically inactive, but can
nevertheless play an important role in hot carrier relaxation
and in valley dynamics [18–23]. We find that for both A and B

excitons, the valley degenerate states at the Brilliouin-zone
center split at small momentum into a lower mode with
quadratic dispersion and an upper mode with nonanalytic
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linear dispersion. This unusual pattern is due to valley
coherence established by electron-hole exchange interactions.

Low-energy exciton states appear both near the Brillouin-
zone center and near the Brillouin-zone corners. There are
two distinct types of Brillouin-zone corner excitons. One type
has electrons and holes in opposite valleys (K , K ′), while
the other has holes in the � valley and electrons in either
the K or K ′ valley. Although monolayer MoS2 is a direct-gap
semiconductor as judged by its band structure, because of these
Brillouin-zone corner exciton states, we propose that it may
well be an indirect gap material when judged by its excitation
spectra.

Our paper is organized as follows. In Sec. II we describe the
model we employ for quasiparticle bands and for electron-hole
interactions, and in Sec. III we present our results. We conclude
in Sec. IV with a summary and brief discussion.

II. THEORETICAL FORMULATION

Exciton states are obtained by solving a two-particle
problem with attractive interactions between one conduction-
band electron and one valence-band hole. Because the valence-
and conduction-band edges are dominated by Mo atom d

orbitals we use a five band d-orbital tight-binding model,
detailed in Appendix A and illustrated in Fig. 1, for the
quasiparticle bands of the TMD semiconductor ground state.
Provided that the typical separation between the electrons and
holes in exciton states is at least several lattice constants we
can assume that the electron-hole interaction strengths are
dependent mainly on the separation between atomic sites and
not on the d-orbital character on that site. These considerations
lead to a Hamiltonian of the form

H = H0 + HI,
(1)

HI = 1

2

∑
�R, �R′

V| �R− �R′|a
†
�Rν

a
†
�R′ν ′a �R′ν ′a �Rν,

where H0 is the Hamiltonian for independent d electrons and
HI describes their interactions. In Eq. (1) a

†
�Rν

(a �Rν) is the
electron creation (annihilation) operator for orbital ν at Mo
site �R and ν = (o,s) includes both orbital o and spin s labels.
We follow recent work [24,25] by using an interaction potential
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FIG. 1. (Color online) Quasiparticle band structure of monolayer
MoS2. The solid curves were obtained using the QUANTUM ESPRESSO

package [28] with fully relativistic pseudopotentials under the
Perdew-Burke-Ernzerhof generalized-gradient approximation, and a
16 × 16 × 1 �k grid. The dashed curves were calculated from the
tight-binding model, with cyan (red) representing states that are even
(odd) under mirror operation with respect to the Mo plane. v1,2 and
c1,2 label the bands close to the valence- and conduction-band edges
near the K and K ′ points. The inset shows the hexagonal Brillouin
zone (pink) associated with the triangular Bravais lattice of MoS2

and an alternate rhombohedral primitive zone (black), and labels
the principle high-symmetry points in reciprocal space. Note that
the valence-band maxima at � is only slightly lower in energy than
the valence-band maxima at K, K ′.

of the Keldysh form [26,27],

VR = πe2

2εr0
[H0(R/r0) − Y0(R/r0)], (2)

to account for the finite width of the TMD layer and the
spatial inhomogeneity of the dielectric screening environment.
This interaction gives a good description of the nonhydrogenic
Rydberg series observed in monolayer WS2 [24,25]. In Eq. (2)
ε is an environment-dependent dielectric constant, r0 is a
characteristic length related to the width of a single TMD layer,
and H0 and Y0 are respectively Struve and Bessel functions of
the second kind. Unless otherwise stated, we chose ε = 2.5,
which corresponds to MoS2 lying on a SiO2 substrate and
exposed to air. r0 depends on ε and we took r0 = 33.875 Å/ε

from Ref. [10]. The on-site interaction is regularized by setting
V0 = UVR=a0 with a0 equal to the lattice parameter of MoS2,
and the parameter U is taken to be 1 for results presented
below. The dependence of our results on the value chosen for
the dimensionless parameter U , which accounts for screening
of on-site potentials by remote bands, will be discussed later.

Exciton states with center-of-mass momentum �Q can be
expanded in terms of one-electron/one-hole states:

|χ〉 �Q =
∑
v,c,�k

ψ �Q(v,c,�k) |v,c,�k, �Q〉, (3)

where |v,c,�k, �Q〉 = b
†
(�k+ �Q)c

b�kv|G〉, |G〉 is the neutral semi-
conductor ground state, and the sums are over all valance
(v) and conduction (c) bands. b�kn and b

†
�kn

are quasiparticle

operators for band n at momentum �k. The wave vector �k + �Q
is understood to be reduced to the Brillouin zone. The exciton

center-of-mass momentum �Q is also understood to be confined
to the Brillouin zone and is a good quantum number. Like the
quasiparticles, excitons have a band structure. To characterize
an exciton state, we define its �k-space probability distribution
function as

P �Q(�k) =
∑
v,c

|ψ �Q(v,c,�k)|2. (4)

The eigenvalue problem for the Hamiltonian matrix pro-
jected onto this subspace is a Bethe-Salpeter (BS) equation.
Its solution determines the exciton energies E �Q and wave
functions. The Hamiltonian matrix

〈v,c,�k, �Q|H |v′,c′,�k′, �Q〉
= δvv′δcc′δ�k�k′(ε(�k+ �Q)c − ε�kv) − (D − X)cc

′
vv′(�k,�k′, �Q), (5)

where ε�kn denotes the quasiparticle energy. We view the
two-dimensional bands predicted by density-functional theory
electronic structure calculations, illustrated in Fig. 1 as
solutions of the neutral semiconductor single-particle Dyson
equation including all many-body self-energy effects except
for finite lifetimes. It follows that in the exciton calculation
we need to account only for corrections due to electron-hole
interactions. It will, however, be necessary to correct for the
well-known tendency of density-functional-theory bands to
underestimate semiconductor gaps. As discussed later, this
consideration motivates shifting the calculated excitation
energy spectrum rigidly to match experimental optical
absorption spectra.

In Eq. (5), D and X are respectively the direct and exchange
two-particle matrix elements:

Dcc′
vv′ (�k,�k′, �Q) = 1

N
V�k−�k′(U†

�k+ �QU�k′+ �Q)cc′ (U†
�k′U�k)v′v,

(6)

Xcc′
vv′ (�k,�k′, �Q) = 1

N
V �Q(U†

�k+ �QU�k)cv(U†
�k′U�k′+ �Q)v′c′ ,

where U�k is the unitary matrix which diagonalizes the
quasiparticle Hamiltonian (see Appendix A), N is the number
of unit cells in the finite system over which we apply
periodic boundary conditions, and V�q = ∑

ei �q· �RVR is the
lattice Fourier transform of the interaction potential. Note that
V (�q) = V (�q + �G) for any reciprocal-lattice vector �G. For the
special case �Q = 0, the exchange term X vanishes because
of the orthogonality property (U†

�kU�k)cv = 0. We remark that

the exchange term survives even at �Q = 0 in models in which
electron-hole interactions depend not only on electron-hole
separation, but also on orbital character [22].

III. EXCITON BAND STRUCTURE

Monolayer MoS2 has mirror symmetry [29] with respect to
the Mo plane. Quasiparticle band spinors can be classified
by this symmetry M|�k,n〉 = −imn|�k,n〉, where the mirror
number mn = + (−) for mirror even (odd) bands as shown
in Fig. 1. Using mirror numbers, we can group exciton states
into three decoupled types: (1) A type-I exciton is formed
by promoting an electron from a mirror-even valance band
(mv = +) to mirror-odd conduction bands (mc = −); (2)
type-II is similar to type-I but with (mv,mc) = (−,+); (3)
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FIG. 2. (Color online) (a) Energies of type-III excitons as a function of center-of-mass momentum �Q. This figure is based on a calculation
performed using a 45 × 45 �k grid. The lines were added as a guide to the eye. Solid (dashed) lines represent states that are doubly (singly)
degenerate. The labels of the excitons with �Q = 0 are explained in the main text. Excitons with �Q = K are labeled by χ 1

K , χ 2
K , and

so on in ascending order of energy. The left inset is a �k-space map plot of P �Q(�k) [see Eq. (4)] for the �Q = 2
45 M exciton in the lower-

energy branch evolving from A. The right inset schematically illustrates the dominant electron-hole transitions which contribute to the
χ 1

K , χ 2
K , and χ 3

K exciton states. (b) Binding energy Eb for A, B, and A2s excitons at �Q = 0 as a function of N1/2, where N is number
of �k points.

for a type-III exciton, mv = mc = ±. Only type-III excitons
can be optically bright. Exchange terms vanish in type-I and
-II excitons because their valence and conduction bands have
opposite mirror numbers. For a type-III exciton, the two sectors
mv = mc = + and mv = mc = − are coupled by exchange
terms, but not by direct terms. In the following, we restrict our
discussion to type-III excitons, although many of the points
we make apply equally well to type-I and type-II excitons.

We have solved the BS equation by applying periodic
boundary conditions that restrict �k to a regular discrete grid in
the primitive zone illustrated in Fig. 1. Our main results are
summarized in Fig. 2(a), which shows the energies of type-III
excitons as a function of center-of-mass momentum �Q. To test
the convergence of our calculations with respect to the �k-space
sampling density, we plot the binding energies of low-energy
excitons as a function of periodic system size in Fig. 2(b).
We start by analyzing excitons at and close to the � point
( �Q = 0), and then discuss the nearly degenerate low-energy
excitons �Q = K,K ′.

MoS2 has a threefold rotational symmetry which
can be used to classify excitons with �Q = 0: Ĉ3|χ〉 =
exp(−i 2π

3 L)|χ〉, where the quantum number L takes on the
discrete values L = −1,0,1. An exciton state |χ+〉 with L = 1
has a time reversal (TR) partner |χ−〉 with the opposite L =
−1. The combination of Ĉ3 and TR symmetries guarantees that
the TR pair |χ+〉 and |χ−〉 is degenerate in energy. Breaking
either Ĉ3 or TR symmetry can lift this degeneracy [30–35].
The optical selection rule for circularly polarized light is
related to Ĉ3 symmetry [4,36]: 〈χ+|ĵ−|G〉 = 〈χ−|ĵ+|G〉 = 0,
where ĵ± = ĵx ± iĵy is the current operator. It follows that
polarization-dependent optical studies can be used to infer the
L quantum number of a bright exciton. L = 0 excitons are
optically inactive 〈χ0|ĵ±|G〉 = 0.

A. Optical conductivity

Exciton states at �Q = 0 are most easily studied experi-
mentally because they contribute to the optical conductiv-
ity. Figure 3(a) plots the real part of the in-plane optical
conductivity which has a number of clear features. Peak A

stems from the doubly degenerate excitons expected from the
symmetry analysis given above. Figure 3(b) illustrates P �Q=0(�k)
[see Eq. (4)] for |A+〉, the L = 1 exciton of peak A. |A+〉 is
dominated by electron-hole transitions from valence band v1

to conduction band c2 in valley K (see Fig. 1), while its TR
partner |A−〉 is primarily composed of similar transitions in
the opposite valley K ′. Excitons in the B series are similar
to those in A, and are dominated by transitions from band v2

to c1 in valley K (K ′). The lowest energy A and B excitons
are analogous to the 1s states of a 2D hydrogenic model.
Figure 3(a) also shows 2s and 3s peaks identified in the A

series, and a 2s peak identified in the B series.
Our calculation predicts that the lowest energy A excitons

have a binding energy ∼0.3 eV, in agreement with the estimate
in Ref. [10]. As shown in Fig. 2(b), a 33 × 33 �k grid already
provides good convergence for the lowest energy A and B

excitons whereas, because more weakly bound excitons have
sharper structure in momentum space as illustrated in Fig. 3(e),
the A2s exciton requires a finer �k grid for convergence.

The energies of s-wave excitons in the A (B) series deviate
strongly from the (n − 1/2)−2 pattern of 2D hydrogenic
models. This is partly due to the effective electron-hole
interaction potential [Eq. (2)], which differs from the standard
Coulomb interaction because of the finite width of the TMD
layer. We also find that A2p states have a lower energy than
A2s states. This anomalous energy ordering is consistent with
recent experimental and theoretical studies of monolayer WS2

[37]. More interestingly, the A2p states do not have the fourfold
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FIG. 3. (Color online) (a) Real part of the optical conductivity
with (solid red curve) and without (dashed green curve) electron-
hole interactions. For these calculations the BS equation was solved
on a 51 × 51 �k grid and transitions were broadened by 20 meV.
The solid green arrow indicates the quasiparticle band gap. The two
dashed gray arrows mark the energies of the A2p excitons. Note
that we have rigidly shifted the excitation energy spectrum by a
constant, so that the A exciton energy is at 1.93 eV as measured by
photoluminescence experiments [6,9–11]. (b)–(e) �k-space maps of
P �Q=0(�k) for low-energy excitons. (b)The L = 1 exciton |A+〉. (c),(d)
Two nondegenerate A2p excitons in valley K . (e) The L = 1 A2s

exciton.

degeneracy expected in two-valley systems. In fact, there are
two nondegenerate A2p states within each valley, as illustrated
in Figs. 3(c) and 3(d). This feature results from the dependence
of band state wave functions on the momentum direction near
K and K ′ valleys and is closely related to similar properties
of excitons in massive Dirac equation band models, which
we explain in detail in Appendix B. The A2p states are not
optically bright in one-photon spectra, but can be detected
using two-photon techniques like those achieved in recent
experiments [37,38]. We therefore expect that the energy
splitting within the A2p states can be experimentally measured.

B. Valley coherence

Valley coherence can be externally generated using linearly
polarized light [39], and can also be intrinsically induced
by electron-hole exchange interactions. By treating finite �Q
terms in the BS equation [Eq. (5)] as a first-order perturbation
acting on valley-degenerate excitons, we arrive at the effective
Hamiltonian

H eff
�Q =

(
�ω0 + �

2Q2

2M

)
τ0 + J �Q τ0

+ J �Q[cos(2φ �Q)τx + sin(2φ �Q)τy]. (7)

Here ω0 is the exciton energy at �Q = 0, and M is the exciton
mass. τ0 and τx,y are respectively identity and off-diagonal
Pauli matrices in valley space. J �Q τ0 originates from intravalley
exchange interactions, while intervalley exchange interactions
act as an in-plane pseudomagnetic field in the valley space and
are captured by the second line of Eq. (7). The dependence
of H eff

�Q on φ �Q, the orientation angle of the 2D vector �Q,
follows from the wave-vector dependence of the conduction-
and valence-band states near K and K ′. References [22,30]
have studied the intervalley exchange interaction and show that

J �Q ∝ |ψeh(0)|2Q2V �Q, (8)

where |ψeh(0)|2 is the probability that an electron and a hole
overlap spatially. In the small Q limit, V �Q ∝ 1/[Q(1 + r0Q)]
for the potential in Eq. (2). Therefore, J �Q scales linearly
with Q in the long-wavelength limit. We note that while
intervalley exchange interaction endows finite-momentum
excitons with chirality I = 2 as pointed out by Ref. [30],
intravalley exchange [22,35,40] is also important especially
in regard to the exciton energy dispersion.

Equation (7) is derived from the massive Dirac model
approximation to the quasiparticle band structure near K

and K ′ [22,30]. Our lattice calculation verifies this low-
energy effective theory. Figure 2(a) shows that there are
two nondegenerate energy branches which evolve from the
double-degenerate �Q = 0 A, B, and A2s excitons. In each
energy branch, the exciton state is a coherent superposition
of direct excitons at the two valleys, as demonstrated in
the left inset of Fig. 2(a). The lower and upper energy
branches have respectively quadratic and linear dispersion in
the long-wavelength limit, in agreement with the prediction
of Eq. (7). Unlike their s-wave cousins, branches evolving
from valley-degenerate �Q = 0 A2p excitons remain doubly
degenerate at finite momentum because |ψeh(0)|2 is zero for
p-wave excitons and exchange interactions therefore vanish.

Photons with the energy of an A or B exciton can at most
provide a momentum with magnitude ∼ωA(B)/c, where c is the
speed of light. According to our calculation, this momentum
corresponds to an energy splitting of 0.4 (0.5) meV between
the two energy branches evolving from A (B), and a period
of 11 (8) ps for Rabi oscillation between the two valleys. We
conclude that interaction-induced valley coherence provides
an important mechanism for valley depolarization [21–23], in
addition to that provided by impurity scattering.

C. Brillouin-zone corner excitions

Large-momentum excitons composed of electrons and
holes in opposite valleys can have an energy similar to those
with zero momentum. In Fig. 2(a), the χ2

K and χ4
K excitons have

center-of-mass momentum �Q = K when reduced to the first
Brillouin zone. They are dominated respectively by transitions
between valence-band holes of v1 and v2 states in valley- K and
conduction-band electrons of c1 and c2 states in the opposite
valley K ′. The χ2

K and χ4
K excitons are the �Q = K counterparts

of the A and B excitons and have nearly the same energy.
The small differences have two origins, the energy splitting
between c1 and c2 bands [41], and a change in the exchange
interaction.
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K and zero-momentum exciton A as a function
of dielectric constant ε. The calculation was performed on a 45 × 45 �k
grid. χ 3

K is the triplet exciton state with a hole in � valley and an
electron in K valley.

However, another set of excitations appear at the same
crystal momentum. Low-energy excitations at �Q = K also
originate from holes in the � valley and electrons in the K

valley, as illustrated in the right inset of Fig. 2(a). In our lattice
calculations χ1

K and χ3
K are such excitons. If we neglect the

spin splitting of both topmost valence bands at � and the lowest
conduction bands at the K valley, the corresponding excitons
can be classified as singlets and triplets according to their
spin configurations. Singlets experience strong electron-hole
exchange interactions, because the valence-band maximum at
� and the conduction-band minimum at K have the same
dz2 orbital character. The exchange energy is proportional
to V �Q=K = (U − 1.28)VR=a0 . The exchange interactions ef-
fectively vanish for triplets because of their particular spin
structure. In our calculation, U is set to be 1 and the exchange
energy for singlets is therefore negative. Therefore, we can
identify χ1

K as the singlet state and χ3
K as one of the triplet

states. Depending on the value of U used in our model, the
lowest energy excitons can occur at �Q = 0, corresponding to
a direct gap system, or at �Q = K,K ′ corresponding to an
indirect gap system. Because the appropriate value which
should be used for U depends on electronic correlations
at the atomic level and on screening by remote bands not
included in our calculation, we are not able to reach a definitive
conclusion as to whether or not the singlet χ1

K is the lowest
energy exciton. However, the energy of the triplet χ3

K does
not suffer from such uncertainty. The valence-band effective
mass at the � point is heavier than that at the K point [42].
Electron-hole pairs are therefore bound more strongly in χ3

K

than in the A exciton, which compensates for the energy
difference (68 meV) between the topmost valence bands
at � and K points, and makes the energies of the triplet
χ3

K and A excitons very close to each other. By decreasing
the dielectric constant ε to 1, we find that the triplet χ3

K

becomes lower in energy than the A exciton by 19 meV,
as illustrated in Fig. 4. The energetic ordering of direct and
indirect exciton states in single-layer TMDs could therefore
depend on the two-dimensional system’s three-dimensional
dielectric environment.

IV. SUMMARY AND CONCLUSIONS

In summary, we have constructed a lattice model based on
Mo d orbitals to study the exciton band structure of monolayer
MoS2. Zero-momentum excitons have nonhydrogenic energy
series, because the screening effect has a spatial dependence,
and band edges in K and K ′ valleys are described by massive
Dirac equation. The energy splitting within A2p excitons
remains to be measured using methods such as the two-photon
technique. The exciton band structure exhibits nondegenerate
energy branches evolving from valley-degenerate bright exci-
tons, indicating valley coherence. Such low-energy branches
are well separated from the continuum spectrum, which
justifies the application of low-energy effective theory [22,30].
We find that low-energy excitons can possess a large mo-
mentum, either with electron and hole in opposite valleys
(K , K ′), or with hole in the � valley and electron in the
K (K ′) valley. Large-momentum low-energy exciton states can
provide relaxation channels for bright excitons, and reduce
photoluminescence quantum efficiency.
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APPENDIX A: EXPLICIT FORM OF TIGHT-BINDING
MODEL

We approximate the quasiparticle-Hamiltonian matrix H�k
by a tight-binding model which generalizes Ref. [43] from
three to five d bands:

H�k = λ �L · �S + I2 ⊗ H0(�k). (A1)

The first term λ �L · �S describes the on-site atomic spin-orbit
coupling of Mo d orbitals, where �L and �S are respectively the
orbital and spin angular momentum. The coupling constant
λ = 0.073 eV, which was adjusted to fit the valence-band spin
splitting at the K point as detailed in Ref. [43]. The second term
I2 ⊗ H0(�k) is spin independent, where I2 is a 2 × 2 identity
matrix in spin space, and H0(�k) is a 5 × 5 matrix in orbital
space. Because of the mirror symmetry with respect to the Mo
plane, H0(�k) is block diagonal:

H0(�k) =
(
Heven

0 (�k) 0
0 Hodd

0 (�k)

)
. (A2)

Heven
0 (�k) is a 3 × 3 matrix in the bases {|dz2〉,|dxy〉,|dx2−y2〉}.

Similarly, Hodd
0 (�k) is a 2 × 2 matrix in the bases {|dxz〉,|dyz〉}.

For Heven
0 (�k), we adopt a model constructed in Ref. [43].

The construction uses point-group symmetries to minimize
the number of parameters, and the parameters are fitted from
first-principle energy bands. An explicit form of Heven

0 (�k) with
hoppings up to third-nearest- neighbor is given in Eqs. (13)–
(24) of Ref. [43]. We generalize the symmetry-based method
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used in Ref. [43] to construct the remaining part of the
Hamiltonian Hodd

0 (�k), and its form is

Hodd
0 (�k) =

(
hx(�k) hxy(�k)
h∗

xy(�k) hy(�k)

)
, (A3)

in which

hx(�k) = O1 + 2t cos 2α + (t + 3t ′) cos α cos β

+ 4s cos 3α cos β + (3s ′ − s) cos 2β

+ 2u cos 4α + (u + 3u′) cos 2α cos 2β,

hy(�k) = O1 + 2t ′ cos 2α + (t ′ + 3t) cos α cos β

+ 4s ′ cos 3α cos β + (3s − s ′) cos 2β

+ 2u′ cos 4α + (u′ + 3u) cos 2α cos 2β,
(A4)

hxy(�k) = 4itxy sin α(cos α − cos β)

+
√

3(t ′ − t) sin α sin β

+ 2
√

3(s ′ − s) sin α sin β(1 + 2 cos 2α)

+ 4iuxy sin 2α(cos 2α − cos 2β)

+
√

3(u′ − u) sin 2α sin 2β,

(α,β) =
(

1

2
kxa0,

√
3

2
kya0

)
.

Hoppings in real space up to third-nearest neighbors are
included. The numerical value of the parameters in units of
eV is

O1 = 3.558,

t = −0.189, t ′ = −0.117, txy = 0.024,
(A5)

s = −0.041, s ′ = 0.003,

u = 0.165, u′ = −0.122, uxy = −0.140,

which are obtained by fitting to first-principle calculations as
shown in Fig. 1.

H�k is diagonalized by the unitary matrix U�k [Eq. (6)], and
the corresponding eigenvalues are quasiparticle energies ε�kn.

APPENDIX B: MASSIVE DIRAC MODEL FOR EXCITONS

In this Appendix we study excitons in the massive Dirac
model, and show that this simple model captures many
important features of the �Q = 0 excitons in monolayer MoS2.
In the vicinity of the K or K ′ point, the k · p Hamiltonian for
two bands (c2, v1) is described by the massive Dirac model [3]:

Hτ (�k) = �vF k[cos(��k)σx + sin(��k)σy] + �σz, (B1)

where σx,y,z is the Pauli matrices for the basis function at the K

or K ′ point, and � is the energy gap. The angle ��k is defined
as cot ��k = τkx/ky , where τ = ±1 labels valley K and K ′.
The conduction and valence band are described by spinors:

|c,�k〉τ =
(

cos
(

θk

2

)
sin

(
θk

2

)
ei��k

)
, |v,�k〉τ =

(
sin

(
θk

2

)
e−i��k

− cos
(

θk

2

)
)

, (B2)

where angle θk is defined as cos θk = �/εk with εk =√
�2 + (�vF k)2.

As discussed in the main text, intervalley coupling is nearly
absent for �Q = 0 excitons. Within each valley, the kernel of
the BS equation in Eq. (5) can be expressed in terms of band
spinors:

Kτ (�k,�k′) = δ�k�k′Tk − Dτ (�k,�k′), Tk = 2εk,

Dτ (�k,�k′) = 1

A Ṽ�k−�k′(τ 〈c,�k|c,�k′〉τ τ 〈v,�k′|v,�k〉τ )

= 1

4A Ṽ�k−�k′[(1 + cos θk)(1 + cos θk′)

+ 2 sin θk sin θk′eiτ (φ�k′−φ�k )

+ (1 − cos θk)(1 − cos θk′)ei2τ (φ�k′ −φ�k )], (B3)

where Tk can be understood as the kinetic energy. Dτ (�k,�k′)
is the electron-hole direct interaction, while the exchange
interaction X [Eq. (5)] is neglected. A is the area of the 2D

system, and φ�k is the orientation angle of �k with cot φ�k =
kx/ky . In Eq. (B3), angle φ�k is used instead of ��k [Eq. (B1)]
so that the valley dependence of Kτ is explicit. The interaction
potential has the following form:

Ṽq = 2πe2

εq
F (q), (B4)

where the form factor F (q) = 1/(1 + r0q) modifies the
Coulomb interaction in consistency with the real-space in-
teraction potential [Eq. (2)]. The BS equation reads∑

�k′

Kτ (�k,�k′)ψ(�k′) = Eψ(�k). (B5)

We can define effective Bohr radius a∗
B , Rydberg energy

Ry∗, and fine-structure constant α:

a∗
B = 2ε(�vF )2

e2�
, Ry∗ = 1

2

e2

εa∗
B

, α = e2

ε�vF

. (B6)

For notation convenience, we also define the parameter β =
(α/2)2.

After taking a∗
B as the unit of length and Ry∗ as unit of

energy, and using an ansatz ψ(�k) = ψ(k)eilφ�k , the BS equation
is reduced to the following 1D eigenvalue problem:

Eψ(k) = Tkψ(k) −
∫ ∞

0
dk′[(1 + cos θk)(1 + cos θk′)Ikk′(l)

+ 2 sin θk sin θk′Ikk′(l + τ ) + (1 − cos θk)

× (1 − cos θk′)Ikk′(l + 2τ )]k′ψ(k′), (B7)

where Tk , cos θk , and Ikk′(l) in effective atomic units are

Tk = 2

β

√
1 + βk2, cos θk = 1/

√
1 + βk2,

(B8)

Ikk′(l) = 1

4π

∫ 2π

0
dφ

F (
√

k2 + k′2 − 2kk′ cos φ) cos lφ√
k2 + k′2 − 2kk′ cos φ

.

Equation (B7) makes it clear that within the same valley
excitons with quantum number l and −l are not degenerate
in energy, because of the wave-vector dependence of the band
spinors. However, there is a degeneracy between (τ , l) and
(−τ , −l) excitons, which originates from time-reversal
symmetry.
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Eb(eV) @ =2.5 MD LM

1s(l = 0) 0.345 0.301

2p(l = -1) 0.159 0.150

2p(l = +1) 0.143 0.125

2s(l = 0) 0.118 0.099

FIG. 5. (Color online) Binding energy Eb in massive Dirac
model for 1s, 2s, and 2p excitons in valley K (τ = 1) as a function of
dielectric constant ε. The parameter values are �vF = 1.105 eV ×
3.193 Å, � = 0.7925 eV and r0 = 33.875 Å/ε. The inset table
compares Eb obtained respectively from massive Dirac model (MD)
and lattice model (LM) for ε = 2.5.

We apply the massive Dirac model to excitons in A series
of monolayer MoS2. The appropriate parameter values are
�vF = 1.105 eV × 3.193 Å, � = 0.7925 eV [43] and r0 =
33.875 Å/ε [10]. The effective atomic units then take the
following value: a∗

B = ε × 2.18 Å and Ry∗ = 3.3 eV/ε2, and
the fine-structure constant α = 4.075/ε. Equation (B7) is
solved numerically by discretizing the 1D k space. The result
is presented in Fig. 5, which depicts the binding energy
of 1s, 2s, and 2p excitons in valley K as a function of
dielectric constant ε. It reproduces all essential features of
�Q = 0 excitons discussed in the main text: (1) binding energies

deviate from the pattern of the 2D hydrogen model; (2) 2p

states have a larger binding energy than 2s; and (3) there is
an energy splitting between l = ±1 2p states within the same
valley. Moreover, the binding energies calculated by using the

1s(l= 0)
2p(l=− 1)
2p(l=+ 1)
2s(l= 0)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

4
9

1

2

3

4

E
b
/R

y∗

FIG. 6. (Color online) Binding energy Eb in massive Dirac
model with standard Coulomb interaction (r0 = 0,F (q) = 1) for 1s,
2s, and 2p excitons in valley K (τ = 1) as a function of fine-structure
constant α.

massive Dirac model and the lattice model of the main text are
close to each other as shown in the inset table of Fig. 5.

Finally, we study the massive Dirac model with standard
Coulomb interaction by taking form factor F (q) to be 1. In
this case, the fine-structure constant α controls the deviation
of the massive Dirac model from the 2D hydrogen model.
Figure 6 presents the binding energy as a function of α.
In the limit of weak electron-hole interaction (α → 0), the
massive Dirac model reduces to the 2D hydrogen model as
implied by Eqs. (B7) and (B8). Therefore, Eb(1s) = 4Ry∗
and Eb(2s) = Eb(2p) = 4

9 Ry∗ as α goes to 0. 2s and 2p

states remain nearly degenerate for α < 0.4, and develop
prominent energy splitting at large α. The energy ordering
is Eb(2p,l = −1) > Eb(2s) > Eb(2p,l = +1) in valley K .
Note that in the case of monolayer MoS2 where interaction
potential is modified by F (q) [Eq. (B4)], all 2p states have
bigger binding energies than 2s states as shown in Fig. 5.
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