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Optical control of spin textures in quasi-one-dimensional polariton condensates
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We investigate spin transport through polarization-resolved spectroscopy by propagating polariton condensates
in a quasi-one-dimensional microcavity ridge along macroscopic distances. Under circularly polarized,
continuous-wave, nonresonant excitation, a sinusoidal precession of the spin in real space is observed whose
phase depends on the emission energy. The experiments are compared with simulations of the spinor-polariton
condensate dynamics based on a generalized Gross-Pitaevskii equation, modified to account for incoherent
pumping, decay, and energy relaxation within the condensate.
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I. INTRODUCTION

Semiconductor microcavities (MCs) in the strong-coupling
regime are excellent candidates for designing novel “spinop-
tronic” devices due to their strong optical nonlinearities [1],
polarization properties [2–4], and fast spin dynamics [5].
The control of polariton condensate propagation and their
polarization [4] provide the necessary ingredients for future
optical circuits. The first steps toward the fabrication of
spin-based polariton condensate switches [6–9], gates [10],
and memories [11,12] have been recently achieved. They
fulfill the fundamental technological requirements for the
operation with polarization-encoded signals: micrometric size,
nonlocal action triggering and high speeds (of the order of
∼1 μm/ps due to the ballistic polariton propagation). New
schemes for the realization of spinoptronics devices [13,14]
and “polariton neurons” in circuits, the building blocks of
all-optical integrated logic circuits [15–17], have been recently
proposed. One-dimensional (1D) and quasi-1D patterned high-
finesse MCs provide an ideal platform for all-optical ma-
nipulation [18], ballistic propagation and amplification [19],
and gating of polariton condensates [20–25]. The waveguide
nature of these structures induces the channeling of polariton
propagation, while the discretization of energy levels results
in a rich relaxation dynamics [26,27].

In planar semiconductor MCs, the splitting of the transverse
electric (TE) and magnetic (TM) modes of the cavity [28]
induces an effective magnetic field, which on its own produces
a precession of the polaritons spin, when they propagate
over macroscopic distances. This effect is well known as the
optical spin Hall effect [4,29], and it was first predicted by
Kavokin and co-workers [30] as an analog of the electronic spin
Hall effect [31,32]. Initial experiments were conducted with
resonant excitation [29] making use of Rayleigh scattering [33]
or tightly focused laser spots [34] to excite multiple states
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in reciprocal space. These experiments represented purely
linear effects, not relying on the excitonic component of
polaritons [35]. The presence of quantum-well excitons is
required for nonresonant excitation, leading to the spontaneous
formation of a propagating polariton condensate [4]. The
effective magnetic field representing the optical spin Hall
effect can be utilized, for example, to generate polarization
textures [4,36], where the polaritons propagate in rings
spreading in real space, showing oscillations of the polarization
degree in azimuthal angle and time; to convert the spin
to orbital angular momentum [37]; to create spin-polarized
vortices [37–40]; and to form half-dark solitons [41,42] and
very similar structures [43] in the wake of an obstacle. Recent
theoretical work has also examined the role of the optical spin
Hall effect in driving polarized bright solitons [44] and other
spin patterns [45,46].

In this work, we investigate optically the collective spin
dynamics of polariton condensates moving along macroscopic
distances in a quasi-1D MC ridge. The discretization in energy
of the lower polariton branch (LPB) in our quasiconfined
structure has notable consequences in the coherent transport
of the spin vector. In the first place, the confinement renders a
TE-TM mode splitting, which remains for zero in-plane wave
vector, and it acquires larger values than the TE-TM splitting in
two-dimensional (2D) MCs. Furthermore, a spectral analysis
of the spin transport reveals different polariton spin textures
from those observed in 2D systems [4]. The richness of these
textures is related to the energy-dependent speed of propaga-
tion of polaritons in our system with lowered dimensionality.
The ballistic propagation of spin-polarized polaritons along
the ridge is observed over distances of ∼100 μm.

To describe the polarization state of exciton-polaritons, we
adopt the pseudospin formalism [47]. Polaritons possess a
spin with two possible projections on the structural growth
axis of the MC. The polarization of the emitted light gives
direct access to the pseudospin state, which is fully character-
ized by the four-component Stokes vector −→

s = (s0,sx,sy,sz).
Here, s0 is the total photoluminescence (PL) intensity, and
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sx,y,z = (IH,D,σ+ − IV,A,σ− )/(IH,D,σ+ + IV,A,σ− ). IH,D,σ+ and
IV,A,σ− are the measured intensities in the horizontal (H ) and
vertical (V ), the diagonal (D) and antidiagonal (A), and the
two circular polarization components σ+ and σ−.

This paper is organized as follows. In Sec. II we discuss the
sample and the experimental setup. In Sec. III we present
and discuss our results; we first show, under continuous
wave (cw) excitation, the optical spin Hall effect [4,30] in a
quasi-1D structure, discussing the sz oscillations in real space,
for a σ+-polarized pump. In Sec. III A we systematically
investigate the distribution of the Stokes components as a
function of the PL energy and position along the ridge. In
Sec. III B we demonstrate that the sz precession is lost under
linear excitation and/or high-power excitation conditions. In
Sec. IV the experiments are compared with simulations of the
spinor-polariton condensate dynamics based on a generalized
Gross-Pitaevskii equation, modified to account for incoherent
pumping, decay, and energy relaxation within the condensate.
Finally, in Sec. V we provide the conclusions of this work.

II. SAMPLE AND EXPERIMENTAL SETUP

A high-quality 5λ/2 AlGaAs-based MC with 12 embedded
quantum wells is investigated, whose Rabi splitting, �R ,
amounts to 9 meV. Ridges, with dimensions 20 × 300 μm2,
have been obtained by reactive ion etching (further information
about this sample is given in Ref. [48]). We study a ridge
situated in a region of the sample corresponding to resonance
(detuning between bare exciton and cavity modes is �0). The
sample is kept at 10 K in a cold-finger cryostat and it is excited

with a cw laser, tuned to the first high-energy Bragg mode of
the MC (1.612 eV). The cw laser is chopped at 300 Hz with an
on/off ratio of 1:2 in order to prevent unwanted sample heating.
We focus the laser beam on the sample through a microscope
objective to form a 10 μm − ∅ spot. The same objective is
used to collect (angular range ±18◦) the PL, which is directed
toward a 0.5 m imaging spectrometer. The power threshold for
polariton condensation is Pth = 2 mW.

In our experiments, polaritons propagate predominantly
along the x axis of the ridge [see Fig. 1(a)]. Therefore, in
all the images presented in the paper, where the y direction is
not shown, the spectral PL distribution is analyzed along the
x axis from a �y = 2-μm-wide central region of the ridge.
However, for the sake of completeness, the full 2D polariton
intensity and degree of circular polarization distributions are
presented when appropriate.

We start by describing the dispersion relations of polaritons
along two orthogonal directions in the ridge, kx at ky = 0
and ky at kx = 0. The confinement in the y axis of the ridge
results in the discretization of the ky in-plane momentum,
splitting the LPB in many subbands, Fig. 1(b), whose antinodes
along ky are visible in Fig. 1(d). It is important to emphasize
that only even subbands are visible in Fig. 1(b), since along
kx we spectrally resolve the PL at ky = 0. Odd modes
(with a node at k = 0) are visible in Fig. 1(d); see, for
example, the subband at 1.5405 eV. The scenario seen in these
dispersion relations is very interesting because it reveals the
possibility of parametric scattering processes among many
different subbranches. Recent works on 1D semiconductor
MCs exploit these extra-confinement effects to study new

FIG. 1. (Color online) (a) Scanning electron microscopy image of a 20-μm-wide ridge, including an angular scheme of the PL emitted
from the center of the ridge (see the cone of light as a guide to the eye); the z direction is perpendicular to the plane of the paper. The bottom
panels display, under nonresonant (1.612 eV), weak, circularly polarized light excitation: (b) and (d) energy dispersions of the PL along kx

and ky , respectively; (c) and (e) linear degree of polarization (sx) vs energy and kx and ky , respectively. Dot-dot-dashed white and black lines
in panels (d,e) mark the energy value (1.5407 eV) used for Fig. 2(b). Red and blue arrows in panels (a,b,d) mark the TM and TE character
of the even subbands in the dispersion relations, respectively. Orange and black arrows in panels (b)–(e) mark the energy positions of weakly
polarized, consecutive higher subbands. The PL and sx are coded in linear, normalized, false color scales.
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parametric phenomena (see, for example, Refs. [49,50] and
references therein).

Confinement in a quasi-1D cavity enhances the splitting
between the two light polarizations TM and TE, parallel and
perpendicular to the x axis of the ridge, respectively. We
identify TM (TE) as the H (V ) direction used to define the
linear degree of polarization (sx). Considering the kx direction,
the lowest energy subband is TM0-polarized, see the label
in Fig. 1(b), and its corresponding sx is shown in Fig. 1(c),
where an intense, red subband appears, whose minimum is at
E = 1.5397 eV and kx = 0. The next TM1 mode is 0.2 meV
blueshifted, lying very close to the TE0 mode [intense blue
subband in Fig. 1(c)]. The splitting between TM0 and TE0

is 0.36 meV. Higher energy modes, with a weaker degree of
polarization, are visible at 1.5407 and 1.5411 eV, marked by
orange and black arrows in Figs. 1(b) and 1(d) and Figs. 1(c)
and 1(e), respectively. Analyzing the dispersion relation ky ,
Figs. 1(d) and 1(e), a further, horizontal discretization of the
energy levels is clearly observed. The separation in ky between
consecutive antinodes of a single state is ∼0.4 μm−1.

Detailed spectra at kx = 0, both for intensity (thick, gray
line) and sx (thin, purple line), are given in Fig. 2(a), with
different, labeled modes indicated by arrows. The aforemen-
tioned higher-energy modes are marked by orange arrows.
Figure 2(b) details a profile of the PL and sx versus ky , at
E = 1.5407 eV: the predominant structures at |0.7| < ky <

|1.8| μm−1 shown by the thick gray line are constituted by

FIG. 2. (Color online) (a) PL (sx) as a function of energy at kx =
0 in a gray, thick (purple, thin) line. (b) PL (sx) as a function of ky

at E = 1.5407 eV in a gray, thick (purple, thin) line. Red and blue
arrows in panels (a) and (b) mark the TM and TE character of the
even subbands in the dispersion relations, respectively. Orange arrows
in panel (a) mark the energy positions of weakly polarized, higher
subbands.

the modes (TM0 + TM1) and (TE0 + TE1) at high ky values,
while the three central antinodes correspond to other confined
modes at lower ky values. Only when a polarization analysis is
performed are TE and TM distributions resolved (thin purple
line), as marked in the figure.

Assuming a square-well-type potential in the y direction,
the energies of the TM- and TE-polarized photonic modes can
be approximated by

EC;TM,TE(n,kx) = (n + 1)2
�

2π2

2mCL2
y

+ �
2k2

x

2mC

± �TM,TE, (1)

where n = 0,1,2, . . . is the subband index, mC is the photon
effective mass, Ly is the ridge width, and �TM,TE characterizes
the splitting between the H and V polarizations. The disper-
sion of the upper (+) and lower (−) polariton modes is given
by the standard two-oscillator formula (up to a constant energy
shift):

E±
TM,TE(n,kx) = 1

2EC;TM,TE(n,kx)

±
√

E2
C;TM,TE(n,kx) + 4�2, (2)

where � = �R/2 is the exciton-photon coupling constant.
Assuming a Lorentzian line shape (corresponding to 18 ps
lifetime) and an independent Boltzmann population of the
TM- and TE-polarized energy levels (T = 10 K), we calculate
the dispersions corresponding to lower polariton modes (E−)
shown in Fig. 3. As in the experiments, we show the ky = 0
(kx = 0) PL when resolving the dispersion along kx (ky). The
results show that the TM bands are hidden by the stronger
populated TE bands at higher energies.

FIG. 3. (Color online) (a) and (c) Theoretical energy dispersion
relation of lower polariton modes along kx (at ky = 0) and ky (at
kx = 0), respectively; (b) and (d) corresponding linear degree of
polarization (sx). The intensity and sx are coded in linear, normalized,
false color scales.
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III. EXPERIMENTAL RESULTS AND DISCUSSION

Recently, Kammann and co-workers reported an analog of
the optical spin Hall effect of an exciton-polariton condensate
in a planar MC, under cw, nonresonant, circularly polarized
excitation [4]. Circularly polarized condensates propagate over
macroscopic distances, while the collective condensate spins
coherently precess around an effective magnetic field. This
effective magnetic field can be expressed as

−→
H eff = �

μBg

−→
� k ,

where μB is the Bohr magneton, g is the electron g factor, and−→
� k is the in-plane vector with the following components:

�x = �TM,TE

�k2

(
k2
x − k2

y

)
, �y = �TM,TE

�k2
kxky, (3)

where
−→
k = (kx,ky) is the in-plane wave vector of the

polariton.
Here we study a similar phenomenon in our quasi-1D

structure: we start by focusing on the polariton distribution
in real space and its degree of circular polarization, under cw,
circular excitation, without resolving the PL energy.

Figure 4(a) shows the energy-integrated distribution of the
polariton PL in real space, under σ+-polarized, nonresonant
excitation at (x,y) = (0,0) with a pump power of 3.75 × Pth.
The pump creates outflowing polariton condensates due to the
repulsive interactions with the excitonic reservoir [18,27]. The
propagation inside the ridge is not purely 1D since slanted
traces of the polariton flow are visible (see the white dashed
arrows as a guide to the eyes), as a result of the reflection of the
fluid against the lateral borders at y = ±10 μm. Interference
patterns in the PL, due to polariton-polariton scattering, are

also observed (see, for example, the region enclosed by a
dashed box). This effect has also been reported in the 2D
case [51]. A fast Fourier transform (FFT) of this enclosed
region, shown in Fig. 4(c), obtains the frequencies corre-
sponding to counterpropagating polariton wave packets, with
a difference in momentum propagation of �Kx ≈ 3.4 μm−1

(see the area enclosed by a dot-dashed box). The corresponding
value of kx matches the typical speed of polariton wave packets
in 1D systems (∼1 μm/ps) [19,27].

Outside the pump spot, the potential energy is converted
into kinetic energy. Polaritons also relax and lose energy
through scattering with the excitonic reservoir and through
intra-branch scattering [23,26,27]; the energy of condensed
polaritons spans ∼1.5 meV across the subbands (see be-
low). Therefore, the description of the spin distribution in
our quasi-1D structure, in the presence of polariton energy
relaxation, becomes more complex than in two dimensions
(where the ballistic spin precession occurs in a simpler
dispersion relation). However, for the sake of simplicity, we
show in Fig. 4(b) the energy-integrated distribution of the
circularly polarized component of the PL (sz). The large red
area in the central region corresponds to the predominantly
spin-up aligned polaritons at the excitation area. The spin of
leftward and rightward propagating polaritons precesses with
a periodicity of ∼40 μm (see the up- and down-arrows). The
energy integration is responsible for the relatively low values
of sz. In Fig. 4(d), we quantify both the total PL (thick gray
line) and sz (thin purple line) as a function of x at the central
cross section of the ridge (y = 0). The oscillations in the PL
are caused by the fluid reflections against the borders of the

FIG. 4. (Color online) Collective polariton condensate spin precession in a quasi-1D ridge. (a) Polariton PL distribution in real space under
nonresonant (1.612 eV), circularly polarized (σ+) excitation at the center of the ridge. The pump power is 3.75 × Pth. Dashed white arrows
sketch the direction of the polariton flow along its propagation. (b) Corresponding circular degree of polarization distribution (sz). Vertical
blue and red arrows highlight the spin precession, oscillating from negative (σ−) to positive (σ+) values, respectively. (c) FFT intensity of the
region enclosed by a dashed, white rectangle in panel (a). The dot-dashed, white rectangle marks the region of relevant frequencies arising
from interferences between propagating and backscattered polaritons in real space. The PL and the FFT map are coded in a logarithmic, false
color scale, while a linear one is used for sz. (d) PL (sz) vs x in the central region of the ridge y = 0, plotted with a thick gray (thin purple) line.
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FIG. 5. (Color online) Stokes parameters of the polariton PL as
a function of energy and spatial position (x): (a) sx , (b) sy , and (c) sz,
respectively, under nonresonant (1.612 eV), circularly polarized (σ+)
excitation. (d) Corresponding PL. The pump power is 3.75 × Pth.
Slanted, dot-dashed (solid) lines in panels (b) and (c) sketch the
continuous shift with energy of the minima (maxima) values of sy

and sz. The horizontal purple, solid (orange, dashed) line at E1 =
1.5403 eV (E0 = 1.5396 eV) marks the energy of interest used for
the data depicted in Fig. 6. The PL (degree of polarization) is coded
in a logarithmic (linear), false color scale.

ridge, obtaining large intensities when polaritons merge at
the center [see the arrows in Fig. 4(a)]. The spin oscillation
and its damping along its propagation are clearly visible (thin
purple line). Note that the periodicities of the PL and the
spin oscillations do not match since they arise from different
phenomena.

A. PL spectroscopy on the spin Hall effect

Figure 5 shows the energy- and space-resolved Stokes
components of the polarized PL under the same excitation
conditions as those described in Fig. 4. The polariton con-
densates span an energy of 1.5 meV around ∼1.540 eV.
We present here a spatial analysis of sx , sy , and sz at two
different energies E0 = 1.5396 eV and E1 = 1.5403 eV, which
correspond to those of polaritons condensing into the TM’s and
the TE’s subbands [see the dashed and solid horizontal lines
in Figs. 5(a)–5(c)], respectively. Figure 5(a) shows a weak
spatial oscillation of sx at E1. Additionally, a small positive
sx from higher-energy excitons (from 1.5405 to 1.5415 eV) is
present at x = 0; this was already present in Fig. 1(c), under
below-threshold excitation. At E0, sx is large and positive,
as expected from the TM character of the lowest polariton
subband [see Figs. 1(c) and 2(a)]. The diagonal component
sy displays a significant spatial oscillation with a period of
∼40 μm at E1 [see Fig. 5(b)]. In contrast, sy barely oscillates
around a value of ∼−0.2 at E0. Figure 5(c) shows a highly
σ+-polarized population at x = 0 at E1 and above, set by
the excitation laser. At E1 the condensed, spreading polaritons
exhibit a precessing sz, again with the same period of ∼40 μm.
This precession, although weaker, is also seen at E0.

These oscillations in the Stokes parameters are similar to
those previously reported in planar MCs, considering that in
our case the propagation takes place along the ridge channel
(equivalent to a given radial direction of the 2D rings; see
Fig. 3 of Ref. [4]). The effective magnetic field, induced
by the splitting of the TE-TM modes, is responsible for this
precession of the polariton spins, while they propagate over
the ridge, due to the optical spin Hall effect [30]. The main
difference in our case lies in the energy dependence of the
precession pattern, giving rise to distinct spin textures. The
phase of the spatial sz oscillations shifts continuously with
increasing energies, so that at E0 and E1 they are shifted with
respect to each other by a π phase approximately. In Figs. 5(b)
and 5(c), the slanted, dot-dashed (solid) lines highlight the
minimal (maximal) points of the sy and sz oscillations across
the PL energy, respectively. This phase shift arises from
the different propagation speeds of polaritons at different
energies: polaritons at higher energies move at higher speeds
and therefore travel longer distances for each precession of
the spin. Nevertheless, the spin spatial periodicity does not
change significantly with energy. Finally, Fig. 5(d) displays,
for completeness, the PL along the x axis, from 1.5395 to
1.5405 eV.

In Fig. 6 we detail the different sx,y,z profiles at the two
selected energies E0 and E1. The dashed line at E0 shows
a constant sx ≈ 0.5 profile as a function of x; at E1 (solid
line), sx varies weakly [see Fig. 6(a)]. Figures 6(b) and 6(c)
detail the sy and sz oscillations, respectively, at E0 and E1. The
displacement in real space of the minimal (maximal) points of
the sy and sz oscillations from the lower energy E0 to the higher
one E1 is evidenced by straight, dot-dashed (solid) lines.

FIG. 6. (Color online) Stokes parameters sx,y,z of the polariton
PL as a function of x at energies E0 = 1.5396 eV (dashed line) and
E1 = 1.5403 eV (solid line) in panels (a-c), respectively, extracted
from Fig. 5. Dot-dashed (solid) lines in panels (b) and (c) are guides
to the eye linking the minimum (maximum) value of sy and sz at the
two energies, respectively, highlighting the spatial shift with energy
of their oscillations.
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B. Spin-precession collapse

A recent study shows that a transfer of the polarization of
a nonresonant excitation laser to polariton condensates occurs
for excitation powers slightly above the condensation threshold
and that the transfer efficiency decays with increasing pump
power [52]. We also profit from the former fact to non-
resonantly create polariton condensates with a predominant
circular polarization. In this section, we investigate not only
the latter fact, i.e., the influence of the pump power, but also
that of its spin polarization (circular or linear) on the collective
polariton spin state and on its propagation.

Two different pump powers are used for the experiments
compiled in Fig. 7: 3.75 (4.75) × Pth for the left (right)
column. sz maps as a function of energy and x under
σ+ (linear excitation) are shown in Figs. 7(a-1) and 7(a-2)
[Figs. 7(b-1) and 7(b-2)]. Finally, for the sake of completeness,
Figs. 7(c-1) and 7(c-2) show the polariton PL. In Fig. 7(a-1),
sz oscillations are clearly observed from 1.5395 to 1.5408 eV.
The σ+-polarized, nonresonant excitation induces a highly
σ+-polarized, blueshifted population at x = 0, whose PL
spans from 1.5400 to 1.5415 eV. A 25% increase of the
pump power strongly reduces the amplitude of the spin
precession, which becomes barely visible in Fig. 7(a-2). These
oscillations are also suppressed for linear excitation, as shown
in Figs. 7(b-1) and 7(b-2). The PL map at high excitation
power, 4.75 × Pth, reveals a nonemitting region around x = 0
with an energy width of 0.7 meV and a spatial extent full
width at half-maximum (FWHM) of ∼20 μm, highlighted

FIG. 7. (Color online) Polariton spin precession and PL as a
function of pump power at 3.75 × Pth (left column) and 4.75 × Pth

(right column). The nonresonant excitation (1.612 eV) at x = 0 is
circularly (linearly) polarized in the first (second) row. Panels (a) and
(b) depict the circular degree of polarization (sz); panels (c) show the
polariton PL. In panel (c-2) the local repulsive potential induced by
photogenerated excitons at x = 0 is sketched by a dashed line. The
PL (sz) is coded in a logarithmic (linear) false color scale.

with a dashed line in Fig. 7(c-2). This dark region is caused by
the excitonic reservoir, which ejects polaritons outward from
x = 0.

IV. MODEL

To model the spatial structure of polariton condensates, we
use a mean-field description including incoherent pumping
and decay [53] as well as energy relaxation [26]. This
model was used previously to describe the dynamics of
condensate transistors in microwire ridges [21,25]. In the
current experiment, it is important to use a 2D model that
accounts for the subband structure reported in Fig. 1 as well
as a two-component spinor wave function to account for the
spin degree of freedom. The spinor polariton wave function
ψσ (�r,t) obeys the dynamical equation

i�
dψσ (�r,t)

dt
=

[
ÊLP + (α1 − i	NL) |ψσ (�r,t)|2

+ α2|ψ−σ (�r,t)|2 + V0(�r) + Vσ (�r)

+ i

(
Wσ (�r) − 	

2

)]
ψσ (�r,t)

+�TM,TEψ−σ + i� R[ψ(�r,t)], (4)

where σ = ± denotes the two circular polarizations of polari-
tons. α1 and α2 represent the strengths of interactions between
polaritons with parallel and antiparallel spins, respectively.
The operator ÊLP = −�

2∇̂2

2mP
represents the parabolic dispersion

of the LPB [read LP in Eq. (4)]. Here, �r is a two-component
vector consisting of the real-space coordinates lying on the
ridge, the origin of this coordinate system being in the center
of the ridge.

Polaritons enter the condensate at a rate determined by
Wσ (�r), which is both polarization- and space-dependent.
While the nonresonant laser used in the experiment is
polarized, due to the presence of spin relaxation, one does
not expect a full polarization of the photocreated hot excitons.
Consequently, we expect a partially polarized reservoir of
excitons to drive the polariton condensates, eventually yielding
both possible circular polarizations. The condensation rate for
the σ+-polarized polaritons from the excitonic reservoir is
given by

W+(�r) = W0e
−r2/L2

, (5)

where W0 is the peak condensation rate and L is the width. In
principle, the spatial profile of the condensation rate includes
the effects of exciton dispersion, diffraction, and nonlinear
repulsion after excitons are excited by the nonresonant laser
pump. In practice, the effective mass of excitons is four orders
of magnitude larger than that of polaritons, and there is very
little spreading of the excitons over length scales relevant
for polaritons, such that L can be taken to be the same as
the laser pump-spot diameter. The condensation rate for the
σ−-polarized polaritons is smaller and given by W− = ρW+,
where ρ is a parameter that is fitted to the experimental
results. In this form, the condensation rate is explicitly spin
anisotropic.
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FIG. 8. (Color online) Simulations of the collective polariton condensate spin precession in a quasi-1D ridge. (a) PL rendering polariton
distribution in real space under nonresonant, circularly polarized excitation at the center of the ridge, with a pump power P = 3.75 × Pth. The
dashed, white box marks the spatial region that is Fourier-transformed. (b) Corresponding simulation on the circular degree of polarization
distribution (sz). (c) FFT intensity of the simulated polariton PL distribution in the framed area in panel (a); remarkable Fourier frequencies
arise at ∼3 μm−1 from the counterpropagating polariton populations; see the region delimited by a dot-dashed, white box. The PL and the FFT
map are coded in a logarithmic, false color scale, while a linear one is used for sz.

The spin-dependent effective potential experienced by
polaritons can be described by

Vσ (�r) = GσWσ (�r), (6)

where Gσ is a constant representing the strength of forward-
scattering processes between excitons in the reservoir and in
the condensate.

We also consider a spin-independent component in the
effective potential, V0, which is the profile potential of the
ridge. We assume it to be that of a 2D infinite square
well, where the confinement in the y direction gives rise to
the subband structure observed experimentally (Fig. 1) and
theoretically (Fig. 3).

The polaritons decay with a decay rate 	. They also
experience a nonlinear loss corresponding to scattering out
of the condensate. According to estimates in Ref. [54],
	NL ≈ 0.3α1. Once injected, different circular polarizations
are also coupled by the linear polarization splitting �XY

in the system, which can give rise to oscillations between
spin components. While in 2D MCs the dominant polarization
splitting is wave-vector-dependent, the dominant splitting in
polariton channels is due to strain giving an anisotropic lattice
constant [55]. A splitting occurs between polarizations aligned
parallel and perpendicular to the channel axis, which remains
for the zero in-plane wave vector [as can be seen in Figs. 1(c)
and 1(e)], and takes larger values than the TE-TM splitting in
2D MCs.

The final term in Eq. (4) accounts for energy relaxation
processes of condensed polaritons:

R[ψ(�r,t)] = −ν(ÊLP − μ(�r,t))ψ(�r,t), (7)

where ν is a phenomenological parameter determining the
strength of energy relaxation [19,26] and μ(�r,t) is a local
effective chemical potential that conserves the polariton
population. These terms cause the relaxation of any kinetic
energy of polaritons and allow the population of lower-energy
states trapped between the pump-induced potentials.

For the simulation that produces the results in Figs. 8
and 9, the following parameters are used: α1 = 2.4 ×
10−3 meV μm2, �ν = 0.14, 	 = 0.0366 meV (Ref. [27]),
α2 = −0.2α1 (Ref. [11]). The LP dispersion is characterized
by an effective mass m = 7.3 × 10−5me, fitted to Fig. 1, where
me is the free-electron mass. G+ = 1.0 and G− = 0.7 are

fitted to the measured space- and polarization-resolved en-
ergy distributions. W0 = 0.185 meV, ρ = 0.5, and �TM,TE =
−0.15 meV. The width of the condensation rate profile is taken
to be L = 10 μm. The calculations were performed using
an adaptive step Adams-Bashforth-Moulton error-corrector
procedure in a grid with 384 × 32 points. The polariton wave
functions were initialized with a weak intensity noise, the
distribution of which was found to have no effect on the end
result. After a period of initial dynamics, energy distributions
are obtained from Fourier transformation over a time window
of 250 ps.

FIG. 9. (Color online) Simulation on the Stokes parameters of
the polariton PL as a function of energy and spatial position (x):
(a) sx , (b) sy , and (c) sz, respectively, under nonresonant, circularly
polarized excitation, with a pump power P = 3.75 × Pth. (d) sz under
a higher pump power excitation 4.75 × Pth. The degree of polarization
is coded in a linear, false color scale.
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The simulated images shown in Figs. 8 and 9(a)–9(c) can be
compared to the experimental results in Figs. 4(a-c) and 5(a-c),
respectively. The calculated dependence of sz on pump power
can be observed in Figs. 9(c) and 9(d): a blueshift of the
maximum polariton energy as well as a slight reduction of
the spin precession with increasing power is obtained, in
agreement with the experiments reported in Figs. 7(a-1) and
7(a-2). The localized, polarized, incoherent pumping generates
two distributions of polaritons separated both in polarization
and in energy at x = 0: while the majority of polaritons are
σ+-polarized, a significant number of polaritons also condense
into a σ−-polarized state, which has lower energy due to the
spin-dependent blueshifts in the system Vσ (�r,t). A very good
agreement between the experimental and theoretical (x,y)
maps is obtained.

The potential Vσ (�r), which is mostly induced by hot exci-
tons with the same spatial distribution as the pump, represents
a strongly repulsive potential in the system that accelerates
polaritons outward. The simulated energy- and space-resolved
map of the sx Stokes parameter, shown in Fig. 9(a), is also in
reasonable agreement with the experimental results depicted
in Fig. 5(a). As the accelerated polaritons move outward, their
spins precess, due to the polarization splitting, giving rise to
oscillations in sy and sz [see Figs. 9(b) and 9(c)] as in the
experiments [Figs. 5(b) and 5(c)]. Note that the theoretical
model does not reproduce directly oscillations in the spatial
distribution of sx . Theoretically, any polarization splitting in
the system can always be represented by an effective magnetic
field about which the Stokes vector rotates. It is impossible to
find an effective magnetic field that causes oscillations between
both negative and positive values in all three components of
the Stokes vector simultaneously (even if multiple forms of
splitting are present, the total effective magnetic field cannot
make an angle greater than 45◦ with the sx , sy , and sz axes
simultaneously). We thus conclude that the experimentally
observed oscillation in sx is not directly due to spin precession
caused by the polarization splitting. Instead, we speculate
that the oscillations in sx are linked to the oscillations in
the total PL intensity, which competes with a background
of incoherent polaritons that are linearly polarized due to
the TE-TM splitting. Where the condensate intensity is high,
sx is given by the mean-field theoretical value, while when

the condensate intensity is low there may well be incoherent
polaritons, not accounted for in the mean-field theory, that give
a different polarization. Consequently, oscillations in intensity
give the impression of oscillations in the linear polarization
degree represented by sx . The oscillations in intensity are due
to the 2D nature of the propagation, where both theory and
experiment show that polaritons tend to travel at an angle to
the x axis, being guided by reflections from the ridge edges.
The intensity viewed along the x axis is then greatest when
polaritons propagating off-axis cross the x axis.

V. CONCLUSIONS

In summary, we have studied the optical spin Hall effect in
a quasi-1D MC, where the lateral confinement yields a suitable
scenario for the intrabranch polariton energy relaxation,
enriching the phenomenology of the polariton spin patterns.
Thanks to a spectroscopic analysis of the optical spin Hall
effect, we have shown that a phase shift in the oscillations of the
sy and sz Stokes parameters results from the different speeds
of propagation of polaritons. These oscillations collapse either
when linearly polarized excitation is used or when the pump
power of the circularly polarized excitation exceeds a certain
level. Our results are interpreted within the framework of
a mean-field model for polariton dynamics, which includes
incoherent gain from a polarized exciton reservoir, the energy
shift due to the reservoir, TE-TM splitting, and energy
relaxation. The demonstration of the inversion of the polariton
spin as it propagates or relaxes in energy is an important
ingredient for realizing polaritonic circuits based on the spin
degree of freedom.
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