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We formulate a theoretical approach of surface second-harmonic generation from semiconductor surfaces
based on the length gauge and the electron density operator. Within the independent particle approximation,
the nonlinear second-order surface susceptibility tensor χ abc(−2ω; ω,ω) is calculated, including in one unique
formulation (i) the scissors correction, needed to have the correct value of the energy band gap, (ii) the contribution
of the nonlocal part of the pseudopotentials, routinely used in ab initio band-structure calculations, and (iii) the
derivation for the inclusion of the cut function, used to extract the surface response. The first two contributions
are described by spatially nonlocal quantum-mechanical operators and are fully taken into account in the present
formulation. As a test case of the approach, we calculate χxxx(−2ω; ω,ω) for the clean Si(001)2 × 1 reconstructed
surface. The effects of the scissors correction and of the nonlocal part of the pseudopotentials are discussed in
surface nonlinear optics. The scissors correction shifts the spectrum to higher energies though the shifting is
not rigid and mixes the 1ω and 2ω resonances, and has a strong influence in the line shape. The effects of
the nonlocal part of the pseudopotentials keeps the same line shape of |χxxx

2×1(−2ω; ω,ω)|, but reduces its value
by 15%–20%. Therefore the inclusion of the three aforementioned contributions is very important and makes
our scheme unprecedented and opens the possibility to study surface second-harmonic generation with more
versatility and providing more accurate results.
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I. INTRODUCTION

In recent years, surface nonlinear optical spectroscopies,
particulary surface second-harmonic generation (SSHG), have
evolved as useful nondestructive and noninvasive tools to study
surface and interface properties. These properties include
atomic structure, phase transitions, adsorption of atoms, and
many others [1–19]. Nowadays, SSHG spectroscopy is a
crucial tool for research and development in microelectronics
[20], semiconductors [21], nanomaterials [22], and many more
recent areas of great scientific and commercial interest [23].
The high surface sensitivity of SSHG spectroscopy is due to the
fact that within the dipole approximation the bulk SHG signal
of centrosymmetric materials is identically zero. However, the
SHG process can occur only at the surface where the inversion
symmetry is broken. The bulk quadrupole contribution for
centrosymmetric materials is different from zero, but usually
it is very small [19], and we neglect it. Much of the foundation
of surface science has been built from experiments involving
emission or scattering of electrons from surfaces. These
require ultrahigh vacuum (UHV) environments and provide
no access to buried interfaces. However, SSHG is compatible
with non-UHV conditions and has access to interfaces buried
beneath transparent overlayers. Even when applied to surfaces
in UHV, the light source and detectors can be aligned and used
outside the vacuum chamber.

The usefulness of SSHG could be limited by the lack
of microscopic theoretical understanding of the nonlinear
spectra. The macroscopic phenomenological theory of SSHG,
which relates the intensity, phase, and polarization of detected
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fields to nonlinear and linear susceptibilities at the material
interface is now fully developed [19]. However, a microscopic
theory that relates electronic-level structure to the nonlinear
source polarization is still being developed [12,24–30].
Within the independent particle approximation (IPA), some
frameworks for bulk SHG have been developed to study
the nonlinear optical response of bulk materials [12,24–29].
In this paper, we put forward an approach to calculate the
microscopic second-harmonic surface susceptibility that
encompasses several theoretical features not taken into
account before in the case of a surface.

The most used framework for ab initio calculations,
density functional theory (DFT) within the local density
approximation (LDA) [31], underestimates the energy band
gap of semiconductors. It is well understood that one has
to include the many-body interaction to correct for this
underestimation of the gap. In this context, the so-called GW

approximation [32] is known to correct the electronic gap
of most semiconductors [33]. However, this can be a very
expensive calculation and thus one uses the much simpler
scissors operator scheme [34–36]. This allows us to “open”
the DFT-LDA gap to its correct experimental or GW value for
most bulk semiconductors. This approximation has already
been used in linear optical calculations for surfaces [37], thus
improving the agreement with experimental results. In this
context, to correct for the underestimation of the energy band
gap of semiconductors, Nastos et al. [38] used the “length
gauge” or “r · E” gauge to show how to correctly include
the many-body corrections through the scissors operator in
the second-harmonic (SH) susceptibility. Later, Cabellos et al.
[39] elaborated a derivation of the “velocity gauge” or “A · v”
gauge properly including the scissors operator and proved
gauge invariance with respect to the length gauge. From these
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works, it is clear the length gauge is a much better starting
point to obtain the surface SH (SSH) susceptibility, as will
be elaborated in this paper. However, these considerations are
only valid for bulk semiconductors.

Concerning the optical response of surfaces and interfaces,
Reining et al. [40] introduced the concept of a cut function
in order to obtain the surface SH susceptibility tensor. This
cut function is required since one usually uses a slab approach
when treating semi-infinite surface systems [40]. If the slab is
centrosymmetric, the susceptibility tensor will be identically
zero. The cut function is such that it separates the nonlinear
response for the two surfaces of the slab avoiding the
destructive interference between them giving a finite value
that one identifies with the SSH susceptibility tensor. If the
slab is not centrosymmetric, the cut function can be used to
separate the different signals coming from either surface of
the slab. Indeed, one of the main results of this paper is to
show that the SSH susceptibility tensor obtained by using the
cut function is correctly extracted from the slab. After Reining
et al. [40], Refs. [18,41–44] followed upon this work and in
particular Ref. [41] went into a detailed analysis of the different
contributions to the SHG spectra of a surface and the nuanced
relationship between bulk, surface, interband, intraband, 1ω

and 2ω terms, and Ref. [45] developed a layer-by-layer
analysis for the nonlinear responses of semiconductor systems,
within a tight-binding framework. This model allows for
obtaining results from selected regions of a system including
the surface. However, in these references, the scissors operator
is either excluded or incorrectly implemented. In the works that
include this operator, the velocity gauge was used to derive the
expressions for χ abc(−2ω; ω,ω). Nevertheless, a term in the
time-dependent perturbation scheme necessary to satisfy
the gauge invariance of χ abc(−2ω; ω,ω) was omitted. This
was demonstrated in Ref. [39] where a comparison between
the velocity and the length gauge was carried out.

Finally, DFT-LDA calculations are often based on the use
of pseudopotentials. As it will be discussed in this paper, the
presence of a nonlocal part of the pseudopotential introduces
corrections to the momentum operator of the electron that have
to be included with care in the SSH susceptibility. For the bulk
counterpart, see, for instance, Refs. [46,47].

Therefore, within the IPA, the most complete approach for
the calculation of the SSH susceptibility is one which includes
(i) the scissors correction, (ii) the contribution of the nonlocal
part of the pseudopotential, and (iii) the cut function. Therefore
the goal of this paper is to derive a new expression within the
length gauge for the SSH susceptibility tensor χ abc(−2ω; ω,ω)
that includes the aforementioned contributions. The inclusion
of these three contributions makes our scheme unprecedented
and opens the possibility to study surface SHG with more
versatility and providing accurate results.

The paper is organized as follows. In Sec. II, we present
the relevant steps for deriving the surface second-order
susceptibility tensor χ abc(−2ω; ω,ω) within the length gauge
formalism. This derivation includes the addition of the terms
mentioned above that have been absent in previous works.
Also, our χ abc(−2ω; ω,ω) can be used for a layer-by-layer
analysis if desired. Nevertheless, such an analysis could
depend on the choice of the basis used to expand the
wave functions. In Sec. III, we show the results of this

reformulation with a study of a clean Si(001) surface with a
2 × 1 reconstruction, proving the correctness of our approach
with a special test case, never exploited before. We compare
results from before and after adding the different nonlocal
contributions. Finally, in Sec. IV, we give our conclusions.

II. THEORY

In this section, we present the scheme used to calculate
the surface second-order nonlinear response using the length
gauge formalism and the electron density operator. Some of
the results presented in Secs. II A and II B have already been
discussed in earlier studies and can be applied to bulk and
surface studies [39,48]. We present them in order to have a self-
contained derivation. The terms presented in these sections are
used in Sec. II C, where we derive the expression for the surface
χ abc(−2ω; ω,ω).

A. Perturbative approach

We assume the IPA, a classical electromagnetic field,
and quantum-mechanical matter. We neglect local field and
excitonic effects. We can describe the system using the one
electron density operator ρ, with which we can calculate
the expectation value of a single-particle observable O as
〈O〉 = Tr(ρO), with O the associated quantum mechanical
operator and Tr the trace. The density operator satisfies
i�(dρ/dt) = [H (t),ρ], with H (t) as the total single-electron
Hamiltonian, written as

H (t) = H0 + HI (t),

where H0 is the unperturbed time-independent Hamiltonian,
and HI (t) is the time-dependent potential energy due to the
interaction of the electron with the electromagnetic field. To
proceed with the solution of ρ, it is convenient to use the
interaction picture, where a unitary operator U = exp(iH0t/�)
transforms any operator O into Õ = UOU †. Even if O is
time-independent, Õ is time-dependent through the explicit
time dependence of U. The dynamical equation for ρ̃ is
given by

i�
dρ̃

dt
= [H̃I (t),ρ̃],

with solution

i�ρ̃(t) = i�ρ̃0 +
∫ t

−∞
dt ′[H̃I (t ′),ρ̃(t ′)], (1)

where ρ̃0 = ρ̃(t = −∞) is the unperturbed density matrix.
We look for the standard perturbation series solution, ρ̃(t) =
ρ̃(0) + ρ̃(1) + ρ̃(2) + · · · , where the superscript denotes the or-
der (power) with which each term depends on the perturbation
HI (t). From Eq. (1), the N th-order term is

ρ̃(N)(t) = 1

i�

∫ t

−∞
dt ′[H̃I (t ′),ρ̃(N−1)(t ′)]. (2)

The series is generated by the unperturbed density operator
ρ̃(0) ≡ ρ̃0, assumed to be the diagonal Fermi-Dirac distribu-
tion, 〈nk|ρ̃0|nk〉 = f (�ωn(k)) ≡ fn. For a clean, cold semi-
conductor fn = 1 when n is a valence (v) or occupied band,
and zero when n is a conduction (c) or empty band. We assume
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this for the remainder of the paper. As we neglect spin-orbit
coupling, the final expression for χ abc(−2ω; ω,ω) has to be
multiplied by a factor of 2 to account for spin-degeneracy. The
expectation values must satisfy 〈O〉 = Tr(ρO) = Tr(ρ̃Õ).

We will look for the expectation value of the microscopic
current density J, given by

J = 〈J〉 = e

A
Tr(ρṙ),

where ṙ is the time derivative of the position operator of the
electron with charge e, defined as

v ≡ ṙ = 1

i�
[r,H0], (3)

with v the velocity operator of the electron, and A the area
of the unit cell. We calculate the polarization density P,
related to J by J = dP/dt. For a perturbing electromagnetic
field, E(t) = E(ω)e−iω̃t + c.c., where ω̃ = ω + iη, and η > 0
adiabatically switches on the interaction, we write the second-
order nonlinear polarization as

Pa(2ω) = χ abc(−2ω; ω,ω)Eb(ω)Ec(ω), (4)

where χ abc(−2ω; ω,ω) is the nonlinear susceptibility respon-
sible for surface second-harmonic generation (SSHG). The
superscripts in Eq. (4) denote Cartesian components, and if
repeated are to be summed over. Without loss of generality,
we will define χ abc(−2ω; ω,ω) to satisfy intrinsic permutation
symmetry, χ abc(−2ω; ω,ω) = χ acb(−2ω; ω,ω).

The unperturbed Hamiltonian is used to solve the Kohn-
Sham equations [31] of density functional theory (DFT). It
is convenient to work within the local density approximation
(LDA), so we label the Hamiltonian with the corresponding
LDA superscript. Any other approximation can be used (like
the generalized gradient approximation) and our derivation
remains the same. Then,

H LDA
0 (r,p) = p2

2me

+ V (r,p)

with me the mass of the electron, p = −i�∇ its canonical
momentum, and V the periodic crystal potential, where we
neglect spin-orbit terms. To be more general in our derivation
of χ abc(−2ω; ω,ω), we assume a contribution as is customary
for most pseudopotentials, and then we replace V with

V ps(r,p) = V (r) + V nl(r,p),

where V (r) and V nl(r,p) are the local and nonlocal parts,
respectively. The argument (r,p) is equivalent to the explicit
(r,r′) nonlocal notation [46]. In case of a local potential, i.e.,
V = V (r), like that of all-electron schemes, we simply omit
the contribution of V nl(r,p) from the results that we have
derived.

It is well known that the use of the LDA leads to an
underestimation of the band gap. A standard procedure to
correct for this is to use the “scissors approximation,” where the
conduction bands are rigidly shifted in energy so that the band
gap corresponds to the accepted experimental electronic band
gap [34–36]. This is often in fairly good agreement with the
GW band gap based on a more sophisticated calculation [49].
The LDA wave functions are used since they produce band
structures with dispersion relations similar to those predicted

by the GW . Mathematically, the scissors (nonlocal) operator S

is added to the unperturbed or unscissored Hamiltonian H LDA
0 ,

H�
0 (r,p) = H LDA

0 (r,p) + S(r,p),

where

S(r,p) = ��
∑

n

∫
d3k(1 − fn)|nk〉〈nk|, (5)

with �� the rigid (k-independent) energy correction to be
applied. The unscissored and scissored Hamiltonians satisfy

H LDA
0 (r,p)ψnk(r) = �ωLDA

n (k)ψnk(r),

H�
0 (r,p)ψnk(r) = �ω�

n (k)ψnk(r),

where the scissor-shifted energies ω�
n (k) are given by

ω�
n (k) = ωLDA

n (k) + (1 − fn)�.

We emphasize that the scissored and unscissored Hamilto-
nian have the same eigenfunctions, where ψnk(r) = 〈r|nk〉 =
eik·runk(r), are the real-space representations of the Bloch
states |nk〉 labeled by the band index n and the crystal
momentum k, and unk(r) are cell periodic.

B. Length gauge formalism

According to Ref. [46], we first start with the interaction
Hamiltonian expressed in the velocity gauge, containing
the nonlocal parts V nl(r,p) and S(r,p). Within the dipole
approximation and using a gauge transformation, it can be
transformed into an effective Hamiltonian [50]

HI (t) = −er · E(t). (6)

The treatment of the position operator r for extended Bloch
states is problematic and has been discussed in Refs. [51,52].
Following Ref. [48], we take the matrix elements of Eq. (2)
with the HI (t) of Eq. (6), and we obtain (ρ̃(1)(t))nm =
Bb

nmEb(ω)ei(ω�
nm−ω̃)t , with

Bb
nm = e

�

fmnr
b
nm

ω�
nm − ω̃

, (7)

and

(ρ̃(2)(t))nm = e

i�

1

ω�
nm − 2ω̃

×
[
i
∑

q

(
rb
nqB

c
qm − Bc

nqr
b
qm

) − (
Bc

nm

)
;kb

]

×Eb(ω)Ec(ω)ei(ω�
nm−2ω̃)t . (8)

The position operator r is split into the intraband (ri) and
interband (re) parts, where r = ri + re. For re, one uses

〈nk|re|mk′〉 = (1 − δnm)δ(k − k′)ξnm(k), (9)

such that re,nm = 0 for n = m. From Eq. (3) with H0 → H�
0 ,

we obtain

re,nm(k) = ξnm(k) ≡ rnm(k) = v�
nm(k)

iω�
nm(k)

, n /∈ Dm, (10)

where we defined ω�
nm(k) ≡ ω�

n (k) − ω�
m(k), and Dm are all

the possible degenerate m-states. For the intraband part, ri only
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appears in commutators during the derivation of the optical
response. We use [28]

〈nk|[ri ,O]|mk′〉 = iδ(k − k′)(Onm);k, (11)

where

(Onm);k = ∇kOnm(k) − iOnm(k)(ξnn(k) − ξmm(k)) (12)

is the generalized derivative of the operator O. The vectors
ξnn(k) are defined in Ref. [28] though they do not need to be
calculated explicitly in what follows.

Before continuing, we derive a key result for the length
gauge formulation. Again, using H�

0 in Eq. (3), we obtain

v� = v + vnl + vS = vLDA + vS, (13)

where we have defined

v = p
me

,

vnl = 1

i�
[r,V nl], (14)

vS = 1

i�
[r,S],

vLDA = v + vnl,

and using [ra,pb] = i�δab, where δab is the Kronecker delta.
Using Eq. (5), we obtain

vS
nm = i�fmnrnm, (15)

with fnm ≡ fn − fm, where we see that vS
nn = 0. From

Eqs. (10) and (13), it follows that

rnm(k) = v�
nm(k)

iω�
nm(k)

= vLDA
nm (k)

iωLDA
nm (k)

, n /∈ Dm. (16)

The matrix elements of rnm(k) are identical using either the
LDA or scissored Hamiltonian, thus negating the need to
label them. Of course, it is more convenient to calculate
them through vLDA

nm (k), which includes only the contribution
of vnl

nm(k). These can be readily calculated for fully separable
nonlocal pseudopotentials in the Kleinman-Bylander form
[53–56]. The advantage of using the electron density operator
along with the length gauge formalism for calculating linear
and nonlinear optical responses, for the scissored Hamiltonian,
resides in the ease with which the scissors operator can be
introduced into the calculation by simply using the unscissored
LDA Hamiltonian, H LDA

0 , for the unperturbed system with
−er · E(t) as the interaction. We stress that within the length
gauge, we need only replace ωLDA

n with ω�
n at the end of the

derivation to obtain the scissored results for any susceptibility
expression, whether linear or nonlinear [38].

We have used the fact that for a cold semiconductor
∂fn/∂k = 0 and thus the intraband contribution to the linear
term vanishes identically. Note that the indices in Eq. (8) are
all different from each other. This is due to the fnm factor in
Eq. (7), and therefore Ba

nn = 0. The dependence on k of all
quantities is implicitly understood from this point forward.

C. Layered current density

The approach we use to study the surface of a semi-infinite
semiconductor crystal is as follows. Instead of using a semi-

FIG. 1. (Color online) A sketch of the supercell. The atomic slab
corresponds to the circles representing the atoms of the system.

infinite system, we replace it by a supercell that consists of a
finite slab of atomic layers and a vacuum region (see Fig. 1).
This supercell is repeated to form a full three-dimensional
crystalline structure. The slab itself consists of front, back,
and subsurface regions, and in between these a region that is
equivalent to the bulk of the system. In general, the surface
of a crystal reconstructs or relaxes as the atoms move to find
equilibrium positions. This is due to the fact that the otherwise
balanced forces are disrupted when the surface atoms do not
find their partner atoms that are now absent at the slab surface.
To take the reconstruction or relaxation into account, we take
“surface” to mean the true surface of the first layer of atoms and
some of the atomic sublayers adjacent to it. Since the front and
the back surfaces of the slab are usually identical the total slab
is centrosymmetric. This would imply that χ slab,abc = 0, so we
must find a scheme in order to have a finite χ abc representative
of the surface. Even if the front and back surfaces of the slab are
different, breaking the centrosymmetry and therefore giving an
overall χ slab,abc 
= 0; we still need a procedure to extract the
front surface χf,abc and the back surface χb,abc from the slab
susceptibility. We have omitted the frequency dependence of
χ abc for convenience of notation.

A convenient way to accomplish the separation of the SH
signal of either surface is to introduce a “cut function” C(z),
which is usually taken to be unity over one half of the slab
and zero over the other half [40]. In this case, C(z) will give
the contribution of the side of the slab for which C(z) = 1.
As was done for the linear response [57], we can generalize
this simple choice for C(z) by a top-hat cut function C�(z) that
selects a given layer,

C�(z) = �
(
z − z� + �b

�

)
�

(
z� − z + �

f

�

)
, (17)
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where � is the Heaviside function. Here, �
f/b

� is the distance
that the �th layer extends towards the front (f ) or back (b)
from its z� position. We take z� to be at the center of an atom
that belongs to layer �, so the previous equation would give the
�th atomic-layer contribution to the nonlinear optical response.
�

f

� + �b
� is the thickness of layer � (see Fig. 1).

To introduce the cut function C(z) in the calculation of
χ abc, we start from the operator for the electron current, j(r) =
e
2 (v�|r〉〈r| + |r〉〈r|v�), that leads to

j(N)(r,t) = Tr(j(r)ρ(N)(t)) =
∫

dk3

8π3

∑
nm

ρ(N)
nm (k; t)jmn(k; r),

(18)

where

jmn(k; r) = e

2
(〈mk|v�|r〉〈r|nk〉 + 〈mk|r〉〈r|v� |nk〉). (19)

Integrating the microscopic current j(r,t) over the entire slab
gives the averaged microscopic current density, J(t). If we want
the contribution from only one region of the unit cell towards
the total current, we can integrate j(r,t) over the desired region.
Then the contribution to the current density from the chosen
region of the slab is given by

1

A

∫
d3r C(z) J(N)(r,t) ≡ J (N)(t),

where J (N)(t) is the N th-order current induced in the region
specified by C(z). Therefore we define

eV�
mn(k) ≡

∫
d3r C(z) jmn(k; r), (20)

to write the Fourier transform of Eq. (18) as

J (N)(2ω) = e

A

∫
dk3

8π3

∑
mn

V�
mn(k)ρ(N)

nm (k; 2ω), (21)

that gives the induced microscopic current of the chosen
region, to order N in the external perturbation. From Eqs. (20)
and (19), we obtain

V�
mn(k) = 1

2

∫
d3r C(z)[〈mk|v�|r〉〈r|nk〉

+ 〈mk|r〉〈r|v� |nk〉]

= 1

2

∫
d3r C(z)[ψnk(r)v�∗ψ∗

mk(r)

+ ψ∗
mk(r)v�ψnk(r)]

=
∫

d3r ψ∗
mk(r)

[C(z)v� + v�C(z)

2

]
ψnk(r)

=
∫

d3r ψ∗
mk(r)V�ψnk(r),

where, we used the hermitian property of v� and defined

V� = C(z)v� + v�C(z)

2
.

We see that the replacement

V → V = C(z)V + VC(z)

2
(22)

is all that is needed to change any of the electron velocity
operators V to the new velocity operator V that implicitly
takes into account the contribution of the region of the slab
given by C(z). We note that this modified operator is hermitian
as it should [58]. The operator V could be any of those given
by Eq. (13), thus

V� = VLDA + VS,

VLDA = V + Vnl.

To calculate V�
nm(k) we calculate the matrix elements of

VLDA and VS (separately) according to the expressions of
Appendices A 2 and A 4. If not stated differently, calligraphic
letters correspond to layer quantities.

To limit the SHG response to one surface, Eq. (22) for V
was proposed in Ref. [40] and later used in Refs. [18,42,44,45].
In this paper, we formally introduce the cut function C(z)
for the second-harmonic optical response of semiconductor
surfaces, from an average of the second-order polarization
over the region of interest.

Using J = dP/dt and Eq. (21), we obtain the SH
polarization of a given region as

P (2)(2ω) = ie

2Aω̃

∫
dk3

8π3

∑
mn

V�
mn(k)ρ(2)

nm(k; 2ω), (23)

and using Eqs. (4) and (8) leads to

χ abc(−2ω; ω,ω)

= e2

2A�ω̃

∫
dk3

8π3

∑
mn

V�,a
mn (k)

ω�
nmk − 2ω̃

[
−(

Bc
nm(k,ω)

)
;kb

+ i
∑

q

(
rb
nqB

c
qm(k,ω) − Bc

nq(k,ω)rb
qm

) ]
, (24)

which gives the susceptibility χ abc(−2ω; ω,ω) of the layers
of the slab specified by C(z). We mention that the units of
χ abc(−2ω; ω,ω) are m2/V, as they should be for a surface SH
susceptibility. Using Eq. (7), we split this equation into two
contributions from the first and second terms on the right-hand
side of Eq. (24):

χ abc
i (−2ω; ω,ω) = − e3

A�22ω̃

∫
dk3

8π3

×
∑
mn

V�,a
mn

ω�
nm − 2ω̃

(
fmnr

b
nm

ω�
nm − ω̃

)
;kc

, (25)

related to intraband transitions, and

χ abc
e (−2ω; ω,ω) = ie3

A�22ω̃

∫
dk3

8π3

∑
qmn

V�,a
mn

ω�
nm − 2ω̃

×
(

rc
nqr

b
qmfmq

ω�
qm − ω̃

− rb
nqr

c
qmfqn

ω�
nq − ω̃

)
, (26)

related to interband transitions. The generalized derivative in
Eq. (25) is dealt with by the chain rule(

fmnr
b
nm

ω�
nm − ω̃

)
;kc

= fmn

ω�
nm − ω̃

(
rb
nm

)
;kc − fmnr

b
nm�c

nm(
ω�

nm − ω̃
)2 , (27)
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where substituting H�
0 into Eq. (11) and then Eq. (16), we obtain(

ω�
nm

)
;ka = (

ωLDA
nm

)
;ka = vLDA,a

nn − vLDA,a
mm ≡ �a

nm.

The apparent divergence as ω̃ → 0 in Eqs. (25) and (26), is removed by a partial fraction expansion over ω̃. Using time-reversal
symmetry, an integration by parts to remove the square in the denominator of the second term of Eq. (27), and taking the limit
of η → 0, we obtain the following expressions for the imaginary parts of Eqs. (25) and (26),

Im
[
χ abc

e,ω

] = π |e|3
2�2

∫
dk3

8π3

∑
vc

∑
q 
=(v,c)

1

ω�
cv

[
Im

[
V�,a

qc

{
rb
cvr

c
vq

}]
(
2ω�

cv − ω�
cq

) − Im
[
V�,a

vq

{
rc
qcr

b
cv

}]
(
2ω�

cv − ω�
qv

)
]

δ
(
ω�

cv − ω
)
, (28a)

Im
[
χ abc

i,ω

] = π |e|3
2�2

∫
dk3

8π3

∑
cv

1(
ω�

cv

)2

[
Re

[{
rb
cv

(
V�,a

vc

)
;kc

}]
+ Re

[
V�,a

vc

{
rb
cv�

c
cv

}]
ω�

cv

]
δ
(
ω�

cv − ω
)
, (28b)

Im
[
χ abc

e,2ω

] = −π |e|3
2�2

∫
dk3

8π3

∑
vc

4

ω�
cv

⎡
⎣∑

v′ 
=v

Im
[
V�,a

vc

{
rb
cv′r

c
v′v

}]
2ω�

cv′ − ω�
cv

−
∑
c′ 
=c

Im
[
V�,a

vc

{
rc
cc′r

b
c′v

}]
2ω�

c′v − ω�
cv

⎤
⎦ δ

(
ω�

cv − 2ω
)
, (28c)

Im
[
χ abc

i,2ω

] = π |e|3
2�2

∫
dk3

8π3

∑
vc

4(
ω�

cv

)2

[
Re

[
V�,a

vc

{
(rb

cv

)
;kc

}] − 2Re
[
V�,a

vc

{
rb
cv�

c
cv

}]
ω�

cv

]
δ(ω�

cv − 2ω), (28d)

where we have split the interband and intraband 1ω and 2ω

contributions and supressed the ω arguments for convenience
of notation. The factor of 2 for spin degeneracy is not
included in Eq. (28). The real part of each contribution can
be obtained through a Kramers-Kronig transformation [59]
and χ abc = χ abc

e,ω + χ abc
e,2ω + χ abc

i,ω + χ abc
i,2ω. To fulfill the required

intrinsic permutation symmetry, the {} notation symmetrizes
the bc Cartesian indices, i.e., {ubsc} = (ubsc + ucsb)/2, and
thus χ abc = χ acb. The full expressions for χ abc(−2ω; ω,ω),
along with the various quantities involved in Eq. (28) are
given in the Appendix A. We mention that if we take C(z) = 1
through out, the layered matrix elements V�

nm become standard
bulk-like v�

nm matrix elements. We mention that in this case,
Eq. (28) is equivalent to the expressions of Ref. [39], valid for
bulk semiconductors.

Finally, we could also calculate the nonlinear surface
susceptibility as

χ(−2ω; ω,ω) =
∑
{�}

χ �(−2ω; ω,ω), (29)

where � would denote a particular layer chosen through C�(z)
of Eq. (17) and {�} is meant to be a chosen set of layers. For
instance, one can take a single layer encompassing half of the
slab, or take each atomic layer individually to the middle of the
slab. For the first case, there is a single summand in Eq. (29).
For the second case, there is a sum from � = 1, denoting the
first layer right at the surface, to � = N , denoting the layer at
the middle of the slab that behaves like a bulk layer. We remark
that the value of N is not universal and the slab needs to have
enough atomic layers in order to give converged results for
χ (−2ω; ω,ω). We can use Eq. (29) for either the front or the
back surface.

III. RESULTS

In this section, we present a relevant test case to check the
consistency of our approach. We have selected a clean Si(001)
surface with a 2 × 1 surface reconstruction. The slab for such a

surface could be chosen to be centrosymmetric by creating the
front and back surfaces with the same 2 × 1 reconstruction.
However, we choose to terminate one of the surfaces with
hydrogen producing an ideal terminated bulk Si surface. The
H atoms simply saturate the dangling bonds of the bulklike Si
atoms at the surface, as seen in Fig. 2. We take the z coordinate
pointing out of the surface and the x coordinate along the
crystallographic [011] direction is parallel to the dimmers.
The idea behind this slab configuration is that the crystalline
symmetry of the H terminated surface imposes that χxxx

H = 0.
The 2 × 1 surface has no such restrictions, so χxxx

2×1 
= 0. This

Si(001)2 × 1 reconstruction

χxxx
2×1 �= 0

H-terminated ⇒ χxxx
H = 0

C�(z) = 1

C�(z) = 0

FIG. 2. (Color online) The slab shows a clean Si(001)2 × 1 front
surface with an ideal terminated Si bulk back surface. The dangling
bonds are H (small balls) saturated. This image depicts 12 Si atomic
layers with one H atomic layer.
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is due to the fact that along the y direction there is a mirror
plane for the H-saturated surface, whereas for the 2 × 1 surface
this mirror is lost as the dimers are asymmetric along x. Thus,
calculating χxxx for the full slab, or the half-slab containing
the 2 × 1 surface [60] should yield the same result since the
contribution from the H saturated surface is zero regardless.
We must check that the following relationship is satisfied for
this particular slab:

χxxx
half−slab(−2ω; ω,ω) = χxxx

full−slab(−2ω; ω,ω),

where χxxx
half−slab(−2ω; ω,ω) is calculated using C(z) = 1 from

the upper half containing the 2 × 1 surface reconstruction, as
seen in Fig. 2, and χxxx

full−slab(−2ω; ω,ω) is calculated using
C(z) = 1 through the full slab. We show the results for this
comparison in the remainder of this section. Also, we checked
that for the dihydride surface χxxx

half−slab(−2ω; ω,ω) = 0.
The self-consistent ground state and the Kohn-Sham states

were calculated in the DFT-LDA framework using the plane-
wave ABINIT code [61]. We used Troullier-Martins pseudopo-
tentials [62] that are fully separable nonlocal pseudopotentials
in the Kleinman-Bylander form [55]. The contribution of vnl

and Vnl to Eq. (28) is carried out using the DP code [63].
The surfaces have been studied with the experimental lattice
constant of 5.43 Å. Structural optimizations were performed
with the ABINIT code [61]. The geometry optimization has been
carried out in slabs of 12 atomic layers where the central four
layers where fixed at the bulk positions. The structures were
relaxed until the Cartesian force components were less than
5 meV/Å. The geometry optimization for the clean surface
gives a dimer buckling of 0.721 Å, and a dimer length of
2.301 Å. For the Si(001)1 × 1:2H dihydride surface, we have
obtained a Si-H bond distance of 1.48 Å. This results are
in good agreement with previous theoretical studies [57,64].
The vacuum size is equivalent to one quarter the size of the
slab, avoiding the effects produced by possible wave-function
tunneling from the contiguous surfaces of the full crystal
formed by the repeated supercell scheme [57].

Spin-orbit, local field, and electron-hole attraction [30]
effects on the SHG process are all neglected. Although
these are important factors in the optical response of a
semiconductor, their efficient calculation is still theoretically
and numerically challenging and under debate. This merits
further study but is beyond the scope of this paper. For a given
slab size, we find the converged spectra to obtain the relevant
parameters. The most important of these are: an energy cutoff
of 10 Ha for the 16, 24, and 32 layered slabs and 13 Ha for
the 40 layer slab, an equal number of conduction and valence
bands, and a set of 244 k points. The k points are used for
the linear analytic tetrahedron method for evaluating the 3D
Brillouin-zone (BZ) integrals where special care was taken
to examine the double resonances of Eq. (28) [38]. Note that
the Brillouin zone for the slab geometry collapses to a 2D
zone, with only one k point along the z axis. All spectra were
calculated with a Gaussian smearing of 0.15 eV.

We must evaluate T ab
nm = (i/�)[rb,vnl,a]nm in order to

obtain Eqs. (A4) and (A7), which are required for Eq. (28).
Computing second-order derivatives is required thus making
the numerical procedure very time consuming. This adds sig-
nificantly to the already lengthy time needed for the calculation
of the vnl contribution that is proportional only to the first order
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1.6
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|(

10
6 ×

p
m

2 /
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)
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without vnl and Δ = 0 eV

16-layers
24-layers
32-layers
40-layers

FIG. 3. (Color online) |χxxx
half−slab| vs �ω for the slab with 16, 24,

32, and 40 atomic Si layers. The front surface is in a clean 2 × 1
reconstruction and the back surface is an ideal terminated bulk H-
saturated dangling bonds (see Fig. 2).

derivatives. Memory requirements are also increased for both
vnl and [r,vnl]. However, the contribution from [r,vnl] is very
small [50] and therefore we neglect it in this work.

A. Full-slab results

In Fig. 3, we show |χxxx
full−slab| for the slab with 16, 24, 32,

and 40 Si atomic layers, without the contribution of vnl and
with no scissors correction. Since the clean Si(001) surface
is 2 × 1, there are two atoms per atomic layer, thus the total
number of atoms per slab is twice the number of atomic layers
of the slab. In making the slabs larger, we add steps of 8
layers of bulk-like atomic positions. We note that the response
differs substantially for 16 and 24 layers but is quite similar
for 32 and 40 layers. As explained above, the calculation of
the vnl contribution is computationally expensive. A good
compromise between the accuracy in the convergence of
χxxx

full−slab as a function of the number of layers in the slab,
and the computational expense is to consider the slab with 32
Si atomic layers as an accurate representation of our system.

B. Half slab versus full slab

In Fig. 4, we compare χxxx
half−slab versus χxxx

full−slab for the
four different possibilities between including or not including
the effects of vnl or the scissors correction ��. For these
results, we chose �� = 0.5 eV, that is, the GW gap reported in
Refs. [65,66]. This is justified by the fact that the surface states
of the clean Si(001) surface are rigidly shifted and maintain
their dispersion relation with respect to LDA according to the
GW calculations of Ref. [65]. We see that for all four instances
the difference between responses is quite small. Indeed, when
the value |χxxx | is large, the difference between the two is very
small; when the value is small the difference increases only
slightly, but the spectra is so close to zero that it is negligible.
These differences would decrease as the number of atomic
layers increases. We remark that 32 layers in the slab is more
than enough to confirm that the extraction of the surface
second-harmonic susceptibility from the 2 × 1 surface is
readily possible using the formalism contained in Eq. (28). We
have confirmed that for the dihydride surface |χxxx

half−slab| ≈ 0
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FIG. 4. (Color online) χxxx
half−slab and χxxx

full−slab vs �ω for a slab with
32 atomic Si layers plus one H layer.

(not shown). This confirms the validity of our theory and is the
main result of this paper; through the proposed layer formalism
we can calculate the surface SH χ abc(−2ω; ω,ω) including
the contribution of the nonlocal part of the pseudopotentials
and the part of the many-body effects through the scissors
correction. Our scheme should work for any slab.

C. Results for χ xxx
2×1 (−2ω; ω,ω)

We proceed to explain some of the features seen in
|χxxx

2×1| that, as explained above, are obtained by calculating
|χxxx

half−slab|. First, from Fig. 4, we note a series of resonances
that derive from 1ω and 2ω terms in Eq. (28). Notice that the
2ω resonances start below Eg/2 where Eg is the band gap
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FIG. 5. (Color online) χxxx
2×1 vs �ω for a slab with 32 atomic Si

layers plus one H layer, with and without the contribution from vnl.

(0.53 eV for LDA and 1.03 eV if the scissor is used with
�� = 0.5 eV). These resonances come from the electronic
states of the 2 × 1 surface, that lie inside the bulk band gap of Si
and are the well known electronic surface states [65]. In Fig. 5,
we see that the effect of vnl reduces the value of |χxxx

2×1| by 15%–
20% showing the importance of this contribution for a correct
calculation of SSHG, in agreement with the analysis for bulk
semiconductors [47]. However, the inclusion of vnl does not
changes the spectral shape of |χxxx

2×1|; this also can be confirmed
from the cases of zero scissors correction from Fig. 4.

To see the effect of the scissors correction, we take two
different finite values for ��. The first one with a value of
�� = 0.5 eV, used in the above results, is the “average” GW

gap taken from Ref. [65] that is in agreement with Ref. [66].
The second one with a value of �� = 0.63 eV is the “average”
gap taken from Ref. [67], where more k points in the Brillouin
zone were used to calculate its GW value. From Fig. 6, we
note that the scissors correction shifts the spectra from its LDA
value to higher energies as expected. However, contrary to the
case of linear optics [39] the shift introduced by the scissors
correction is not rigid, as pointed out in Ref. [38]. This is
because the second-harmonic optical response mixes 1ω and
2ω transitions [see Eq. (28)], and accounts for the nonrigid
shift. The reduction of the spectral strength is in agreement
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FIG. 6. (Color online) χxxx
2×1 vs �ω for a slab with 32 atomic Si

layers plus one H layer, for two different values of the scissors
correction ��.
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with previous calculations for bulk systems [38,68,69]. When
we compare |χxxx

2×1| for the two finite values of ��, we see
that the first two peaks are almost rigidly shifted with a small
difference in height while the rest of the peaks are modified
substantially. This behavior comes from the fact that the first
two peaks are almost exclusively related to the 2ω resonances
of Eq. (28). The other peaks are a combination of 1ω and
2ω resonances and yield a more varied spectrum. We mention
that for large gap materials, the 1ω and 2ω would be split
showing a small interference effect, but still the 2ω would
strongly depend on the surface states. This way we see that
small changes in the value of the scissors shift can in general
affect the SSH susceptibility spectrum quite dramatically. In
Ref. [70], the authors already remarked that nonlinear optical
response of bulk materials is more influenced by the electronic
structure of the material than the linear case. In the case of
semiconducting surfaces, the problem is even more intricate
due to the presence of electronic surface states. The high
sensitivity of SSHG to the energy position of surface states, as
seen in Fig. 6, makes SSHG a good benchmark spectroscopical
tool for testing the validity of the inclusion of many-body
effects and, in particular, the quasiparticle correction to the
electronic states.

Although local fields are neglected they should, in principle,
be small parallel to the interface as the electric field is
continuous. So, we would expect that the xxx component
of χ (−2ω; ω,ω) would have a small influence from the local
fields. Also, the excitonic effects ought to be explored, but their
efficient calculation is theoretically and numerically challeng-
ing [30] and beyond the scope of this paper. Unfortunately,
the experimental measurement of the xxx component of
χ (−2ω; ω,ω) is not possible as the SH radiated intensity would
be proportional not only to this component but also to the
other components of χ(−2ω; ω,ω). However, in a forthcoming
publication we will present a study of SSHG from several Si
surfaces with comparison to experimental results.

IV. CONCLUSIONS

We have presented a formulation to calculate the surface
second-harmonic (SSH) susceptibility tensor χ (−2ω; ω,ω),
using the length gauge formalism and within the inde-
pendent particle approximation (IPA). It includes on equal
footing: (i) the scissors correction, (ii) the contribution of
the nonlocal part of the pseudopotentials, and (iii) the cut

function. We have used a Si(001)2 × 1 surface to confirm
that our scheme correctly obtains the surface response as
we confirm that χxxx

half−slab(−2ω; ω,ω) ≈ χxxx
full−slab(−2ω; ω,ω).

Although one can in principle increase the number of atomic
layers, k points, etc., to improve even further on the similarity
of the half-slab and full-slab results, we have chosen a
good compromise between accuracy and the burden and
time of the computations. We describe the effect of the
independent inclusion of the three effects mentioned above
in the calculation of χ(−2ω; ω,ω). The scissors correction
shifts the spectrum to higher energies though the shifting is
not rigid and mixes the 1ω and 2ω resonances, and has a
strong influence in the line shape, as for the case of bulk
semiconductors [68,69,71]. The cut function allows us to
extract unequivocally χxxx

2×1(−2ω; ω,ω). The effects of the
nonlocal part of the pseudopotentials keeps the same line-
shape of |χxxx

2×1(−2ω; ω,ω)|, but reduces the value of by 15%–
20%. The xxx component of χ2×1(−2ω; ω,ω), can not be
experimentally isolated, however, in a forthcoming publication
we will compare our formulation against experimental results.
We have neglected local field and excitonic effects. Although
these are important factors in the optical response of a
semiconductor, their efficient calculation is theoretically and
numerically challenging and still under debate [30]. This
merits further study but is beyond the scope of this paper.
Nevertheless, the inclusion of aforementioned contributions
in our scheme opens the unprecedented possibility to study
surface SHG with more versatility and more accurate results.
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APPENDIX

We give explicit expressions for the quantities used in the
evaluation of Eq. (28); when appropriate, some intermediate
steps are given for their derivation.

1. Expressions for χ abc(−2ω; ω,ω)

Omitting the frequency dependence for convenience of
notation, χ abc = χ abc

e,ω + χ abc
i,ω + χ abc

e,2ω + χ abc
i,2ω, where

χ abc
e,ω = |e|3

2�2

∫
dk3

8π3

∑
l 
=mn

fmn

ω�
nm

[
Im

[
V�,a

ml

{
rc
lnr

b
nm

}]
2ω�

nm − ω�
lm

− Im
[
V�,a

ln

{
rb
nmrc

ml

}]
2ω�

nm − ω�
nl

]
1

ω�
nm − ω̃

,

χ abc
i,ω = |e|3

2�2

∫
dk3

8π3

∑
mn

fmn(
ω�

nm

)2

[
Re

[
rb
nm

(
V�,a

mn

)
;kc

] + Re
[
V�,a

mn rb
nm

]
�c

nm

ω�
nm

]
1

ω�
nm − ω̃

,

χ abc
e,2ω = |e|3

2�2

∫
dk3

8π3

∑
l 
=mn

4

[
fln Im

[
V�,a

mn

{
rb
nlr

c
lm

}]
2ω�

nl − ω�
nm

− fml Im
[
V�,a

mn

{
rc
nlr

b
lm

}]
2ω�

lm − ω�
nm

]
1

ω�
nm − 2ω̃

,

χ abc
i,2ω = |e|3

2�2

∫
dk3

8π3

∑
mn

4fmn(
ω�

nm

)2

[
Re

[
V�,a

mn

(
rb
nm

)
;kc

] − 2 Re
[
V�,a

mn rb
nm

]
�c

nm

ω�
nm

]
1

ω�
nm − 2ω̃

.
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2. Expressions for Vnm(k) and Cnm(k)

Expanding the wave function in plane waves, we obtain

ψnk(r) =
∑

G

Ank(G)ei(k+G)·r,

where {G} are the reciprocal basis vectors satisfying eiR·G = 1,
with {R} the translation vectors in real space, and Ank(G) the
expansion coefficients. Using mev = p = −i�∇ into Eq. (22),
we obtain [57]

Vnm(k) = �

2me

∑
G,G′

A∗
nk(G′)Amk(G)(2k + G + G′)

× δG‖G′
‖f (G⊥ − G′

⊥), (A1)

where

f (G⊥) = 1

L

∫
C(z)eiG⊥zdz,

with f ∗(G⊥) = f (−G⊥), and L is the length of the supercell.
The reciprocal lattice vectors G are decomposed into compo-
nents parallel (G‖), and perpendicular (G⊥ẑ) to the surface,
so that G = G‖ + G⊥ẑ. The double summation over the G
vectors can be calculated efficiently by creating a pointer array
to identify all the plane-wave coefficients associated with the
same G‖.

Likewise we obtain that

Cnm(k) =
∑
G,G′

A∗
nk(G′)Amk(G)δG‖G′

‖f (G⊥ − G′
⊥). (A2)

If C(z) = 1, then f (G⊥) = δG⊥0 and we obtain the full-
slab/bulk values, vnm(k) and Cnm(k) = δnm, from Eqs. (A1)
and (A2).

3. Expressions for (VLDA,a
nm );kb , (ra

nm);kb , and (Cnm);k

Using Eqs. (9), (11), (12), and defining T ab ≡
[rb,VLDA,a] ≡ [rb,Va], one can show that(

VLDA,a
nm

)
;kb = T ab

nm + i
∑

q

(
rb
nqVLDA,a

qm − VLDA,a
nq rb

qm

)
+ irb

nm�a
mn, (A3)

where

�a
mn = VLDA,a

nn − VLDA,a
mm ,

(A4)
T ab

nm = �

me

δabCnm − �

∑
q

Lab
nqCqm,

and

Lab
nm = i

�
[rb,vnl,a]nm. (A5)

The matrix elements Lab
nm are small as compared to the other

terms, thus we neglect it throwout this work [50]. Notice that
(vLDA,a

nm );kb is obtained from Eq. (A3) by taking C(z) = 1 or
Cnm = δnm.

To obtain (ra
nm);kb , we use Eq. (16) to write (ra

nm);kb =
(vLDA,a

nm /iωLDA
nm );kb and simply apply the chain rule,

(
ra
nm

)
;kb = T ab

nm + rb
nm�a

mn + ra
nm�b

mn

ωLDA
nm

+ i

ωLDA
nm

∑
q

(
ωLDA

qm rb
nqr

a
qm − ωLDA

nq ra
nqr

b
qm

)
, (A6)

where

�a
mn = vLDA,a

nn − vLDA,a
mm

and

T ab
nm = �

me

δabδnm − �Lab
nm. (A7)

Equation (A6) generalizes the usual expression of (ra
nm);kb for

a local Hamiltonian [28,29,38,39] to the case of a nonlocal
Hamiltonian. Note that the layered term T ab

nm reduces to T ab
nm

for the full-slab/bulk case.
Again, we use Eqs. (9), (11), and (12), along with

[r,F (r)] = 0, valid for and any function F (r), to obtain

(Cnm);k = i
∑

q

(rnqCqm − Cnqrqm) + irnm(Cmm − Cnn),

where we remind the reader that rnm is calculated through
Eq. (16) for LDA.

4. Expressions for V S
nm and

(
V S

nm

)
;k

From Eq. (22),

VS
nm = 1

2

∑
q

(
vS

nqCqm + CnqvS
qm

)
, (A8)

where
∑

q |qk〉〈qk| = 1 was used and vS
nm is given in Eq. (15).

Taking the generalized derivative of Eq. (A8) and applying the
chain rule, we obtain(

VS
nm

)
;k = 1

2

∑
q

((
vS

nq

)
;kCqm + vS

nq(Cqm);k

+ (Cnq);kvS
qm + Cnq

(
vS

qm

)
;k

)
.

Again, from Eq. (15),(
vS

nm

)
;k = i�fmn(rnm);k,

a result that is in agreement with Eq. A(6) of Ref. [39].
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[65] M. Rohlfing, P. Krüger, and J. Pollmann, Phys. Rev. B 52, 1905

(1995).
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