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Hydrodynamic description of trapped ultracold paraexcitons in Cu2O
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In this paper we present a theoretical model to describe the dynamics of paraexcitons in cuprous oxide at
ultralow temperatures inside potential traps. A possible condensate is described by a generalized Gross-Pitaevskii
equation. The noncondensed excitons evolve under a set of hydrodynamic equations, which were derived from
a quantum Boltzmann equation. The model takes into account the finite lifetime of the excitons, the pump laser,
the Auger-like two-body decay, as well as exciton-exciton and exciton-phonon scattering. The numerical results
show the strong influence of the Auger effect on exciton temperatures and densities not only at high pump powers
but also at ultralow temperatures. Furthermore, the excitons do not cool down to very low bath temperatures
(TB � 0.5 K) under continuous wave excitation. We also compare the results of the theoretical model with
experimental data.
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I. INTRODUCTION

The experimental realization of an excitonic Bose-Einstein
condensate (BEC) in a bulk material is a long standing
problem. Initially put forward by Moskalenko [1] and Blatt
et al. [2], the first experiments in excitonic systems were
already carried out over 40 years ago [3]. Signatures of an
excitonic BEC were first found using exciton-polaritons in
microcavities [4–6]. Over the last decade experiments in these
system have generated many interesting results and received a
lot of attention (for an overview see [7]). Another intensively
investigated system are indirect excitons in quantum wells
[8–10], however, claims for an observation of an excitonic
BEC are still under debate [11]. In bulk materials, despite
many efforts from numerous research groups [12–16], no
experiment so far has shown Bose-Einstein condensation of
excitons demonstrating all the required criteria [17]. However,
recent experimental results showed strong evidence for an
excitonic condensate in cuprous oxide (Cu2O) [18]. The long
lifetime and the high binding energy of the excitons make this
material a promising candidate for the realization of a BEC in
a bulk material.

In typical experiments, excitons created by a pump laser are
collected in stress induced potential traps. Using a 3He/4He
dilution cryostate, the crystal specimen can be cooled to tem-
peratures of the order of 100 mK [18,19]. The excitons in turn
are cooled via interaction with the crystal lattice (phonons).
Since excitons only have a finite lifetime and can undergo
an Auger-like two-body decay, they might not reach the lattice
temperature. Experimentally the exciton temperature is usually
determined by fitting the decay luminescence spectrum with
a Bose distribution. This spectral temperature TS typically
does not agree with the temperature of the helium bath TB

[16,18], hinting to a nonequilibrium state of the system. To
understand this and other aspects of the recent experimental
results, a theoretical model is needed. In order to identify a
possible condensate in the experimental results, it is especially
important to be able to differentiate between the features of
a quasiequilibrium, a nonequilibrium, and a condensed case.
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Additionally, it would be beneficial to know the parameters
for which the onset of condensation can be expected. In this
paper we aim to develop such a theoretical model and thereby
stimulating further progress in the field.

The situation in the experiments under consideration is
quite complex. The theoretical model has to take into account
the inhomogeneity of the system, the finite lifetime, a possible
condensate, the Auger effect, exciton-exciton (X-X), and
exciton-phonon (X-Ph) collisions. The semiconductor specific
aspects (Auger effect, X-X, and X-Ph collisions) have already
been investigated by different authors [20–22]. However, these
papers only dealt with homogeneous systems. On the other
hand, there is extensive literature on ultracold condensed atoms
in potential traps. Excitons at the densities and temperatures
present in typical experiments can be regarded as a gas of
ultracold bosons. Therefore, extending the theory of ultracold
atoms by taking into account semiconductor specific effects,
should result in a model suitable for the description of trapped
excitons in Cu2O.

The paper is organized as follows: In the next section
we discuss important features of the experiments under
consideration. In the following two sections the theoretical
model is developed and the implementation of the different
processes is explained. In the last section typical numerical
results are shown and first comparisons to experimental data
are made.

II. EXPERIMENTAL BACKGROUND

The experiments in Refs. [16,18] investigate excitons
consisting of a hole in the �+

7 valence band and an electron
in the �+

6 conduction band (so-called yellow series). Since the
valence and the conduction band both are doubly degenerate,
the ground state of this series splits into the nondegener-
ate paraexciton and the triply degenerate orthoexciton. The
different orthoexcitons are labeled according to their spin
projection by (+), (0), and (−). Due to electron-hole exchange
interaction, the paraexcitons are the energetically lowest state
lying 12.12 meV below the orthoexcitons. The paraexcitons
also have a long lifetime of τ = 650 ns [16], making them
the main focus of the experimental efforts. In the experiments
presented in Refs. [16,18], the pump laser initially creates
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orthoexcitons under involvement of a �−
3 phonon, outside of

the trap center. These rapidly convert to paraexcitons via a
phonon assisted process (reported rates are �O-P = 0.2 ns−1

[23] and �O-P = 0.29 ns−1 [22]). The potential trap created by
the stress applied on the specimen is attractive for ortho(+),
ortho(−), and paraexcitons, while being repulsive for or-
tho(0)excitons. The shape of the trap can be approximated by
an isotropic harmonic oscillator potential with its minimum
usually lying 1 to 3 meV below the band gap. The treatment
of such an inhomogeneous three-component Bose gas is
numerically quite cumbersome. As a first approximation we
assume the ortho-para conversion to be almost instantaneous,
taking only the paraexcitons directly into account in our model.

The excitation laser can be run in pulsed or continuous
wave (cw) mode. Under cw excitation, new excitons are
constantly created while others decay. After some time,
both processes will balance out and the system will form
a stationary, nonequilibrium state. However, under pulsed
excitation, no new excitons will be created after the laser
pulse. Therefore, after an initial nonequilibrium phase, the
excitons will reach some kind of quasiequilibrium state.
Their temperature, however, may still be different from the
temperature of the crystal lattice.

III. MODEL

There are various approaches to theoretically describe
ultracold atomic gases in nonequilibrium (for an overview
see, e.g., Ref. [24]). The one most suitable for our purpose
are the Zaremba-Nikuni-Griffin (ZNG) equations. Since these
equations are well established in the literature, we will only
briefly review the most important definitions and assumptions.
A more detailed overview can be found in Ref. [25].

A. ZNG equations

In the ZNG equations, the system is split into a condensed
and a noncondensed part by dividing the Bose-field operator
ψ̂(r,t) into ψ̂(r,t) = �(r,t) + ψ̃(r,t). The condensed phase
is described by the condensate wave function �(r,t) and
the noncondensed (thermal) phase by the fluctuation operator
ψ̃(r,t). The interaction of particles with each other is assumed
to be well described by s-wave scattering with the interaction
strength g.

The dynamics of the condensate is governed by a general-
ized Gross-Pitaevskii equation (GGPE)

i�
∂�(r,t)

∂t
=

[
− �

2∇2

2m
+ Vext(r) + gnc(r,t)

+ 2gñ(r,t) − iR(r,t)
]
�(r,t), (1)

with the condensate density nc(r,t) = |�(r,t)|2, the density
of the thermal particles ñ(r,t) = 〈ψ̃†(r,t)ψ̃(r,t)〉, and the
coupling term R(r,t). The latter is responsible for transferring
particles between the condensed and the noncondensed phase
and will be discussed later. In order to derive Eq. (1), the
anomalous densities m̃(r,t) = 〈ψ̃(r,t)ψ̃(r,t)〉 were neglected.

Using an amplitude and phase representation for the wave
function given by �(r,t) = √

nc(r,t)eiθ(r,t), the condensate

velocity vc(r,t) and the local time-dependent condensate
chemical potential μc(r,t) can be introduced via

vc(r,t) = �

m
∇θ (r,t) ,

μc(r,t) = −�
2∇2√nc(r,t)

2m
√

nc(r,t)
+ Vext(r) (2)

+gnc(r,t) + 2gñ(r,t).

Using the above expressions, the energy of a particle in the
condensate can be written as

εc(r,t) = −�
∂θ (r,t)

∂t
= 1

2
mv2

c(r,t) + μc(r,t). (3)

It should be noted that, to describe the condensate, Griffin et al.
[25] used two coupled equations for nc(r,t) and vc(r,t), which
are equivalent to the GGPE (1).

The evolution of the thermal particles is described by
the equation of motion for the fluctuation operator ψ̃(r,t).
Under the assumption of a slowly varying mean-field poten-
tial U (r,t) = Vext(r) + 2g[nc(r,t) + ñ(r,t)], it is possible to
transform the equation of motion for ψ̃(r,t) into a quantum
Boltzmann equation for the Wigner distribution function
f (p,r,t). The result is given by

∂f (p,r,t)
∂t

+ p
m

· ∇rf (p,r,t) − ∇rU (r,t) · ∇pf (p,r,t)

= ∂f (p,r,t)
∂t

∣∣∣∣
coll.

. (4)

Using the first three moments of this equation, Griffin et al.
[26] also derived a set of hydrodynamic equations describing
the noncondensed particles. In the original ZNG formalism,
the collision term on the right-hand side of Eq. (4) contains
particle-particle collisions only. Collisions involving just
thermal states are described by CX-X, while CXc-X contains
collisions involving condensed and noncondensed states. The
latter term transfers particles into or out of the condensate and
is, therefore, related to the term R(r,t) in the GGPE (1).

In the ZNG equations, the energy dispersion for the noncon-
densed particles is Hartree-Fock-like and, therefore, given by
εp(r,t) = p2/2m + U (r,t). The corresponding results using
a Bogoliubov quasiparticle spectrum can be found in [27].
Since for typical experimental parameters only small or no
condensates are expected, the Hartree-Fock-like dispersion is
a good approximation.

B. Extensions

In order to include semiconductor specific effects, the
collision term is extended to

∂f (p,r,t)
∂t

∣∣∣∣
coll.

= CX-X + CXc-X + CPh + CC-D, (5)

where CPh describes X-Ph collisions and CC-D stands for
processes that can create or destroy excitons. The latter namely
includes the influence of the finite lifetime Cτ , the pump laser
Claser, and the Auger effect CAuger. The X-Ph collision term has
two contributions given by CPh = CX-Ph + CXc-Ph. The term
CX-Ph stands for X-Ph scattering within the thermal phase,
while CXc-Ph represents scattering of excitons into or out of the
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condensate by phonons. In order to stay consistent with the
GGPE (1) the coupling term R(r,t) also needs to be extended
with corresponding terms. This and the explicit form of the
collision terms will be discussed in the next section.

The full numerical solution of the quantum Boltzmann
equation (4) with the collision terms given by Eq. (5) is a
challenging task. As we will discuss in the following, for the
experiments under consideration it is beneficial to rewrite the
Boltzmann equation (4) into a set of hydrodynamic equations.
These are derived by multiplying Eq. (4) with (ϕ0 = 1, ϕ1 = p,
ϕ2 = p2/2m) and integrating over the whole momentum space
[25]. This results in a set of three coupled equations for the
density, momentum density, and kinetic energy density of the
thermal excitons. The quantities are given by

ñ(r,t) =
∫

dp
(2π�)3

f (p,r,t),

mñ(r,t)vn(r,t) =
∫

dp
(2π�)3

pf (p,r,t), (6)

E(r,t) =
∫

dp
(2π�)3

p2

2m
f (p,r,t),

where we have introduced the (normal) velocity vn(r,t) of the
noncondensed excitons.

Collision processes that conserve one or several of these
quantities will not appear in the corresponding hydrodynamic
equation. Since the X-X collision term CX-X conserves particle
number, momentum, and kinetic energy, it will not appear
at all. Therefore, the numerically demanding calculation of
CX-X will not be necessary for evaluating the hydrodynamic
equations.

Besides being coupled to each other, the resulting hydrody-
namic equations will also be connected to the GGPE (1) by the
moments of different collision terms. Additionally, they are in
general not closed since the next higher moment will appear
in the equation for the energy. One possible way of closing
the equations is to assume a partial local equilibrium for the
distribution function f (p,r,t) = f̃p(r,t) given by

f̃p(r,t) = [e[(p−mvn)2/2m+U−μ̃(r,t)]/kBT (r,t) − 1]−1

= [e[p̃2/2m−μ̃eff (r,t)]/kBT (r,t) − 1]−1. (7)

Here kB is Boltzmann’s constant and T (r,t) and μ̃(r,t) are
the space- and time-dependent temperature and chemical
potential. Rewriting the distribution function using the shifted
momentum p̃ = p − mvn and the effective chemical potential
μ̃eff(r,t) = μ̃(r,t) − U (r,t) recovers the simple form of a Bose
distribution. The vanishing of the effective chemical potential
[μ̃eff(r,t) → 0] marks the onset of a possible condensate.

As we have shown in Ref. [28], the X-X and X-Ph collisions
force the momentum distribution function into partial local
equilibrium in less than 1 ns for the experimentally relevant
parameters. On the other hand, the lifetime of the excitons and
the time scales relevant for the drift into the trap center and the
thermalization are usually of the order of several 100 ns. Due
to this separation of time scales, the assumption of partial local
equilibrium is justified after the initial stage of relaxation. The
relaxation into partial local equilibrium, however, has to be
treated separately.

The trap potential is well approximated by an isotropic
harmonic oscillator potential [Vext(r) = αr2]. Therefore, for
our calculations we use spherical symmetry. Even though this
does not match the excitation geometry exactly, the impact
on the physical quantities in the trap center should be limited
since the excitation region is far away from it. The result for
the hydrodynamic equations in quasi-one-dimension is

∂ñ

∂t
+ ∂

∂r
[ñvn]

= �
(0)
Xc-X + �

(0)
Xc-Ph + �

(0)
C-D − 2

r
ñvn,

∂

∂t
[mñvn] + ∂

∂r
[mñv2

n + P̃ ]

(8)

= −ñ
∂U

∂r
− 2

r
mñv2

n + mvc�
(0)
Xc-X + �

(1)
X-Ph + �

(1)
Xc-Ph + �

(1)
C-D,

∂E

∂t
+ ∂

∂r
[(E + P̃ )vn]

= −ñvn

∂U

∂r
+ (εc − U )�(0)

Xc-X − 2

r
(E + P̃ )vn + �

(2)
X-Ph

+�
(2)
Xc-Ph + �

(2)
C-D,

where �(n) stands for the nth moment of the collision term C

given by

�(n) =
∫

dp
(2π�)3

ϕn(p) C. (9)

The local kinetic pressure P̃ (r,t) is given by

P̃ (r,t) = 2

3

∫
dp

(2π�)3

(p − mvn)2

2m
f̃p(r,t). (10)

In order to solve this system of equations, the moments of
the collision terms are needed. These are discussed in the
following section.

IV. COLLISION TERMS

A. Exciton-exciton collisions (CXc-X)

The collision term CXc-X describes collisions between two
excitons which scatter an exciton into or out of the condensate.
Therefore, it is responsible for exchanging excitons between
the condensed and the noncondensed phase. In the hydrody-
namic equations (8) only the zeroth moment of CXc-X appears.
Under the assumption of partial local equilibrium it is given
by [25]

�
(0)
Xc-X = − 2g2nc

(2π )5�
(1 − e−[μ̃−μc− m

2 (vn−vc)2]/kBT )

×
∫

dk1dk2dk3δ (kc + k1 − k2 − k3)

× δ
(
εc + εk1 − εk2 − εk3

)(
1 + f̃k1

)
f̃k2 f̃k3 , (11)

with kc = mvc/�. The corresponding term for the GGPE (1)
reads

RXc-X(r,t) = ��
(0)
Xc-X

2nc(r,t)
. (12)
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B. Exciton-phonon collisions (CPh)

In an unstrained crystal of Cu2O, the yellow 1s paraexcitons
can interact with longitudinal acoustic (LA), but not with
transversal acoustic (TA) phonons. However, when stress is
applied, as in the experiments under consideration, interaction
with either type of phonons is possible. The collision term
CX-Ph for both processes is given by [20]

CX-Ph = − πD2


vs

∫
dk′

(2π )3
|k′ − k|{[fk

(
1 + f Ph

k−k′
)
(1 + fk′)

− (1 + fk)f Ph
k−k′fk′

]
δ(εk − εk′ − �ωk−k′ )

+ [
fkf

Ph
k′−k(1 + fk′) − (1 + fk)

(
1 + f Ph

k′−k

)
fk′

]
× δ(εk − εk′ + �ωk′−k)}, (13)

with the deformation potential D, the crystal density 
 =
6.11 × 103 kg/m3 [20], and the speed of sound vs . The
first (second) term on the right-hand side represent Stokes
(anti-Stokes) scattering, respectively. The phonons are as-
sumed to be in equilibrium at the lattice temperature TPh,
therefore, their distribution function is given by f Ph

k′−k =
[exp(�ωk′−k/kBTPh) − 1]−1 with the phonon energy �ωk′−k =
�vs |k′ − k|.

Applying the integration over all k on CX-Ph to calculate
the moments, allows the exchange of k and k′ in the Stokes
scattering term. This results in a very compact form for all
moments

�
(n)
X-Ph = −πD2


vs

∫
dkdk′

(2π )6
|k′ − k|[ϕn(k) − ϕn(k′)]

× [
fkf

Ph
k′−k(1 + fk′) − (1 + fk)

(
1 + f Ph

k′−k

)
fk′

]
× δ(εk − εk′ + �ωk′−k). (14)

From Eq. (14) it follows directly that �
(0)
X-Ph vanishes (ϕ0 = 1).

The second X-Ph collision term CXc-Ph can also be extracted
from Ref. [20] and has already been given in Ref. [29]. Within
our model its moments read

�
(n)
Xc-Ph = −πD2nc

ρvs

∫
dk

(2π )3
ϕn(k)|kc − k|{[fk

(
1 + f Ph

k−kc

)

− (1 + fk)f Ph
k−kc

]
δ(εk − εc − �ωk−kc

)

+ [
fkf

Ph
kc−k − (1 + fk)

(
1 + f Ph

kc−k

)]
× δ(εk − εc + �ωkc−k)}. (15)

In the system under consideration the corresponding imaginary
part of (15) is typically very small compared to the other
dispersive shift terms in (1) and has been neglected. Therefore,
the term for the GGPE (1) reads

RXc-Ph(r,t) = ��
(0)
Xc-Ph

2nc(r,t)
. (16)

The speeds of sound are given by vLA
s = 4.5 × 103 m/s

and vTA
s = 1.3 × 103 m/s [30]. The deformation potential for

the TA phonons depends on the applied stress and can be
calculated using the method explained in Ref. [28]. In this
paper we use the value DTA = 0.235 eV, which corresponds
to a trap depth of around 2 meV. For the LA phonons we use
the value DLA = 1.68 eV given by Ref. [31].

C. Lifetime (Cτ )

Since the decay of the excitons mainly originates from
nonradiative transitions, the lifetime can be described by a
constant τ . Its collision term is given by Cτ = −f̃p(r,t)/τ .
Therefore, the calculation of the moments is straightforward
and yields

�(0)
τ = −ñ(r,t)/τ,

�(1)
τ = −mñ(r,t)vn(r,t)/τ, (17)

�(2)
τ = −E(r,t)/τ.

For our computations we used the value τ = 650 ns [18]. We
assume the same lifetime for the condensed excitons.

D. Pump laser (Claser)

In order to incorporate new excitons into the system of
Eqs. (8), their relaxation into partial local equilibrium has
to be treated first. We assume that the excitons created by
the laser are at rest and do not gain any velocity during this
initial relaxation. Therefore, we simulate the relaxation into
partial local equilibrium by solving a homogeneous Boltzmann
equation for an initial momentum distribution function at all
relevant points in space. For this we take into account X-X
and X-Ph scattering (see Ref. [28] for details). The initial
energy of the excitons depends on the wavelength of the
laser, the exchange splitting between ortho- and paraexcitons,
and the energy of the phonon emitted during the conversion
process. For the excitation scheme considered here the initial
energy is about 8 meV. Therefore, the initial momentum
distribution function is peaked at the corresponding k value
and normalized to the density of the newly created excitons
nlaser(r,t). Its value can be estimated from the pulse shape and
the fraction of absorbed photons [16]. For our calculations we
assume nlaser(r,t) to be a Gaussian distribution along r with its
maximum at rmax outside the trap center and a width of σ . The
normalization is chosen to reproduce the same rate of exciton
generation as a laser with a given pump power PL would create
in actual experiments.

The relaxation into partial local equilibrium takes no more
than 1 ns. The remaining exciton energy after this initial
relaxation Elaser(r,t) typically corresponds to temperatures
around 4 K. Since we assumed the excitons to be at rest
during this time, the new excitons enter the hydrodynamic
equations with density nlaser(r,t) and energy Elaser(r,t) but with
�

(1)
laser = 0. The moments of Claser are (symbolically) given by

�
(0)
laser = nlaser(r,t),

�
(1)
laser = 0, (18)

�
(2)
laser = Elaser(r,t).

E. Auger effect (CAuger)

The Auger-like two-body decay destroys two excitons,
recombining one and ionizing the other. The resulting electron-
hole pair can rebind to form a high energy exciton. The
transition matrix elements of the dominant terms for the Auger
effect are linear in k [32]. Note that this means that the
condensed excitons should not undergo an Auger-like decay.
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For the thermal excitons we use a k-averaged Auger rate A as
found in experiments [16,33,34]. The destruction of excitons
due to the Auger effect can then be described by the collision
term CD

Auger = −2Añ(r,t)f̃p(r,t) [22]. The calculation of the
moments for this term is straightforward.

For our model we assume that all electron-hole pairs rebind
and that the newly formed excitons are equally distributed
over the four possible exciton states (one para- and three
orthoexcitons). Since ortho(0) excitons are expelled from
the trap, they will not be refed into Eqs. (8). The newly
formed excitons are assumed to be at rest. Their energy
is equivalent to the binding energy of 150 meV. Therefore,
they can emit different optical phonons. Taking this into
account, we calculate their energy after the relaxation into
partial local equilibrium (EAuger) the same way we did for the
excitons created by the pump laser (by solving a homogeneous
Boltzmann equation). The moments are given by

�
(0)
Auger = −2Añ2(r,t) + 3

4
Añ2(r,t),

�
(1)
Auger = −2Amñ2(r,t)vn(r,t), (19)

�
(2)
Auger = −2Añ(r,t)E(r,t) + 3

4
Añ(r,t)EAuger.

The value of the Auger rate A has been determined theoreti-
cally and experimentally. However, the results vary over sev-
eral orders of magnitude. The theoretical calculations predict
A = 2 × 10−21 cm3 ns−1 [35] and A = 3 × 10−22 cm3 ns−1

[32] while the values A = 2 × 10−18 cm3 ns−1 [18], A =
7 × 10−17 cm3 ns−1 [33], and A = 4 × 10−16 cm3 ns−1 [34]
were found experimentally. Therefore, the Auger rate A is a
source of uncertainty.

F. Summary of the model

The model consists of a GGPE (1) describing the condensed
excitons coupled to a set of hydrodynamic equations (8) for
the noncondensed excitons. The coupling term R(r,t) in (1)
reads

R(r,t) = RXc-X(r,t) + RXc-Ph(r,t) + �/τ. (20)

The distribution function for the thermal excitons is given by
(7). The initial relaxation into this partial local equilibrium is
treated separately. For our numerical calculations we usually
start with thermal excitons only. Monitoring the effective
chemical potential the condensate is seeded into the system
if necessary.

Comparable approaches using a GGPE coupled to a
quantum Boltzmann or hydrodynamic equations are also used
to describe exciton-polaritons in microcavities [29,36].

V. RESULTS

For the calculations we choose parameters comparable
to the values found in Refs. [16,18]. The laser is placed
100 μm outside of the trap center (rmax = 100 μm) with
a width of σ = 3 μm. For the interaction strength g we
use g = 4π�

2as/m = 0.54 eV nm3, which corresponds to a
s-wave scattering length of as = 2.1 aB [37], a Bohr radius
of aB = 0.7 nm, and an exciton mass of [38] m = 2.6 m0 (m0:

free electron mass). For the discussion it is useful to review the
different temperatures present in our theoretical model. There
is the temperature of the helium bath TB and the temperature of
the phonons (of the crystal lattice) TPh. For our calculations we
assume TPh = TB. Additionally, there is the temperature of the
excitons, which will be depending on space and time T (r,t).
We will further introduce the exciton temperature in the trap
center T0 = T (r = 0,t) and the mean exciton temperature

〈T 〉 = 1

N

∫
drT (r,t)ñ(r,t) (21)

which both depend on time only. The temperature extracted
from fitting the experimental spectra will be called the spectral
temperature TS. In the following we will present some general
results for cw excitation and discuss different features before
comparing theoretical results with experimental data.

A. General results

For the calculations in this section, the trap parameter α

was set to α = 0.11 μeV μm−2. Figure 1 shows results for
a moderate pumping power of PL = 26.4 μW and a phonon
temperature of TPh = 0.5 K. As can be seen very well, the
stationary state of the system shows strong deviations from
the corresponding equilibrium situation. The density profile
is similar to a Gaussian shape, with an increased value at
the trap center. The shape of the other quantities is due to the
constant creation of excitons by the pump laser at r = 100 μm.
The newly created “hot” excitons drift towards the center
of the trap. At first their velocity increases strongly, slows
down afterwards, and is zero in the central region of the trap.
During the drift process, the excitons are cooled via phonon
interaction. The temperature drops progressively, reaching a
minimum of Tmin = 0.54 K around r = 20 μm. As of this
point, the temperature rises slightly reaching a local maximum
of T0 = 0.55 K at r = 0 due to the Auger effect. The effective
chemical potential behaves inversely. However, it increases

FIG. 1. (Color online) Density ñ(r), velocity vn(r), temperature
T (r), and effective chemical potential μ̃eff (r) for the stationary state
(blue solid line) at a phonon temperature of TPh = 0.5 K and a
laser power of PL = 26.4 μW. The dashed red curves represent
the corresponding values of a distribution function in equilibrium
with the same mean temperature 〈T 〉 = 0.62 K and the same exciton
number N = 2.13 × 107. The dashed black curve shows the phonon
temperature TPh. The Auger rate is set to A = 2.0 × 10−18 cm3/ns.
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steadily towards the trap center. The results shown in Fig. 1
are typical for cw excitation. The curves for the outer region
of the trap (r > 60 μm) do not differ qualitatively for other
parameters. Therefore, we will concentrate on the inner region
of the trap for the following results.

For the experimental realization of an excitonic condensate,
one has to create high densities at low temperatures. Since the
Auger effect scales quadratically with the density, it seems
favorable to use low pump powers at ultralow temperatures in
order to minimize its influence. The results for PL = 2.8 μW
and different phonon temperatures are shown in Fig. 2.
The total number of excitons varies only weakly between
N = 2.74 × 106 (TPh = 1.0 K) and N = 2.57 × 106 (TPh =
0.037 K). Since the extension of the thermal cloud shrinks
with decreasing temperatures, the density in the trap center
has to increase accordingly. Therefore, lowering the phonon
temperature at a constant pump power actually increases
the influence of the Auger effect. The temperature curves
illustrate this well. For the cases TPh = 1.0 K and TPh = 0.5 K,
the exciton temperatures in the trap center are very close to
the respective phonon temperatures. The monotonous course
of the curves clearly indicates a very weak influence of the
Auger effect. In case of the ultralow phonon temperature of
TPh = 0.037 K, the temperature forms the typical shape for a
strong influence of the Auger effect (minimum outside the trap
center and a local maximum at r = 0). The temperature in the
trap center is T0 = 0.25 K and hence well above the phonon
temperature. The mean temperature 〈T 〉 = 0.38 K is even
one order of magnitude higher than the phonon temperature.
This clearly illustrates the crucial role of the Auger effect,
which becomes increasingly important not only at high pump
powers but also at ultralow temperatures. However, there is
another important effect at ultralow temperatures, the finite
thermalization time. Due to the “freezing out” of phonons
[20], the thermalization time becomes increasingly longer at
lower and lower bath temperatures. Setting A = 0 results in the
dashed-dotted black temperature curve in Fig. 2. The exciton

FIG. 2. (Color online) Density ñ(r) and temperature T (r) for
the stationary state at a laser power of PL = 2.8 μW, a phonon
temperature of TPh = 1.0 K (solid red curve), TPh = 0.5 K (solid blue
curve), and TPh = 0.037 K (solid black curve), and an Auger rate of
A = 2.0 × 10−18 cm3/ns. The dashed lines of the same color show
the respective phonon temperatures. The dash-dotted black line in the
right panel shows the temperature for TB = 0.037 K and A = 0.

FIG. 3. (Color online) Density ñ(r), temperature T (r), and ef-
fective chemical potential μ̃eff (r) for the stationary state at a phonon
temperature of TPh = 0.037 K and a laser power of PL = 262 μW
as well as the evolution of the total exciton number N (t). The
Auger rates are A = 2.0 × 10−18 cm3/ns [18] (blue curves), A =
7.0 × 10−17 cm3/ns [33] (red curves), and A = 4.0 × 10−16 cm3/ns
[34] (black curves). The blue crosses mark the development of the
exciton number without the Auger effect. The black dashed line
represents the phonon temperature.

temperature is monotonously dropping towards the trap center,
however, it never reaches the actual bath temperature. This is
due to the finite lifetime of the excitons which in this case
is too short for a complete thermalization. Hence, even if the
Auger effect could be “turned off” in the actual experiments,
one can still not expect the excitons to be fully thermalized
with the lattice at ultralow bath temperatures. However, in
most experimentally relevant cases, the influence of the Auger
effect will be dominant compared to the finite thermalization
time. Therefore, the uncertainty associated with the Auger rate
A is problematic for any predictions of the onset of a BEC of
excitons.

How the Auger rate affects the different quantities is shown
in Fig. 3. The results were obtained by using three different
Auger rates from the literature and keeping all other parameters
(phonon temperature, pump power, . . . ) constant. Important
values for the different curves in Fig. 3 are listed in Table I.
While the shape of the density profiles stay qualitatively the
same, the quantitative value in the trap center changes by
more than one order of magnitude between the smallest and
the largest Auger rate. Accordingly, the exciton number in
the stationary state changes by more than a factor of four
between these cases. The temperature curves all display the
typical form indicating a strong influence of the Auger effect.
The temperature in the trap center and the mean temperature
for A = 2.0 × 10−18 cm3/ns and A = 4.0 × 10−16 cm3/ns

TABLE I. Key values in the stationary state for the results shown
in Fig. 3.

A (cm3/ns) N/108 〈T 〉 (K) T0 (K) Tmin (K) ñ0 (μm−3)

2 × 10−18 1.14 0.65 0.58 0.47 2175.6
7 × 10−17 0.41 1.03 0.95 0.80 288.9
4 × 10−16 0.25 1.24 1.16 1.02 98.2
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differ by approximately a factor of two. Due to the strong
heating introduced by the Auger effect, the maximum of the
effective chemical potential for A = 4.0 × 10−16 cm3/ns and
A = 7.0 × 10−17 cm3/ns does not even lie in the center of the
trap. For these high Auger rates, there will probably be no
onset of a BEC within our model.

B. Comparison with experiments

In the following we compare theoretical results with the
corresponding experimental data for two different situations.

The first set of examples is taken from Ref. [18].
In the experiment, cw excitation was used over a wide
range of pumping powers for a helium bath temperature of
TB = 0.037 K. The experimentally determined Auger rate
is A = 2.0 × 10−18 cm3/ns and the trap parameter is α =
0.09 μeV μm−2.

The result for the temperature using a pump power of
PL = 3 μW is shown in the left panel of Fig. 4. It first falls
to a minimum of Tmin = 0.23 K at r = 10 μm and reaches
a local maximum in the trap center with T0 = 0.25 K. The
mean temperature is 〈T 〉 = 0.40 K and hence very close to
the experimentally determined spectral temperature of TS =
0.41 K (compare Fig. 3 of Ref. [18]). The experimentally
determined exciton number was NExpt = 2.6 × 106 which
agrees well with the value of N = 2.78 × 106 predicted
by our model. In the right panel of Fig. 4 we compare
the experimentally determined exciton numbers and spectral

FIG. 4. (Color online) Left panel: Exciton temperature T (r)
(solid blue curve) and the mean exciton temperature 〈T 〉 = 0.40 K
(dashed blue curve) under cw excitation with a pump power of
PL = 3 μW and a phonon temperature of TPh = 0.037 K (dashed
black curve) in the stationary state. The dashed red curve shows
the experimentally determined spectral temperature TS = 0.41 K
(compare Fig. 3 in Ref. [18]). Right panel: Experimentally determined
exciton numbers and spectral temperatures TS (blue circles) for
different pump powers (compare Fig. 11 in Ref. [18]) in comparison
with the exciton numbers and the mean temperatures 〈T 〉 (red crosses)
as predicted by our theory.

temperatures TS with the corresponding theoretical results
for exciton number and mean temperature 〈T 〉 over a wide
range of pumping powers. As before, the quantities agree
well with the experimental values. This suggests to identify
the spectral temperature TS from the experiments with the
mean temperature of the excitons 〈T 〉, which seems intuitively
plausible. If this is correct, the spectral temperature is actually
considerably higher than the temperature of the excitons in
the trap center (see Fig. 4). This was already proposed in
Ref. [18] to explain some of the experimental features and
is consistent with the typical results discussed in the previous
section. To further substantiate the identification TS = 〈T 〉 one
would need to calculate the spectrum and apply the same
fitting procedure as in the experiments. For this a theory of
luminescence for interacting excitons in an inhomogeneous
system in a nonequilibrium state is needed. To our knowledge,
there is no fully developed theory for this purpose at the
moment. This is an open problem that needs to be solved
in the future.

The second set of experimental data is taken from Ref. [16],
Figs. 8 and 9. Using pulsed excitation, the exciton number and
the spectral temperature TS were experimentally determined
for a bath temperature of TB = 0.82 K. For the calculations we
used α = 0.11 μeV μm−2 and A = 2.0 × 10−18 cm3/ns. The
theoretical results for the mean temperature and the exciton
number as well as their experimental counterparts are shown
in Fig. 5. The calculated exciton numbers agree well with the
experimental results. Only the second and third value show
stronger discrepancies. The reason for this is probably the
neglection of the orthoexcitons in our calculations. In the
experiments, the orthoexcitons create new paraexcitons by
conversion even when the laser is switched off. In the present
form of the theoretical model this effect is not included.

The calculated mean temperature 〈T 〉 and the experimen-
tally determined spectral temperature TS do not agree. The

FIG. 5. (Color online) Calculated exciton number N (t) (dashed
blue line) and mean temperature 〈T 〉 (dashed red line) under pulsed
excitation for a phonon temperature of TPh = 0.82 K. The laser pulse
has been modeled according to the data provided in Ref. [16]. The blue
and red circles represent the theoretical values averaged over a gate
width of 200 ns. The blue and red crosses represent the experimentally
determined values with the same gate width [16]. The Auger rate is
set to A = 2.0 × 10−18 cm3/ns.
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first two points of the spectral temperature are even off the
scale (the values are 12.5 and 6.0 K). According to the theory
presented here and in Ref. [28], temperatures around 4 K
should be reached in less than 1 ns. However, in this case, the
experimentally determined spectral temperature TS is 6.0 K
after 400 ns. Since the parameters and the collision term for
the X-Ph interaction are well known, we exclude both as
origin of the discrepancy. An increased Auger rate can also
not explain the differences since the newly formed excitons
cool rapidly to temperatures around 4 K. The most probable
explanation for the differences is a heating of the specimen
by the pump laser and, therefore, TPh > TB. As a result, the
excitons cool only to the respective lattice temperature, which
is higher than the temperature of the surrounding helium bath.
Once the laser is turned off, the crystal slowly cools down to
the bath temperature and the excitons with it. Therefore, it is
very likely that the temperature curves in Ref. [16] actually
show the cooling process of the crystal rather than that of the
excitons.

VI. CONCLUSION AND OUTLOOK

In this paper we developed a theoretical model to describe
trapped ultracold paraexcitons in Cu2O out of equilibrium. It
uses a generalized Gross-Pitaevskii equation for describing
a possible condensate and a set of hydrodynamic equations
for the thermal excitons. The finite lifetime, the Auger-like
two-body decay, the pump laser, exciton-exciton, and exciton-
phonon interaction have been taken into account.

The numerical results obtained using continuous wave
excitation revealed some important features of the stationary
states of the excitonic system. First of all, the stationary
states are true nonequilibrium situations which cannot be
approximated using a global equilibrium distribution. Second,
the excitons do not fully thermalize with the crystal lattice
at ultralow temperatures (TPh � 1.0 K). There is a distinct
gap between the actual exciton and the respective phonon
temperature which continuously increases for sinking phonon
temperatures. This is due to the long thermalization time and
the Auger effect. The latter strongly influences the exciton
densities and temperatures for high pumping powers and at
ultralow temperatures.

Comparing the exciton numbers predicted by our model
with experimental results for pulsed and continuous wave
excitation yields reasonable agreement. Furthermore, com-
paring the mean temperature 〈T 〉 from the calculations with
the experimentally determined spectral temperatures TS under
continuous wave excitation suggests the identification 〈T 〉 =
TS. As a result, the excitons in the trap center are actually
cooler than the spectral temperature suggests. This preposition
was already made in a previous paper [18] to explain some of
the experimental features. However, comparing the experi-
mentally determined and theoretically predicted temperatures
under pulsed excitation showed strong discrepancies between
the two. The most probable explanation for this is a heating
of the crystal. If that is the case then the experimentally
determined evolution of the spectral temperature is closely
related to the cooling process of the crystal lattice rather than
that of the excitons. It is well known that high pump powers

can lead to heating of the specimen and even of the surrounding
helium bath. In principle, the temperature of the crystal lattice
can be determined using Brillouin scattering. However, this
is very difficult experimentally and, to our knowledge, has
not been done yet. If our interpretation of the experimental
data is correct, experiments under pulsed excitation with
varying pump powers might be an opportunity to study the
cooling process of the crystal lattice indirectly in a simple
fashion.

In conclusion, the theoretical results obtained by our model
are intuitively plausible and yield reasonable agreement with
the exciton numbers and spectral temperatures obtained ex-
perimentally. The results presented in this paper are, therefore,
an important step to improve the understanding of the experi-
ments. Unfortunately, there are still some crucial problems that
need to be addressed. Most importantly, the theoretical model
must be able to reliably predict parameters for the onset of
Bose-Einstein condensation (i.e., the vanishing of the effective
chemical potential). However, within the present model, a
quantitative discussion of the condensation parameters would
not yield reliable results mainly due to the uncertainties associ-
ated with the Auger decay. Since the Auger effect reduces the
density while increasing the temperature, its modeling and the
parameters associated with it are of paramount importance for
predicting the condensation threshold. However, the Auger
rates A reported in the literature by different authors vary
over 6 orders of magnitude. Additionally, to our knowledge,
there are no theoretical results that agree with any of the
experimentally determined Auger rates. Furthermore, using
a k-averaged constant A as Auger rate is itself already a
simplification. According to the theoretical works on the Auger
decay [32], the rate A should be proportional to some power
of k. Using such a k-dependent rate would primarily destroy
high energy excitons, while affecting low energy excitons
much less. An inclusion of such a k-dependent Auger rate
will have strong effects on the parameters for condensation.
Moreover, in a strain free crystal of Cu2O, the Auger decay
of the paraexcitons under consideration is negligible [32].
The experimentally observed Auger decay of these excitons
is due to the ortho-para Auger decay and the effects the
applied stress has on the exciton states. The former can only
be included by modeling a multicomponent system of para-
and orthoexcitons. Therefore, considering these uncertainties,
we refrain from a discussion of the condensation threshold at
this point. In order to make reliable predictions for the onset
of Bose-Einstein condensation, the problems discussed above
have to be addressed first.

Another important extension to the theoretical model is
using a symmetry which fits the experimental geometry better,
i.e., cylindrical (quasi-two-dimensional) instead of spherical
(quasi-one-dimensional). This should yield more realistic
theoretical results. More importantly though, in order to
directly compare the theoretical and experimental results, we
need to be able to calculate the luminescence spectrum of
the excitons. Being able to differentiate between the spectra of
excitons in quasiequilibrium, a stationary state, or a condensed
case is crucial. It is especially important to identify unique
spectral features of a condensate like it was already done for
excitons in equilibrium [39,40]. This requires us to develop a
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theory of excitonic luminescence for inhomogeneous systems
in nonequilibrium. One possible approach is to start from the
first order correlation function [41] treating the photons by an
equation of motion method [42,43]. This is work in progress
and will be the subject of a future publication.
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