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Relativistic tight-binding approximation method for materials immersed in a uniform magnetic
field: Application to crystalline silicon
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We present a relativistic tight-binding (TB) approximation method that is applicable to actual crystalline
materials immersed in a uniform magnetic field. The magnetic Bloch theorem is used to make the dimensions of
the Hamiltonian matrix finite. In addition, by means of the perturbation theory, the magnetic hopping integral that
appears in the Hamiltonian matrix is reasonably approximated as the relativistic hopping integral multiplied by
the magnetic-field-dependent phase factor. In order to calculate the relativistic hopping integral, the relativistic
version of the so-called Slater-Koster table is also given in an explicit form. We apply the present method to
crystalline silicon immersed in a uniform magnetic field, and reveal its energy-band structure that is defined in the
magnetic first Brillouin zone. It is found that the widths of energy-bands increase with increasing the magnetic
field, which indicates the magnetic-field dependence of the appropriateness of the effective mass approximation.
The recursive energy spectrum, which is the so-called butterfly diagram, can also be seen in the k-space plane
perpendicular to the magnetic field.
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I. INTRODUCTION

Recently, it has been reported that the softening in the
elastic constant of the boron-doped silicon is suppressed by
an external magnetic field [1]. Such phenomenon, which is
observed in low-temperature ultrasonic measurements, attracts
much attention because the density of the vacancies in silicon
wafers can be estimated from the behavior of the elastic
softening [1]. Several authors have studied this phenomenon
theoretically by using a kind of model that includes adjustable
or phenomenological parameters in the Hamiltonian [2–7]. It
is pointed out that the spin-orbit interaction, which is one of
the relativistic effects, plays an important role as well as the
Zeeman effect [2–7]. In these works, an unusual (negative)
value is used for the spin-orbit coupling constant in order to
explain the above phenomenon, however, the validity of this
approach is open to challenge [7]. If a calculation method of
relativistic energy bands for materials immersed in a uniform
magnetic field is developed, then it will become a reliable
method not only to check the validity of the arguments based on
the model Hamiltonian [2–6], but also to investigate the above
phenomenon more directly. In other words, as the first step
toward clarifying the above phenomenon in a first-principles
way, we need a calculation method that can describe the effects
of both magnetic field and relativity.

It is generally difficult to incorporate the magnetic field and
relativistic effects simultaneously into the calculation method
for the electronic structure. Insofar, as the nonrelativistic
method goes, the tight-binding (TB) approximation method
has been developed and applied to some systems [8–10].
In these nonrelativistic TB method, the Peierls substitution
[11] or the Peierls phase [9,13] is utilized to construct the
effective Hamiltonian for Bloch electrons in a magnetic
field. Calculation methods other than the TB approximation
method have also been presented, though relativistic effects
are not taken into account in these methods. For example,

Zak proposed a method to use the so-called kq functions as
basis functions in calculating the Hamiltonian matrix [14–17].
Actual calculations using kq functions are performed by
Obermaier, Schellnhuber, and Rauh [18,19]. In combination
of the method using kq functions [14–17] with a canonical
transformation [18], they calculated the electronic states for a
simple model system in which the magnetic field is applied
along the z axis, and the periodic potential is assumed to be
separated into an x, y-dependent part and a z-dependent part
[19]. The method by Obermaier et al. [18,19] is also applied
to other systems, but all of which are simple model systems
[20,21]. Thus, unfortunately, the methods by Obermaier et al.
[18,19] and by Zak [14–17] are not easy to apply to actual
crystalline materials immersed in a magnetic field [22].

Of course, there exist a lot of relativistic methods for the
zero magnetic field case. For example, the relativistic linear
augmented-plane-wave (RLAPW) method [23–25] has been
developed, and it has been successfully applied to f -electron
materials [25–29]. Thus electronic structure calculation meth-
ods that can deal with both relativistic and magnetic field
effects simultaneously have not yet been developed so far.

In this paper, we present the relativistic TB approximation
method that is applicable to actual materials immersed in a
uniform magnetic field. This is hereafter referred to as the
magnetic-field-containing relativistic tight-binding approxi-
mation method (MFRTB method). Both the magnetic field and
relativistic effects are taken into consideration by treating the
Dirac equation for an electron that moves in both a uniform
magnetic field and the periodic potential of a crystal. The
MFRTB method is formulated in the orthodox coordinate
representation, as shown in the subsequent sections. It has the
following methodological features. (i) The MFRTB method
can be applied to actual crystalline materials immersed in
a magnetic field. Actually, in this paper, we apply it to a
crystalline silicon immersed in a magnetic field. As shown
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in a later section, the electronic structure, including energy
gaps, has an explicit dependence on the magnetic field,
and a recursive energy spectrum similar to the Hofstadter
butterfly diagram [8] is observed. (ii) When performing the
above calculations, the hopping integrals of the relativistic
TB method need to be used. In this work, we also show that
the relativistic hopping integrals can be expressed in the form
of a linear combination of several relativistic TB parameters.
The explicit expressions for the relativistic hopping integrals
are summarized in a tabular form. This table is recognized as
the relativistic extension of Slater and Koster’s work [30].
As mentioned later, this table is utilized in constructing
the MFRTB method. (iii) We can discuss the validity of
using Peierls phase [9,13], and show the way to improve
it systematically by means of the perturbation theory. The
approximation using the Peierls phase [9,13] is regarded as the
lowest-order correction when the magnetic field is treated as
the perturbation. (iv) We revisit the magnetic Bloch theorem by
considering the translation symmetry of the system immersed
in the magnetic field. Then, we present a way to determine
an expression of the magnetic field that is consistent with the
magnetic Bloch theorem. As also shown later, it depends on
the structure of the target material.

As mentioned above, the development of the MFRTB
method is the first thing to be done for the purpose of revealing
the mechanism of the elastic softening and its suppression
observed in the boron-doped silicon. In addition to the above
application, the MFRTB method may have another interesting
application, it could be employed effectively in energy-band
calculations for superconductors immersed in a magnetic
field [31]. Recently, we have developed the current-density
functional theory for superconductors immersed in a magnetic
field [31]. In this theory, we have to solve the Kohn-Sham
equation of the Bogoliubov-de Gennes type in order to
predict the critical temperature and critical magnetic field.
This equation may be solved approximately with the aid of
the method presented by de Gennes [32], if the wave functions
for the normal state are provided through the practical energy-
band calculation method for materials immersed in a uniform
magnetic field. The MFRTB method seems to be useful for
such calculations of the normal state.

Furthermore, the MFRTB method can also become a
general, first-principles theory to describe physical phenomena
observed in a magnetic field. For example, the MFRTB method
would give an alternative description of the de Haas-van
Alphen (dHvA) and Shubnikov-de Haas effects [33], other
than the conventional one [22,34]. Thus the MFRTB method
is expected to have a broad utility for the description of various
phenomena related to the magnetic field.

The organization of this paper is as follows. In Sec. II, we
present a preliminary discussion on the relativistic TB approxi-
mation method for the zero magnetic field case. The relativistic
version of the Slater-Koster table is given in an explicit
form. In Sec. III, the relativistic TB approximation method
for the nonzero magnetic field case, i.e., MFRTB method,
is presented. The magnetic hopping integrals that appear in
the matrix elements of the Hamiltonian are approximated in
terms of relativistic hopping integrals for zero magnetic field
by means of the perturbation theory. In Sec. IV, we apply

the MFRTB method to a two-dimensional square lattice that
is immersed in a uniform magnetic field. By comparing the
present results with the Hofstadter’s ones [8], we discuss the
validity and advantages of the MFRTB method. In Sec. V,
the energy-band calculation for a crystalline silicon immersed
in a uniform magnetic field is performed by means of the
MFRTB method. The dependencies of energy spectra both on
the wave vector of the magnetic Brillouin zone and on the
magnitude of the magnetic field are presented. Finally, some
concluding remarks are given in Sec. VI.

II. RELATIVISTIC TIGHT-BINDING APPROXIMATION
METHOD FOR ZERO MAGNETIC FIELD CASE

In this section, the relativistic TB approximation method for
the zero magnetic field case is formulated as a preliminary step
toward developing the MFRTB method. The Dirac equation
for an electron in a periodic potential is given by [35]

H�α,k(r) = Ēα,k�α,k(r) (1)

with

H = cα · p + βmc2 +
∑
Rn

∑
i

vai
(r − Rn − di), (2)

where c and m denote the velocity of light and electron rest
mass, respectively, and where α = (αx, αy, αz) and β stand for
the usual 4 × 4 matrices [35]. In Eq. (2), vai

(r − Rn − di) is
the scalar potential caused by the nucleus of atom ai located at
Rn + di , where Rn and di denote the translation vector of the
lattice and the vector specifying the position of the atom ai ,
respectively. The subscripts α and k of the four-component
eigenfunction �α,k(r) denote the band index and crystal
momentum, respectively. Similar to the nonrelativistic TB
approximation method, �α,k(r) is expanded by using the Bloch
sums of the relativistic atomic orbitals as the basis functions.
We have

�α,k(r) =
∑
nlJM

∑
i

b
α,k
nlJM,iB

ai ,k
nlJM (r), (3)

where b
α,k
nlJM,i is the expansion coefficient, and B

ai,k
nlJM (r)

denotes the Bloch sum given by

B
ai,k
nlJM (r) = 1√

N

∑
Rn

eik·(Rn+di )ϕ
ai

nlJM (r − Rn − di), (4)

where ϕ
ai

nlJM (r) is the relativistic atomic orbital of atom ai . In
Eqs. (3) and (4), n, l, J , and M are the principal, azimuthal,
total angular momentum, and magnetic quantum numbers,
respectively. The number l is related to the parity, which is
conserved in the atomic system [35]. The relativistic atomic
orbital obeys the following Dirac equation:

[cα · p + βmc2 + vai
(r)]ϕai

nlJM (r) = ε̄
ai

nlJ ϕ
ai

nlJM (r), (5)

where ε̄
ai

nlJ denotes the atomic spectrum for the zero magnetic
field case. It should be noted that ϕ

ai

nlJM (r) is generally written
by

ϕ
ai

nlJM (r) = 1

r

[
F

ai

nlJ (r)yM
l,J (θ,φ)

iG
ai

nlJ (r)yM
2J−l,J (θ,φ)

]
, (6)
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where F
ai

nlJM (r) and G
ai

nlJM (r) denote the large and small
components of the radial part of ϕ

ai

nlJM (r), respectively, and
where yM

l,J (θ,φ) is the spinor spherical harmonics [35].
By neglecting integrals that involve three different centers,

we get matrix elements of the Hamiltonian (2) as follows:

Hj (n′l′J ′M ′),i(nlJM)(k)

= {
ε̄

ai

nlJ + 	ε̄
ai ,di

nlJM

}
δj,iδn′l′J ′M ′, nlJM

+
∑
Rn

(1 − δRn,0δj,i)e
ik·(Rn+di−dj )

× t
aj ai

n′l′J ′M ′, nlJM (Rn + di − dj ), (7)

with

t
aj ai

n′l′J ′M ′, nlJM (Rn + di − dj )

=
∫

ϕ
aj

n′l′J ′M ′(r)†
vaj

(r) + vai
(r − Rn − di + dj )

2

×ϕ
ai

nlJM (r − Rn − di + dj )d3r (8)

and

	ε̄
ai ,di

nlJM =
∫

ϕ
ai

nlJM (r − di)
†

⎧⎨
⎩

∑
Rm

∑
k

vak
(r − Rm − dk)

⎫⎬
⎭

(Rm + dk �= di)

×ϕ
ai

nlJM (r − di)d
3r. (9)

In Eqs. (8) and (9), t
aj ai

n′l′J ′M ′, nlJM (Rn + di − dj ) and 	ε̄
ai ,di

nlJM

denote the relativistic hopping integral and the energy of
the crystal field [36], respectively. By using Eq. (6) and
the properties of yM

l,J (θ,φ) [35], it can be proven that
t
aj ai

n′l′J ′M ′, nlJM (Rn + di − dj ) has the following properties:

(property 1) t
aj ai

n′l′J ′M ′, nlJM (Rn + di − dj )

= t
aiaj

nlJM, n′l′J ′M ′(−(Rn + di − dj ))∗,

(10)

(property 2) t
aiaj

nlJM, n′l′J ′M ′(Rn + di − dj )

= (−1)l+l′ t
aj ai

n′l′J ′M ′, nlJM (Rn + di − dj )∗.

(11)

Property 1 [Eq. (10)] guarantees the hermicity of the Hamil-
tonian matrix (7). Property 2 [Eq. (11)] will be used later.

Next, we show that t
aj ai

n′l′J ′M ′, nlJM (Rn + di − dj ) can be
expressed in terms of several relativistic TB parameters,
similar to the case of the nonrelativistic hopping integral
[30]. With reference to the nonrelativistic case [30,37], the
relativistic TB parameter is defined as the relativistic hopping
integral between two sites that are placed on the z axis. If atoms
aj and ai are placed at the origin and a distance |Rn + di − dj |
away from the origin, respectively, then the relativistic TB
parameter is written as t

aj ai

n′l′J ′M ′, nlJM (|Rn + di − dj |ez), where
ez denotes the unit vector in the direction of z axis. This special
type of the relativistic hopping integral has the following
two properties in addition to properties 1 and 2 [Eqs. (10)

and (11)]:

(property 3) t
aj ai

n′l′J ′M ′, nlJM (|Rn + di − dj |ez)

= t
aj ai

n′l′J ′M, nlJM (|Rn + di − dj |ez)δM,M ′ ,

(12)

(property 4) t
aj ai

n′l′J ′−M, nlJ−M (|Rn + di − dj |ez)

= (−1)J+J ′+l+l′+1t
aj ai

n′l′J ′M,nlJM

×(|Rn + di − dj |ez). (13)

Due to properties 3 and 4 [Eqs. (12) and (13)], the relativistic
TB parameters can be classified by n, n′, J , J ′, l, l′,
and |M|. If we denote the relativistic TB parameter as
K

aj ai

d (n′l′J ′,nlJ )|M|, then we have

K
aj ai

d (n′l′J ′,nlJ )|M|

= t
aj ai

n′l′J ′ |M|, nlJ |M|(|Rn + di − dj |ez)

=
∫

ϕ
aj

n′l′J ′ |M|(r)†
vaj

(r) + vai
(r − |Rn + di − dj |ez)

2

×ϕ
ai

nlJ |M|(r − |Rn + di − dj |ez)d
3r, (14)

where the subscript “d” of K
aj ai

d (n′l′J ′,nlJ )|M| is the pa-
rameter that shows the dependence of the relativistic TB
parameter on |Rn + di − dj |. Specifically, if |Rn + di − dj |
is equal to the distance between the nearest-neighboring atoms,
second-nearest-neighboring atoms, and so on, then d takes the
value of 1, 2, . . . , respectively.

In the case where l takes the values of 0 or 1, we have ten
kinds of relativistic TB parameters, i.e.,

K
aj ai

d

(
n′0 1

2 , n0 1
2

)
1/2 , K

aj ai

d

(
n′0 1

2 , n1 1
2

)
1/2 ,

K
aj ai

d

(
n′0 1

2 , n1 3
2

)
1/2 , K

aj ai

d

(
n′1 1

2 , n0 1
2

)
1/2 ,

K
aj ai

d

(
n′1 1

2 , n1 1
2

)
1/2 , K

aj ai

d

(
n′1 1

2 , n1 3
2

)
1/2 ,

K
aj ai

d

(
n′1 3

2 , n0 1
2

)
1/2 , K

aj ai

d

(
n′1 3

2 , n1 1
2

)
1/2 ,

K
aj ai

d

(
n′1 3

2 , n1 3
2

)
1/2 , K

aj ai

d

(
n′1 3

2 , n1 3
2

)
3/2 .

In the case of monoatomic crystals such as crystalline silicon,
the relativistic TB parameters are, of course, independent of
ai and aj . Therefore the relativistic TB parameters can be
denoted by Kd (n′l′J ′, nlJ )|M|. Due to property 2 [Eq. (11)],
Kd (n′l′J ′, nlJ )|M| and Kd (nlJ, n′l′J ′)|M| are not independent
of each other. Therefore we have seven kinds of relativistic TB
parameters in this case, i.e.,

Kd

(
n′0 1

2 , n0 1
2

)
1/2 , Kd

(
n′0 1

2 , n1 1
2

)
1/2 ,

Kd

(
n′0 1

2 , n1 3
2

)
1/2 , Kd

(
n′1 1

2 , n1 1
2

)
1/2 ,

Kd

(
n′1 1

2 , n1 3
2

)
1/2 , Kd

(
n′1 3

2 , n1 3
2

)
1/2 ,

Kd

(
n′1 3

2 , n1 3
2

)
3/2 .
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In order to express K
aj ai

d (n′l′J ′,nlJ )|M| by using the large and small components of the relativistic atomic orbitals, we
introduce the following notations:

(l̄′ l̄ M̄)
L,d,aj ai

(n′l′J ′,nlJ ) =
∫

1

rrz
ijn

F
aj

n′l′J ′ (r)∗Y ∗̄
l′,M̄ (θ,φ)

vaj
(r) + vai

(r − |Rn + di − dj |ez)

2
F

ai

nlJ

(
rz
ijn

)
Yl̄,M̄

(
θz
ijn,φ

)
d3r, (15)

(l̄′ l̄ M̄)
S,d,aj ai

(n′l′J ′,nlJ ) =
∫

1

rrz
ijn

G
aj

n′l′J ′ (r)∗Y ∗̄
l′,M̄ (θ,φ)

vaj
(r) + vai

(r − |Rn + di − dj |ez)

2
G

ai

nlJ

(
rz
ijn

)
Yl̄,M̄

(
θz
ijn,φ

)
d3r, (16)

where Yl̄′,m̄(θ,φ) are the spherical harmonics, and where the arguments (rz
ijn, θ

z
ijn, φ) stand for the polar coordinates of r −

|Rn + di − dj |ez. The superscript “L” (or “S”) indicates that the integral comes from the large (or small) component of the
relativistic atomic orbital. The superscript “d” has the same meaning as that mentioned below Eq. (14). By convention, label
l̄′ (or l̄) is denoted by s, p, d, . . . for l̄′ ( or l̄ ) = 0, 1, 2, . . . , respectively, and the label M̄ is denoted by σ , π , δ, . . . , for
M̄ = 0, ± 1, ± 2, . . . , respectively. For example, we have

(spσ )
L,d,aj ai

(n′0 1
2 ,n0 1

2 )
=

∫
1

rrz
ijn

F
aj

n′0 1
2
(r)∗Y ∗

0,0(θ,φ)
vaj

(r) + vai
(r − |Rn + di − dj |ez)

2
F

ai

n0 1
2

(
rz
ijn

)
Y1,0

(
θz
ijn,φ

)
d3r, (17)

(ppπ)
S,d,aj ai

(n′1 1
2 ,n1 1

2 )
=

∫
1

rrz
ijn

G
aj

n′1 1
2
(r)∗Y ∗

1,1(θ,φ)
vaj

(r) + vai
(r − |Rn + di − dj |ez)

2
G

ai

n′1 1
2

(
rz
ijn

)
Y1,1

(
θz
ijn,φ

)
d3r. (18)

Using this notation, the ten kinds of K
aj ai

d (n′l′J ′,nlJ )|M|’s shown above are expressed as

K
aj ai

d

(
n′0

1

2
, n0

1

2

)
1/2

= (ssσ )
L,d,aj ai

(n′0 1
2 ,n0 1

2 )
+ 1

3
(ppσ )

S,d,aj ai

(n′0 1
2 ,n0 1

2 )
+ 2

3
(ppπ )

S,d,aj ai

(n′0 1
2 ,n0 1

2 )
,

K
aj ai

d

(
n′0

1

2
, n1

1

2

)
1/2

= − 1√
3

(spσ )
L,d,aj ai

(n′0 1
2 ,n0 1

2 )
− 1√

3
(psσ )

S,d,aj ai

(n′0 1
2 ,n1 1

2 )
,

K
aj ai

d

(
n′0

1

2
, n1

3

2

)
1/2

=
√

2

3
(spσ )

L,d,aj ai

(n′0 1
2 ,n0 3

2 )
+

√
2

15
(pdσ )

S,d,aj ai

(n′0 1
2 ,n0 3

2 )
+

√
2

5
(pdπ )

S,d,aj ai

(n′0 1
2 ,n0 3

2 )
,

K
aj ai

d

(
n′1

1

2
, n0

1

2

)
1/2

= − 1√
3

(psσ )
L,d,aj ai

(n′1 1
2 ,n0 1

2 )
− 1√

3
(spσ )

S,d,aj ai

(n′1 1
2 ,n0 1

2 )
,

K
aj ai

d

(
n′1

1

2
, n1

1

2

)
1/2

= 1

3
(ppσ )

L,d,aj ai

(n′1 1
2 ,n1 1

2 )
+ 2

3
(ppπ)

L,d,aj ai

(n′1 1
2 ,n1 1

2 )
+ (ssσ )

S,d,aj ai

(n′1 1
2 ,n1 1

2 )
, (19)

K
aj ai

d

(
n′1

1

2
, n1

3

2

)
1/2

= −
√

2

3
(ppσ )

L,d,aj ai

(n′1 1
2 ,n1 3

2 )
+

√
2

3
(ppπ )

L,d,aj ai

(n′1 1
2 ,n1 3

2 )
−

√
2

5
(sdσ )

S,d,aj ai

(n′1 1
2 ,n1 3

2 )
,

K
aj ai

d

(
n′1

3

2
, n0

1

2

)
1/2

=
√

2

3
(psσ )

L,d,aj ai

(n′1 3
2 ,n0 1

2 )
+

√
2

15
(dpσ )

S,d,aj ai

(n′1 3
2 ,n0 1

2 )
+

√
2

5
(dpπ )

S,d,aj ai

(n′1 3
2 ,n0 1

2 )
,

K
aj ai

d

(
n′1

3

2
, n1

1

2

)
1/2

= −
√

2

3
(ppσ )

L,d,aj ai

(n′1 3
2 ,n1 1

2 )
+

√
2

3
(ppπ )

L,d,aj ai

(n′1 3
2 ,n1 1

2 )
−

√
2

5
(dsσ )

S,d,aj ai

(n′1 3
2 ,n1 1

2 )
,

K
aj ai

d

(
n′1

3

2
, n1

3

2

)
1/2

= 2

3
(ppσ )

L,d,aj ai

(n′1 3
2 ,n1 3

2 )
+ 1

3
(ppπ)

L,d,aj ai

(n′1 3
2 ,n1 3

2 )
+ 2

5
(ddσ )

S,d,aj ai

(n′1 3
2 ,n1 3

2 )
+ 3

5
(ddπ )

S,d,aj ai

(n′1 3
2 ,n1 3

2 )
,

K
aj ai

d

(
n′1

3

2
, n1

3

2

)
3/2

= (ppπ )
L,d,aj ai

(n′1 3
2 ,n1 3

2 )
+ 1

5
(ddπ )

S,d,aj ai

(n′1 3
2 ,n1 3

2 )
+ 4

5
(ddδ)

S,d,aj ai

(n′1 3
2 ,n1 3

2 )
.

It is clear from the above that K
aj ai

d (n′l′J ′,nlJ )|M| contains contributions that come from not only the large component but also
the small component of the relativistic atomic orbital.

In the nonrelativistic TB approximation method, Slater and Koster provided a useful table, in which nonrelativistic hopping
integrals are expressed in terms of several TB parameters [30]. The table is called “Slater-Koster table” [30]. With the aid of
the Slater-Koster table, the relativistic version of the Slater-Koster table can be derived. For instance, using Eqs. (6) and (8), the
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explicit form of t
aj ai

n′0 1
2

1
2 ,n1 1

2
1
2

( Rn + di − dj ) is given by

t
aj ai

n′0 1
2

1
2 ,n1 1

2
1
2

( Rn + di − dj ) = − 1√
3

∫
1

rrijn

F
aj

n′0 1
2
(r)∗Y ∗

0,0(θ,φ)
vaj

(r) + vai
(r − Rn − di + dj )

2
F

ai

n1 1
2
(rijn)Y1,0(θijn,φijn)d3r

− 1√
3

∫
1

rrijn

G
aj

n′0 1
2
(r)∗Y ∗

1,0(θ,φ)
vaj

(r) + vai
(r − Rn − di + dj )

2
G

ai

n1 1
2
(rijn)Y0,0(θijn,φijn)d3r

= − 1√
3

∫
1

rrijn

F
aj

n′0 1
2
(r)∗C∗

s (θ,φ)
vaj

(r) + vai
(r − Rn − di + dj )

2
F

ai

n1 1
2
(rijn)Cz(θijn,φijn)d3r

− 1√
3

∫
1

rrijn

G
aj

n′0 1
2
(r)∗C∗

z (θ,φ)
vaj

(r) + vai
(r − Rn − di + dj )

2
G

ai

n1 1
2
(rijn)Cs(θijn,φijn)d3r,

(20)

where the arguments (rijn, θijn, φijn) stand for the polar
coordinates of r − Rn − di + dj , and where Cs(θ,φ) and
Cz(θ,φ) denote the cubic harmonics (real spherical harmonics)
[37]. By applying the results of the Slater-Koster table [30] to
each term of the right-hand side of Eq. (20), we have

t
aj ai

n′0 1
2

1
2 ,n1 1

2
1
2

( Rn + di − dj )

= − 1√
3
qz(spσ )

L,d,aj ai

(n′0 1
2 ,n1 1

2 )
− 1√

3
qz(psσ )

S,d,aj ai

(n′0 1
2 ,n1 1

2 )

= qzK
aj ai

d

(
n′0

1

2
, n1

1

2

)
1/2

, (21)

where the direction cosine of Rn + di − dj is denoted as
(qx, qy,qz). From the first line to the second line of the
right-hand side, Eq. (19) is utilized. In a similar way to the
above example, we derive explicit expressions for all other
relativistic hopping integrals t

aj ai

n′l′J ′M ′, nlJM (Rn + di − dj ). The
results are summarized in Table I. These explicit expressions
for t

aj ai

n′l′J ′M ′, nlJM (Rn + di − dj ) come in really useful, because
we can readily calculate t

aj ai

n′l′J ′M ′, nlJM (Rn + di − dj ) through
values of K

aj ai

d (n′l′J ′,nlJ )|M| and the direction cosines of
Rn + di − dj with the aid of Table I. Table I can be recognized
as the relativistic version of the Slater-Koster table [30], and
is referred to as the relativistic Slater-Koster table hereafter.

It should be noted that the expressions for
t
aj ai

n′l′J ′M ′, nlJM (Rn + di − dj ) and t
aj ai

n′lJM, nl′J ′M ′(Rn + di − dj )
are related to each other. We shall briefly explain this relation.
As seen in Table I, t

aj ai

n′l′J ′M ′, nlJM (Rn + di − dj ) is generally
expressed in the form of the following linear combination of
K

aj ai

d (n′l′J ′,nlJ )|M|:

t
aj ai

n′l′J ′M ′, nlJM (Rn + di − dj )

=
∑
|M|

f (qx, qy,qz, |M|, l′J ′, lJ )K
aj ai

d (n′l′J ′,nlJ )|M|,

(22)

where f (qx, qy,qz, |M|, l′J ′, lJ ) represents the coefficient,
and its specific form can be found in Table I. It is shown by
using property 2 [Eq. (11)] and Eq. (22) that t

aj ai

n′lJM, nl′J ′M ′(Rn +
di − dj ), the subscripts of which, except the principal quantum
numbers, are exchanged compared to t

aj ai

n′l′J ′M ′, nlJM (Rn + di −
dj ), can be expressed by using the coefficients that appear in

Eq. (22), i.e.,

t
aj ai

n′lJM, nl′J ′M ′(Rn + di − dj )

=
∑
|M|

f (qx, qy,qz,|M|, l′J ′, lJ )∗Kaj ai

d (n′lJ,nl′J ′)|M|.

(23)

Equation (23) means that if the explicit expression for
t
aj ai

nl′J ′M ′, n′lJM (Rn + di − dj ) is obtained like Eq. (22), then
we can easily get the expression for t

aj ai

n′lJM, nl′J ′M ′(Rn +
di − dj ) by replacing f (qx, qy,qz, |M|, l′J ′, lJ ) and
K

aj ai

d (n′l′J ′,nlJ )|M| with f (qx, qy,qz, |M|, l′J ′, lJ )∗ and
K

aj ai

d (n′lJ,nl′J ′)|M|, respectively. This relation is regarded as
one of the properties of the relativistic hopping integral. Thus
we have

(Property 5): An expression for t
aj ai

n′lJM, nl′J ′M ′(Rn + di − dj )
can be derived from that for t

aj ai

n′l′J ′M ′, nlJM (Rn + di − dj ).

Property 5 is actually used in deriving the expressions for some
of the relativistic hopping integrals in Table I.

At the end of this section, we briefly explain how
to determine the values of relativistic TB parameters
K

aj ai

d (n′l′J ′,nlJ )|M|. In this paper, the relativistic TB parame-
ters between the nearest-neighbor atoms are determined for the
crystalline silicon, bearing in mind that the MFRTB method
will be actually applied to a crystalline silicon immersed in
a magnetic field (Sec. V). At first, Eq. (7) is applied to a
crystalline silicon with taking into consideration the hopping
integrals between the outermost shells of the nearest-neighbor
atoms. Namely, the following eight kinds of relativistic atomic
orbitals for each silicon atom are taken into consideration:

(n, l, J,M) = (
3,0, 1

2 , ± 1
2

)
,

(
3,1, 1

2 , ± 1
2

)
,(

3,1, 3
2 , ± 1

2

)
,

(
3,1, 3

2 , ± 3
2

)
. (24)

The Hamiltonian matrix thus obtained has the dimension
of 16 × 16 because there are two silicon atoms in the unit
cell. Next, the relativistic TB parameters are determined by
requiring that the eigenvalues of the Hamiltonian matrix
coincide with the reference data as well as possible. As
the reference data, we utilize results calculated by the fully
RLAPW method [25,28,29]. As for ε̄

ai

nlJ + 	ε̄
ai ,di

nlJM that is
included in Eq. (7), since the energy of the crystal field is
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TABLE I. Relativistic version of the Slater-Koster table. In the table, qx , qy , and qz denote the direction cosines of Rn + d i − dj .

(n′, l′,J ′,M ′) (n, l,J,M) Hopping integrals t
aj ai

n′ l′J ′M ′, nlJM
(Rn + d i − dj )(

n′, 0, 1
2 , 1

2

) (
n, 0, 1

2 , 1
2

)
K

aj ai

d

(
n′0 1

2 , n 0 1
2

)
1/2(

n′, 0, 1
2 , 1

2

) (
n, 0, 1

2 ,− 1
2

)
0(

n′, 0, 1
2 , 1

2

) (
n, 1, 1

2 , 1
2

)
qzK

aj ai

d

(
n′0 1

2 , n1 1
2

)
1/2(

n′, 0, 1
2 , 1

2

) (
n, 1, 1

2 ,− 1
2

)
(qx − iqy)K

aj ai

d

(
n′0 1

2 , n1 1
2

)
1/2(

n′, 0, 1
2 , 1

2

) (
n, 1, 3

2 , 3
2

) −
√

3
2 (qx + iqy)K

aj ai

d

(
n′0 1

2 , n1 3
2

)
1/2(

n′, 0, 1
2 , 1

2

) (
n, 1, 3

2 , 1
2

)
qzK

aj ai

d

(
n′0 1

2 , n1 3
2

)
1/2(

n′, 0, 1
2 , 1

2

) (
n, 1, 3

2 ,− 1
2

) qx−iqy

2 K
aj ai

d

(
n′0 1

2 , n1 3
2

)
1/2(

n′, 0, 1
2 , 1

2

) (
n, 1, 3

2 ,− 3
2

)
0(

n′, 0, 1
2 ,− 1

2

) (
n, 0, 1

2 , 1
2

)
0(

n′, 0, 1
2 ,− 1

2

) (
n, 0, 1

2 ,− 1
2

)
K

aj ai

d

(
n′0 1

2 , n0 1
2

)
1/2(

n′, 0, 1
2 ,− 1

2

) (
n, 1, 1

2 , 1
2

)
(qx + iqy)K

aj ai

d

(
n′0 1

2 ,n1 1
2

)
1/2(

n′, 0, 1
2 ,− 1

2

) (
n, 1, 1

2 ,− 1
2

) −qzK
aj ai

d

(
n′0 1

2 ,n1 1
2

)
1/2(

n′, 0, 1
2 ,− 1

2

) (
n, 1, 3

2 , 3
2

)
0(

n′, 0, 1
2 ,− 1

2

) (
n, 1, 3

2 , 1
2

) − qx+iqy

2 K
aj ai

d

(
n′0 1

2 , n1 3
2

)
1/2(

n′, 0, 1
2 ,− 1

2

) (
n, 1, 3

2 ,− 1
2

)
qzK

aj ai

d

(
n′0 1

2 , n1 3
2

)
1/2(

n′, 0, 1
2 ,− 1

2

) (
n, 1, 3

2 ,− 3
2

) √
3

2 (qx − iqy)K
aj ai

d

(
n′0 1

2 , n1 3
2

)
1/2(

n′, 1, 1
2 , 1

2

) (
n, 0, 1

2 , 1
2

)
qzK

aj ai

d

(
n′1 1

2 , n0 1
2

)
1/2(

n′, 1, 1
2 , 1

2

) (
n, 0, 1

2 ,− 1
2

)
(qx − iqy)K

aj ai

d

(
n′1 1

2 , n0 1
2

)
1/2(

n′, 1, 1
2 , 1

2

) (
n, 1, 1

2 , 1
2

)
K

aj ai

d

(
n′1 1

2 , n1 1
2

)
1/2(

n′, 1, 1
2 , 1

2

) (
n, 1, 1

2 ,− 1
2

)
0(

n′, 1, 1
2 , 1

2

) (
n, 1, 3

2 , 3
2

) −
√

3
2 (qx + iqy)qzK

aj ai

d

(
n′1 1

2 , n1 3
2

)
1/2(

n′, 1, 1
2 , 1

2

) (
n, 1, 3

2 , 1
2

)
1
2

(
3q2

z − 1
)
K

aj ai

d

(
n′1 1

2 , n1 3
2

)
1/2(

n′, 1, 1
2 , 1

2

) (
n, 1, 3

2 ,− 1
2

) 3qz(qx−iqy)
2 K

aj ai

d

(
n′1 1

2 , n1 3
2

)
1/2(

n′, 1, 1
2 , 1

2

) (
n, 1, 3

2 ,− 3
2

) √
3

2 (qx − iqy)2K
aj ai

d

(
n′1 1

2 , n1 3
2

)
1/2(

n′, 1, 1
2 ,− 1

2

) (
n, 0, 1

2 , 1
2

) (
qx + iqy

)
K

aj ai

d

(
n′1 1

2 , n0 1
2

)
1/2(

n′, 1, 1
2 ,− 1

2

) (
n, 0, 1

2 , − 1
2

) −qzK
aj ai

d

(
n′1 1

2 , n0 1
2

)
1/2(

n′, 1, 1
2 ,− 1

2

) (
n, 1, 1

2 , 1
2

)
0(

n′, 1, 1
2 ,− 1

2

) (
n, 1, 1

2 ,− 1
2

)
K

aj ai

d

(
n′1 1

2 , n1 1
2

)
1/2(

n′, 1, 1
2 ,− 1

2

) (
n, 1, 3

2 , 3
2

) −
√

3
2 (qx + iqy)2K

aj ai

d

(
n′1 1

2 , n1 3
2

)
1/2(

n′, 1, 1
2 ,− 1

2

) (
n, 1, 3

2 , 1
2

) 3(qx+iqy)qz

2 K
aj ai

d

(
n′1 1

2 , n1 3
2

)
1/2(

n′, 1, 1
2 ,− 1

2

) (
n, 1, 3

2 ,− 1
2

) 1−3q2
z

2 K
aj ai

d

(
n′1 1

2 , n1 3
2

)
1/2(

n′, 1, 1
2 ,− 1

2

) (
n, 1, 3

2 ,− 3
2

) −
√

3
2 (qx − iqy)qzK

aj ai

d

(
n′1 1

2 , n1 3
2

)
1/2(

n′, 1, 3
2 , 3

2

) (
n, 0, 1

2 , 1
2

) −
√

3
2 (qx − iqy)K

aj ai

d

(
n′1 3

2 , n0 1
2

)
1/2(

n′, 1, 3
2 , 3

2

) (
n, 0, 1

2 ,− 1
2

)
0(

n′, 1, 3
2 , 3

2

) (
n, 1, 1

2 , 1
2

) −
√

3
2 (qx − iqy)qzK

aj ai

d

(
n′1 3

2 , n1 1
2

)
1/2(

n′, 1, 3
2 , 3

2

) (
n, 1, 1

2 ,− 1
2

) −
√

3
2 (qx − iqy)2K

aj ai

d

(
n′1 3

2 , n1 1
2

)
1/2(

n′, 1, 3
2 , 3

2

) (
n, 1, 3

2 , 3
2

) 3(1−q2
z )

4 K
aj ai

d

(
n′1 3

2 , n1 3
2

)
1/2

+ 1+3q2
z

4 K
aj ai

d

(
n′1 3

2 , n1 3
2

)
3/2(

n′, 1, 3
2 , 3

2

) (
n, 1, 3

2 , 1
2

) √
3

2 (qx − iqy)qz

{
K

aj ai

d

(
n′1 3

2 , n1 3
2

)
3/2

− K
aj ai

d

(
n′1 3

2 , n1 3
2

)
1/2

}
(
n′, 1, 3

2 , 3
2

) (
n, 1, 3

2 ,− 1
2

)
(qx − iqy)2

√
3

4

{
K

aj ai

d

(
n′1 3

2 , n1 3
2

)
1/2

− K
aj ai

d

(
n′1 3

2 , n1 3
2

)
3/2

}(
n′, 1, 3

2 , 3
2

) (
n, 1, 3

2 ,− 3
2

)
0(

n′, 1, 3
2 , 1

2

) (
n, 0, 1

2 , 1
2

)
qzK

aj ai

d

(
n′1 3

2 , n0 1
2

)
1/2(

n′, 1, 3
2 , 1

2

) (
n, 0, 1

2 ,− 1
2

) − qx−iqy

2 K
aj ai

d

(
n′1 3

2 , n0 1
2

)
1/2(

n′, 1, 3
2 , 1

2

) (
n, 1, 1

2 , 1
2

)
1
2

(
3q2

z − 1
)
K

aj ai

d

(
n′1 3

2 , n1 1
2

)
1/2(

n′, 1, 3
2 , 1

2

) (
n, 1, 1

2 ,− 1
2

) 3(qx−iqy)qz

2 K
aj ai

d

(
n′1 3

2 , n1 1
2

)
1/2(

n′, 1, 3
2 , 1

2

) (
n, 1, 3

2 , 3
2

) √
3

2 (qx + iqy)qz

{
K

aj ai

d

(
n′1 3

2 , n1 3
2

)
3/2

− K
aj ai

d

(
n′1 3

2 , n1 3
2

)
1/2

}
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TABLE I. (Continued.)

(n′, l′,J ′,M ′) (n, l,J,M) Hopping integrals t
aj ai

n′ l′J ′M ′, nlJM
(Rn + d i − dj )

(
n′, 1, 3

2 , 1
2

) (
n, 1, 3

2 , 1
2

) 3q2
z +1
4 K

aj ai

d

(
n′1 3

2 , n1 3
2

)
1/2

+ 3(1−q2
z )

4 K
aj ai

d

(
n′1 3

2 , n1 3
2

)
3/2(

n′, 1, 3
2 , 1

2

) (
n, 1, 3

2 ,− 1
2

)
0(

n′, 1, 3
2 , 1

2

) (
n, 1, 3

2 ,− 3
2

) √
3

4 (qx − iqy)2
{
K

aj ai

d

(
n′1 3

2 , n1 3
2

)
3/2

− K
aj ai

d

(
n′1 3

2 , n1 3
2

)
1/2

}
(
n′, 1, 3

2 ,− 1
2

) (
n, 0, 1

2 , 1
2

) qx+iqy

2 K
aj ai

d

(
n′1 3

2 , n0 1
2

)
1/2(

n′, 1, 3
2 ,− 1

2

) (
n, 0, 1

2 ,− 1
2

)
qzK

aj ai

d

(
n′1 3

2 , n0 1
2

)
1/2(

n′, 1, 3
2 ,− 1

2

) (
n, 1, 1

2 , 1
2

) 3qz(qx+iqy)
2 K

aj ai

d

(
n′1 3

2 , n1 1
2

)
1/2(

n′, 1, 3
2 ,− 1

2

) (
n, 1, 1

2 ,− 1
2

) 1−3q2
z

2 K
aj ai

d

(
n′1 3

2 , n1 1
2

)
1/2(

n′, 1, 3
2 ,− 1

2

) (
n, 1, 3

2 , 3
2

)
(qx + iqy)2

√
3

4

{
K

aj ai

d

(
n′1 3

2 , n1 3
2

)
1/2

− K
aj ai

d

(
n′1 3

2 , n1 3
2

)
3/2

}(
n′, 1, 3

2 ,− 1
2

) (
n, 1, 3

2 , 1
2

)
0(

n′, 1, 3
2 ,− 1

2

) (
n, 1, 3

2 ,− 1
2

) 3q2
z +1
4 K

aj ai

d

(
n′1 3

2 , n1 3
2

)
1/2

+ 3(1−q2
z )

4 K
aj ai

d

(
n′1 3

2 , n1 3
2

)
3/2(

n′, 1, 3
2 ,− 1

2

) (
n, 1, 3

2 ,− 3
2

) √
3

2 (qx − iqy)qz

{
K

aj ai

d

(
n′1 3

2 , n1 3
2

)
1/2

− K
aj ai

d

(
n′1 3

2 , n1 3
2

)
3/2

}(
n′, 1, 3

2 ,− 3
2

) (
n, 0, 1

2 , 1
2

)
0(

n′, 1, 3
2 ,− 3

2

) (
n, 0, 1

2 ,− 1
2

) √
3

2 (qx + iqy)K
aj ai

d

(
n′1 3

2 , n0 1
2

)
1/2(

n′, 1, 3
2 ,− 3

2

) (
n, 1, 1

2 , 1
2

) √
3

2 (qx + iqy)2K
aj ai

d

(
n′1 3

2 , n1 1
2

)
1/2(

n′, 1, 3
2 ,− 3

2

) (
n, 1, 1

2 ,− 1
2

) −
√

3
2 (qx + iqy)qzK

aj ai

d

(
n′1 3

2 , n1 1
2

)
1/2(

n′, 1, 3
2 ,− 3

2

) (
n, 1, 3

2 , 3
2

)
0(

n′, 1, 3
2 ,− 3

2

) (
n, 1, 3

2 , 1
2

) √
3

4 (qx + iqy)2
{
K

aj ai

d

(
n′1 3

2 , n1 3
2

)
3/2

− K
aj ai

d

(
n′1 3

2 , n1 3
2

)
1/2

}
(
n′, 1, 3

2 ,− 3
2

) (
n, 1, 3

2 ,− 1
2

) √
3

2 (qx + iqy)qz

{
K

aj ai

d

(
n′1 3

2 , n1 3
2

)
1/2

− K
aj ai

d

(
n′1 3

2 , n1 3
2

)
3/2

}
(
n′, 1, 3

2 ,− 3
2

) (
n, 1, 3

2 ,− 3
2

) 3(1−q2
z )

4 K
aj ai

d

(
n′1 3

2 , n1 3
2

)
1/2

+ 1+3q2
z

4 K
aj ai

d

(
n′1 3

2 , n1 3
2

)
3/2

much smaller than the atomic spectrum, we neglect 	ε̄
ai ,di

nlJM

and employ the atomic spectrum calculated on the basis of
the density functional theory [38,39] with the local density
approximation [39]. The numerical values of ε̄

ai

nlJ + 	ε̄
ai ,di

nlJM

and relativistic TB parameters thus-determined are listed in
Tables II and III, respectively. In a later section (Sec. V), actual
electronic structure calculations by means of the MFRTB
method are performed by using these values, listed in Tables II
and III.

III. MFRTB METHOD

A. Matrix elements of the Hamiltonian

We consider a crystalline material immersed in a uniform
magnetic field. The electrons in the system feel not only the
electric field, which is created by the periodically aligned
atoms, but also the magnetic field. Let us start with the
following Dirac equation for the electron [35]:

H
k(r) = Ek
k(r) (25)

TABLE II. Numerical values of ε̄Si
nlJ + 	ε̄

Si,di

nlJM for the silicon atom.

(n,l,J,M) Numerical values (eV)(
3,0, 1

2 , ± 1
2

) −12.1538(
3,1, 1

2 , ± 1
2

) −5.6148(
3,1, 3

2 , ± 1
2

)
,

(
3,1, 3

2 , ± 3
2

) −5.5853

with

H = cα · { p + eA(r)} + βmc2 +
∑
Rn

∑
i

vai
(r − Rn − di),

(26)
where e is the elementary charge, and where A(r) and
vai

(r − Rn − di) denote the vector potential of a uniform
magnetic field B and the scalar potential caused by the
nucleus of atom ai , the center of which is located at Rn + di ,
respectively. The definitions of vectors Rn and di are the same
as those below Eq. (2). We suppose that a uniform magnetic
field B is applied along the z axis, and that the Landau gauge
is employed for A(r), i.e.,

A(r) = (0, Bx, 0), (27)

TABLE III. Relativistic TB parameters between the nearest-
neighbor atoms for the crystalline silicon.

K1 (n′l′J ′,n l J )|M| Numerical values (eV)

K1

(
3 0 1

2 ,3 0 1
2

)
1/2

−1.7391

K1

(
3 0 1

2 ,3 1 1
2

)
1/2

−1.2037

K1

(
3 0 1

2 ,3 1 3
2

)
1/2

1.7085

K1

(
3 1 1

2 ,3 1 1
2

)
1/2

0.2696

K1

(
3 1 1

2 ,3 1 3
2

)
1/2

−1.8830

K1

(
3 1 3

2 ,3 1 3
2

)
1/2

1.5978

K1

(
3 1 3

2 ,3 1 3
2

)
3/2

−1.0623
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where B is the magnitude of the magnetic field. The four-
component wave function for the electron in a uniform
magnetic field is denoted by 
k(r) in Eq. (25), where the
subscript k is the quantum number related to the magnetic
Bloch theorem, which will be defined later. In order to develop
the MFRTB method, 
k(r) is expanded by using as basis
functions relativistic wave functions of atoms immersed in
a uniform magnetic field. The Dirac equation for an atom
immersed in a uniform magnetic field and located at Rn + di

is given by

[cα · { p + eA(r)} + βmc2 + vai
(r−Rn−di)]ψ

ai, Rn+di

ξ (r)

= ε
ai , Rn+di

ξ ψ
ai , Rn+di

ξ (r), (28)

where ψ
ai, Rn+di

ξ (r) and ε
ai , Rn+di

ξ denote the relativistic atomic
orbital and atomic spectrum in a uniform magnetic field (27).
The subscript ξ in ψ

ai, Rn+di

ξ (r) and ε
ai , Rn+di

ξ is the quantum
number of the atomic system. Expanding 
k(r) in terms of
ψ

ai, Rn+di

ξ (r), we have


k(r) =
∑

ξ

∑
Rn

∑
i

C
ξ

k (Rn + di)ψ
ai, Rn+di

ξ (r), (29)

where C
ξ

k (Rn + di) is the expansion coefficients that should
be determined. Substituting Eq. (29) into Eq. (25), multiplying
ψ

aj , Rm+dj

η (r)† on both sides of Eq. (25) and integrating both
sides with respect to r , we get∑

ξ

∑
Rn

∑
i

HRmjη,RniξC
ξ

k (Rn + di) = EkC
η

k (Rm + dj ),

(30)

where

HRmjη,Rniξ =
∫

ψ
aj , Rm+dj

η (r)†Hψ
ai, Rn+di

ξ (r)d3r. (31)

Similar to the conventional [37] and relativistic TB methods
(Sec. II), we use the following approximation concerning the
relativistic atomic orbitals:∫

ψ
aj , Rm+dj

η (r)†ψai, Rn+di

ξ (r)d3r ≈ δRm,Rn
δj,iδη,ξ . (32)

Equation (32) means that the overlap between the relativistic
atomic orbitals centered on different atoms becomes negligi-
ble. Also, we neglect integrals involving three different centers
since they are generally small compared to integrals involving
two centers or the same centers. This approximation has
been usually adopted in the conventional [37] and relativistic
TB methods (Sec. II). Under these approximations, the
Hamiltonian matrix (31) is given by

HRmjη,Rniξ

= (
ε

ai , Rn+di

ξ + 	ε
ai, Rn+di

ξ

)
δRm,Rn

δj,iδη,ξ

+ (1 − δRm,Rn
δj,i)

∫
ψ

aj , Rm+dj

η (r)†

× vaj
(r − Rm − dj ) + vai

(r − Rn − di)

2

×ψ
ai, Rn+di

ξ (r)d3r, (33)

where 	ε
ai, Rn+di

ξ denotes the energy of the crystal field, which
is given by [40]

	ε
ai, Rn+di

ξ

=
∫

ψ
ai, Rn+di

ξ (r)†
{∑

Rm

∑
k

vak
(r − Rm − dk)

}
(Rm + dk �= Rn + di)

×ψ
ai, Rn+di

ξ (r)d3r. (34)

In order to simplify Eq. (33), let us consider the properties of
ψ

ai, Rn+di

ξ (r) and ε
ai , Rn+di

ξ . From Eq. (28), the Dirac equation
for an atom immersed in a uniform magnetic field and located
at the origin is given by

[cα · { p + eA(r)} + βmc2 + vai
(r)]ψai, 0

ξ (r)

= ε
ai , 0
ξ ψ

ai , 0
ξ (r). (35)

By changing the variable from r to r − Rn − di , Eq. (35) is
rewritten as

[cα · { p + eA(r − Rn − di)} + βmc2 + vai
(r − Rn − di)]

×ψ
ai, 0
ξ (r − Rn − di)

= ε
ai , 0
ξ ψ

ai , 0
ξ (r − Rn − di). (36)

It should be noted that A(r − Rn − di) yields the uniform
magnetic field B as well as A(r). Therefore A(r − Rn − di)
and A(r) are related by the gauge transformation such that

A(r − Rn − di) = A(r) + ∇χ (r, Rn + di), (37)

where χ (r, Rn + di) is a function of both r and Rn + di .
Substitution of Eq. (27) into Eq. (37) leads to [41]

χ (r, Rn + di) = −B(Rnx + dix)y, (38)

where Rnx and dix denote the x-components of Rn and di ,
respectively, and similar notation is used hereafter. Comparing
Eq. (28) with Eq. (36), vector potentials in Eqs. (28) and (36)
are different from each other by the choice of the gauge given
by Eq. (37). Therefore the eigenfunctions and eigenvalues of
Eqs. (28) and (36) are related by

ψ
ai, 0
ξ (r − Rn − di) = e−i e

�
χ(r,Rn+di ) ψ

ai, Rn+di

ξ (r) (39)

and

ε
ai , 0
ξ = ε

ai , Rn+di

ξ , (40)

respectively. In addition, by using Eqs. (34) and (39), we can
immediately get

	ε
ai, di

ξ = 	ε
ai, Rn+di

ξ . (41)

By using Eqs. (39), (40), and (41), the Hamiltonian matrix (33)
is rewritten as

HRmjη,Rniξ = (
ε

ai , 0
ξ + 	ε

ai, di

ξ

)
δRm,Rn

δj,iδη,ξ

+ (1 − δRm,Rn
δj,i)e

−i eB
�

(Rnx+dix−Rmx−djx )(Rmy+djy )

× T
aj ai

ηξ (Rn − Rm + di − dj ) (42)
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with

T
aj ai

ηξ (Rl + di − dj )

=
∫

ψ
aj , 0
η (r)†

vaj
(r) + vai

(r − Rl − di + dj )

2

×ψ
ai, Rl+di−dj

ξ (r)d3r. (43)

Hereafter, we refer to T
aj ai

ηξ (Rl + di − dj ) as the “magnetic
hopping integral.” By using Eq. (39), we can derive the
following property for the magnetic hoping integral:

T
aiaj

ξη (−(Rn + di − dj ))∗

= ei eB
�

(Rnx+dix−djx )(Rny+diy−djx ) T
aj ai

ηξ (Rn + di − dj ). (44)

This property is very important because it guarantees the
hermicity of the Hamiltonian matrix (42). In the following
section, we will approximate the magnetic hopping integral,
and then Eq. (44) may work as one of the criteria of whether
the approximation is physically sound or not.

B. Approximation of the matrix elements

In order to calculate the Hamiltonian matrix (42), we
need both T

aj ai

ηξ (Rl + di − dj ) and ε
ai , 0
ξ + 	ε

ai, di

ξ . For this
aim, we employ the perturbation theory, where the effect
of the magnetic field is treated as the perturbation. This
treatment enables us to calculate both T

aj ai

ηξ (Rl + di − dj ) and

ε
ai , 0
ξ + 	ε

ai, di

ξ by utilizing the atomic spectrum and relativistic
hopping integrals for zero magnetic field.

1. Approximation of ε
ai , 0
ξ + �ε

ai , di
ξ

Since ε
ai , 0
ξ and 	ε

ai, di

ξ are independent of the choice of
the gauge, we may use the symmetric gauge for simplicity
in approximating ε

ai , 0
ξ + 	ε

ai, di

ξ . In the symmetric gauge,
the Dirac equation for the atom is obtained by replacing
A(r) with Asym(r) in Eq. (35), where Asym(r) is the vector
potential in the symmetric gauge and is given as B × r/2.
We shall treat the term ceα · Asym(r) as the perturbation. This
approximation would be valid because ψ

ai, 0
ξ (r) has a large

value in the vicinity of the origin, where the magnitude of
Asym(r) is small. The unperturbed wave function is given by
ϕ

ai

nlJM (r), which is an eigenfunction of Eq. (5). Note that the
unperturbed eigenvalue ε̄

ai

nlJ is (2J + 1)-fold degenerate. In
order to derive the first-order perturbation energy, we shall
consider the matrix elements of ceα · Asym(r) with respect to
degenerate states ϕ

ai

nlJM (r). They are approximately calculated
as 〈

ϕ
ai

nlJM ′
∣∣ ceα · Asym(r)

∣∣ϕai

nlJM

〉 ≈ eB

2m

2J + 1

2l + 1
�MδM, M ′ .

(45)

In the derivation of Eq. (45), the small component of
ϕ

ai

nlJM (r), iG
ai

nlJ (r)yM
2J−l, J (θ, φ)/r , is approximated by σ ·

pF
ai

nlJ (r)yM
l, J (θ, φ)/2mcr [35]. Since the matrix of the pertur-

bation is diagonal as shown in Eq. (45), we can readily obtain
the first-order perturbation energy. This is the reason why
the symmetric gauge is consciously chosen here. Within the
first-order perturbation theory, ε

ai , 0
ξ is therefore approximated

as

ε
ai , 0
ξ ≈ ε̄

ai

nlJ + eB

2m

2J + 1

2l + 1
�M. (46)

As mentioned before, ψ
ai, 0
ξ (r) would be well localized in

the vicinity of the origin, and the magnitude of Asym(r) is
small around there. Therefore it would be reasonable that the
relativistic atomic orbital in a uniform magnetic field, ψai, 0

ξ (r),
is approximated as the unperturbed wave function that fits on to
the perturbation (zeroth-order wave function). From Eq. (45),
we have

ψ
ai, 0
ξ (r)sym ≈ ϕ

ai

nlJM (r), (47)

where the subscript “sym” denotes the atomic orbital in the
symmetric gauge. By using Eqs. (34) and (47), it is also found
that 	ε

ai, di

ξ is approximated by

	ε
ai, di

ξ ≈
∫

ϕ
ai

nlJM (r − di)
†
{∑

Rm

∑
k

vak
(r − Rm − dk)

}
(Rm + dk �= di)

×ϕ
ai

nlJM (r − di)d
3r. (48)

The right-hand side of Eq. (48) is the energy of the crystal field,
which is identical with 	ε̄

ai , di

nlJM from Eq. (9). Using Eqs. (9),
(46), and (48), ε

ai , 0
ξ + 	ε

ai, di

ξ is thus approximated by

ε
ai , 0
ξ + 	ε

ai, di

ξ ≈ ε̄
ai

nlJ + 	ε̄
ai , di

nlJM + eB

2m

2J + 1

2l + 1
�M. (49)

2. Approximation of T
a j ai
ηξ (Rl + di − d j )

In order to evaluate T
aj ai

ηξ (Rl + di − dj ) given by Eq. (43),

we approximate both ψ
aj , 0
η (r) and ψ

ai, Rl+di−dj

ξ (r) by means
of the lowest-order perturbation theory for degenerate states.
Note that both ψ

aj , 0
η (r) and ψ

ai, Rl+di−dj

ξ (r) in Eq. (43) are
the wave functions of the Landau gauge. In general, the wave
function of the Landau gauge can be obtained from that of the
symmetric gauge through the following transformation:

ψ
aj , 0
η (r) = e−i e

2�
Bxyψ

aj , 0
η (r)sym, (50)

ψ
ai, Rl+di−dj

ξ (r) = e−i e
2�

Bxyψ
ai , Rl+di−dj

ξ (r)sym, (51)

where Bxy/2 denotes the gauge transformation function from
the symmetric gauge to the Landau gauge. Using Eqs. (47) and
(50), ψai, 0

η (r) of the Landau gauge is approximately given by

ψ
aj , 0
η (r) ≈ e−i e

2�
Bxyϕ

aj

n′l′J ′M ′ (r), (52)

where ϕ
aj

n′l′J ′M ′ (r) is the zero-order wave function for

ψ
aj , 0
η (r)sym. Furthermore, since ϕ

aj

n′l′J ′M ′ (r) is localized around
the origin, the phase factor e−i e

2�
Bxy would be approximated

by 1 near the region where the magnitude of ϕ
aj

n′l′J ′M ′ (r) is not
negligibly small. Thus we shall approximate Eq. (52) as

ψ
aj , 0
η (r) ≈ ϕ

aj

n′l′J ′M ′ (r). (53)

Similar to Eq. (39), in the case of the symmetric gauge,
ψ

ai, Rl+di−dj

ξ (r)sym is related to ψ
ai, 0
ξ (r − Rl − di + dj )sym
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by

ψ
ai, 0
ξ (r − Rl − di + dj )sym

= e−i eB
2�

{(Rly+diy−djy )x−(Rlx+dix−djx )y}
×ψ

ai, Rl+di−dj

ξ (r)sym, (54)

where we use χ (r,Rl + di − dj ) =
B{(Rly + diy − djy)x − (Rlx + dix − djx)y}/2 for the
symmetric gauge. Using Eqs. (51) and (54), we have

ψ
ai, Rl+di−dj

ξ (r) = e−i e
2�

Bxyψ
ai , Rl+di−dj

ξ (r)sym

= e−i eB
2�

{(Rly+diy−djy )x−(Rlx+dix−djx )y+xy}
×ψ

ai, 0
ξ (r − Rl − di + dj )sym. (55)

Since ψ
ai, 0
ξ (r − Rl − di + dj )sym is localized

around r = Rl + di − dj , the phase factor
e−i eB

2�
{(Rly+diy−djy )x−(Rlx+dix−djx )y+xy} would be approximated

by the phase factor at r = Rl + di − dj . Furthermore, using
Eq. (47), we finally get

ψ
ai, Rl+di−dj

ξ (r) ≈ e−i eB
2�

(Rly+diy−djy )(Rlx+dix−djx )

×ϕ
ai

nlJM (r − Rl − di + dj ). (56)

Substituting Eqs. (53) and (56) into Eq. (43), we obtain the
approximate form of T

aj ai

ηξ (Rl + di − dj ):

T
aj ai

ηξ (Rl + di − dj ) ≈ e−i eB
2�

(Rlx+dix−djx )(Rly+diy−djy )

× t
aj ai

n′l′J ′M ′, nlJM (Rl + di − dj ), (57)

where t
aj ai

n′l′J ′M ′, nlJM (Rl + di − dj ) is the relativistic hopping
integral for zero magnetic field, and is defined by Eq. (8). In this
approximation, the effect of the magnetic field is stuffed into
the phase factor e−i eB

2�
(Rlx+dix−djx )(Rly+diy−djy ). Equation (57)

is just identical with the approximation using Peierls phase
[9,13]. That is to say, the Peierls phase is revisited by the
lowest-order approximation of the perturbation theory. This
means that not only is the validity of using the Peierls phase
confirmed [9,13], but systematical improvements beyond
Eq. (57) would also be possible by incorporating the higher-
order corrections of the perturbation theory into Eq. (47). In
this paper, as the first trial, we shall use the approximation with
Eq. (57).

Concerning Eq. (57), we also emphasize that the Hamilto-
nian matrix with the use of Eq. (57) remains to be a Hermitian
matrix as it should be. This is easily confirmed by the fact that
Eq. (57) satisfies Eq. (44).

Substitution of Eqs. (49) and (57) into Eq. (42) leads to

HRmj (n′l′J ′M ′),Rni(nlJM) =
(

ε̄
ai

nlJ + 	ε̄
ai , di

nlJM + eB

2m

2J + 1

2l + 1
�M

)
δRm,Rn

δj,iδn′l′J ′M ′, nlJM

+ (1 − δRm,Rn
δj,i)e

−i eB
2�

(Rnx+dix−Rmx−djx )(Rny+diy+Rmy+djy ) t
aj ai

n′l′J ′M ′, nlJM (Rn − Rm + di − dj ). (58)

The effects of the magnetic field are included both in the diagonal elements [the first term of Eq. (58)] as the Zeeman term and
in the off-diagonal elements as the phase factor e−i eB

2�
(Rlx+dix−djx )(Rly+diy−djy ). It is also found from Eq. (58) that relativistic effects

are included in ε̄
ai

nlJ + 	ε̄
ai , di

nlJM and in the relativistic hopping integral t
aj ai

n′l′J ′M ′, nlJM (Rn − Rm + di − dj ). Substituting Eq. (58)
into Eq. (30), and rewriting η and ξ by (n′,l′,J ′,M ′) and (n,l,J,M), respectively, the simultaneous equations for the expansion
coefficients are given by(

ε̄
aj

n′l′J ′ +	ε̄
aj , dj

n′l′J ′M ′ + eB

2m

2J ′ + 1

2l′ + 1
�M ′

)
Cn′l′J ′M ′

k (Rm + dj ) +
∑
nlJM

∑
Rn

∑
i

(1 − δRm,Rn
δj,i)e

−i eB
2�

(Rnx+dix−Rmx−djx )(Rny+diy+Rmy+djy )

× t
aj ai

n′l′J ′M ′, nlJM (Rn − Rm + di − dj )CnlJM
k (Rn + di) = EkC

n′l′J ′M ′
k (Rm + dj ). (59)

Equation (59) can be rewritten by replacing the sums with respect to Rn and i by the sum with respect to the vectors connecting
the atom located at Rm + dj to its neighboring atoms. Since such vectors are independent of Rm but dependent on dj , they are
denoted as TW (dj ) (W = 1, 2, 3, . . . ). W is numbered in the following order: W = 1, 2, . . . ,W1 for the nearest-neighbor atoms,
W = W1 + 1, W1 + 2, . . . ,W2 for the second-nearest-neighbor atoms, W = W2 + 1, W2 + 2, . . . ,W3 for the third-nearest-
neighbor atoms, and so on. Note that since TW (dj ) also denotes the vectors connecting aj atom to ai atom, ai varies with W . If
we denote the dependence of ai on W by A(W ), then Eq. (59) is rewritten by(

ε̄
aj

n′l′J ′ + 	ε̄
aj , dj

n′l′J ′M ′ + eB

2m

2J ′ + 1

2l′ + 1
�M ′

)
Cn′l′J ′M ′

k (Rm + dj )

+
∑
nlJM

∑
W

e−i eB
2�

TWx (dj ){TWy (dj )+2Rmy+2djy } taj A(W )
n′l′J ′M ′, nlJM (TW (dj ))CnlJM

k (TW (dj ) + Rm + dj )

= EkC
n′l′J ′M ′
k (Rm + dj ). (60)

Although we can obtain the coefficients CnlJM
k (Rn + di) and

Ek by solving the simultaneous equation [Eq. (60)], there
are two problems in performing actual calculations. One is
that we need the numerical values of t

aj A(W )
n′l′J ′M ′, nlJM (TW (dj )).

In the previous section, we have already presented the
relativistic Slater-Koster table that enables us to calculate
t
aj A(W )
n′l′J ′M ′, nlJM (TW (dj )). As will be shown in the subsequent sec-

tions, using the relativistic Slater-Koster table, the relativistic
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hopping integral t
aj A(W )
n′l′J ′M ′, nlJM (TW (dj )) is expressed in terms

of several TB parameters. TB parameters can be determined
by requiring them to reproduce the electronic structure for
zero magnetic field (as already mentioned in Sec. II). Another
problem is that we have to solve the simultaneous equation
with an infinite number of expansion coefficients. In order to
overcome this problem, we employ the knowledge obtained
from the translation symmetry, i.e., magnetic Bloch theorem.
In Secs. IV and V, we show with specific examples that Eq. (60)
is reduced to the simultaneous equation with a finite number
of coefficients with the aid of the magnetic Bloch theorem.

IV. APPLICATION TO THE TWO-DIMENSIONAL
SQUARE LATTICE

In this section, we consider the two-dimensional square
lattice immersed in a uniform magnetic field. We suppose that
atoms have only s electrons (l = 0) and are located at the lattice
points. It is shown that Eq. (60) is reduced to the simultaneous
equation with a finite number of expansion coefficients via the
magnetic Bloch theorem.

The purpose of dealing with this system is to check the
validity of the MFRTB method, and to confirm the benefits
of treating the relativistic effects, because this system was
previously calculated with the nonrelativistic TB method by
Hofstader [8], and the results are well known [8].

A. Magnetic Bloch theorem

The lattice vectors of the two-dimensional square lattice
with the lattice constant a are given by

Rn = n1aex + n2aey

= n1a1 + n2a2, (61)

where n1 and n2 are integers, and a1 = aex , a2 = aey . The
magnetic field is directed along the z axis, and its magnitude
B is supposed to be expressed by

B = 2π�

ea2

p

q
, (62)

where p and q are relatively prime integers [8,42,43]. Let us
consider a set of magnetic translation operators that commute
with each other. The magnetic translation operator U (Rn) is
defined by

U (Rn) = ei e
�

χ(r ,Rn)T (Rn), (63)

where T (Rn) denotes the usual translation operator given by
e−i Rn· p/� [44]. It is easily shown that U (Rn) commutes with
the Hamiltonian (26):

[U (Rn), H ] = 0. (64)

Using Eqs. (38) and (63), the multiplication of U (Rn) and
U (Rm) leads to

U (Rn)U (Rm) = e
−2πi

p

q
m1n2U (Rn + Rm). (65)

Reversing the order of Rn and Rm in both sides of Eq. (65),
and canceling U (Rn + Rm) of Eq. (65) by using thus-obtained
equation, we get

U (Rn)U (Rm) = e
−2πi

p

q
(m1n2−n1m2)

U (Rm)U (Rn). (66)

From this relation, if we take the set of the magnetic translation
operators such as

{U (tn)| tn = n1a1 + qn2a2} , (67)

then this set is shown to form an Abelian group [45]. Note that
the set of translation vectors tn represents a two-dimensional
rectangular lattice with a unit cell of sides a and qa. In
general, the eigenfunctions of the Hamiltonian, which belong
to a degenerate level, form basis functions of the irreducible
representations (IRs) of the symmetry group of the Hamil-
tonian [46,47]. In addition, all IRs of an Abelian group are
necessarily one-dimensional [47]. Therefore, eigenfunctions

k(r) are basis functions of IRs of the Abelian group Eq. (67),
i.e., we have

U (tn)
k(r) = c(tn)
k(r), (68)

where c(tn) is the IR of the Abelian group. The normalization
condition on c(tn)
k(r) and Eq. (65) using tn and tm instead
of Rn and Rm (the phase factor of the right-hand side is equal
to unity) lead to

c(tn) = eik·tn (69)

with a wave vector k given by

k = k1b1 + k2b2, (70)

where k1 and k2 are real numbers that satisfy −1/2 � k1 < 1/2
and −1/2 � k2 < 1/2, respectively, and where b1 and b2 are
“magnetic reciprocal lattice vectors” defined as

b1 = 2π

a
ex

(71)
b2 = 2π

qa
ey.

From Eqs. (70) and (71), the “magnetic first Brillouin zone” is
denoted by a rectangle with length 2π/(qa) and width 2π/a.

Using Eqs. (63), (68), and (69), we have

�k(r − tn) = eik·tnei eB
�

tnxy�k(r). (72)

Equation (72) is regarded as the extension of the Bloch
theorem for electrons that move in a periodic potential of
the crystal and uniform magnetic field. Namely, Eq. (72) may
be referred to as the “magnetic Bloch theorem.” Compared
to the conventional Bloch theorem, the phase factor ei eB

�
tnxy

is additionally multiplied to the right-hand side. Of course,
Eq. (72) reduces to the conventional Bloch theorem when
B = 0.

B. Reduction of simultaneous equations via the magnetic
Bloch theorem

From Eq. (72), we can derive the requirement fulfilled by
the expansion coefficients of Eq. (29). Substituting Eq. (29)
into Eq. (72), and using Eqs. (32) and (39), we get

C
ξ

k (tn + I a2) = e−ik·tnCξ

k (I a2), (73)

where I = 0, 1, . . . , q − 1. It should be noted that all lattice
vectors Rn are expressed as tn + I a2 = (n1q + I )aex +
n2aey . Equation (73) means that all coefficients C

ξ

k (tn + I a2)
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TABLE IV. Phase factors e−i eB
2�

TWx (TWy+2I ′a) and coefficients
CnlJM

k (I ′a2 + TW ) for the nearest-neighbor atoms, which appear in
the left-hand side of Eq. (74).

W TW e−i eB
2�

TWx (TWy+2I ′a) CnlJM
k (I ′a2 + TW )

1 (0, a) 1 CnlJM
k ((I ′ + 1)a2)

2 (0,−a) 1 CnlJM
k ((I ′ − 1)a2)

3 (a, 0) e
−2πi

p
q I ′

e−2πik1CnlJM
k (I ′a2)

4 (−a, 0) e
2πi

p
q I ′

e2πik1CnlJM
k (I ′a2)

can be obtained by using Eq. (73) if we get q coefficients
{Cξ

k (I a2)|I = 0, 1, . . . , q − 1}.
By replacing Rm with tm + I ′a2 (I ′ = 0, 1, . . . , q − 1),

and by using Eq. (73), Eq. (60) for the two-dimensional square
lattice is rewritten as(

ε̄n′l′J ′ + 	ε̄n′l′J ′M ′ + eB

2m

2J ′ + 1

2l′ + 1
�M ′

)
Cn′l′J ′M ′

k (I ′a2)

+
∑
nlJM

∑
W

e−i eB
2�

TWx (TWy+2I ′a) tn′l′J ′M ′, nlJM (TW )

×CnlJM
k (I ′a2 + TW ) = EkC

n′l′J ′M ′
k (I ′a2). (74)

In deriving Eq. (74), we use the relation e−i eB
�

TWx tmy = 1, which
is easily shown by considering the positions of the neighboring

atoms. It should be noted that the same atoms are located on
the lattice points in this case and therefore dependencies on ai

and di are omitted in Eq. (74). Since the vector I ′a2 + TW is
generally rewritten in the form of tn′′ + I ′′a2, the coefficient
CnlJM

k (I ′a2 + TW ) of the left-hand side can be rewritten as

CnlJM
k (I ′a2 + TW ) = e−ik·tn′′ CnlJM

k (I ′′a2), (75)

by use of Eq. (73). Therefore Eq. (74) represents the si-
multaneous equations with a finite number of coefficients
{CnlJM

k (I a2)|I = 0, 1, . . . , q − 1}. Namely, the simultaneous
equations with an infinite number of coefficients [Eq. (60)] are
simplified to those with a finite number of coefficients owing
to the magnetic Bloch theorem.

We shall examine the electronic states near the Fermi level,
and take into account only the relativistic hopping integral
between the nearest-neighbor atoms. Since atoms have only the
s electrons (l = 0), as mentioned above, we consider the cases
for l = l′ = 0, J = J ′ = 1/2, n = n′, and M ( or M ′ ) =
±1/2 in Eq. (74). Concrete expressions for the phase factor
e−i eB

2�
TWx{TWy+2I ′a} and coefficient CnlJM

k (I ′a2 + TW ) in the
left-hand side of Eq. (74) are given in Table IV. Furthermore,
using the relativistic Slater-Koster table (Table I), Eq. (74) is
rewritten as

{
ε̄n′0 1

2
+ 	ε̄n′0 1

2 M ′ + eB

m
�M ′ + 2K1

(
n′ 0

1

2
,n′ 0

1

2

)
1/2

cos

[
2π

(
p

q
I ′ + k1

)]}
C

n′0 1
2 M ′

k (I ′a2)

+K1

(
n′ 0

1

2
,n′ 0

1

2

)
1/2

[
C

n′0 1
2 M ′

k ((I ′ + 1)a2) + C
n′0 1

2 M ′

k ((I ′ − 1)a2)
]

= EkC
n′0 1

2 M ′

k (I ′a2). (76)

It should be noted that due to Eq. (73), C
n′0 1

2 M ′

k ((I ′ + 1)a2) and C
n′0 1

2 M ′

k ((I ′ − 1)a2) in Eq. (76) are equal to

C
n′0 1

2 M ′

k ((I ′ + 1)a2) =
{

e−2πik2C
n′0 1

2 M ′

k (0) for I ′ = q − 1,

C
n′0 1

2 M ′

k ((I ′ + 1)a2) for I ′ �= q − 1,
(77)

C
n′0 1

2 M ′

k ((I ′ − 1)a2) =
{

e2πik2C
n′0 1

2 M ′

k ((q − 1)a2) for I ′ = 0,

C
n′0 1

2 M ′

k ((I ′ − 1)a2s) for I ′ �= 0,a
(78)

respectively. It is found from Eqs. (77) and (78) that Eq. (76)
represents the simultaneous equations for 2q coefficients

{Cn0 1
2 M

k (I a2)|I = 0, 1, . . . , q − 1, M = ±1/2}.
If we neglect the Zeeman term, then Eq. (76) is reduced to

an equivalent form to that of Hofstadter [8]. Actually, as can be
seen in the next section, Sec. IV C, the calculation results are
identical with those of Hofstadter [8] in the case of no Zeeman
term.

C. Calculation results

The energy eigenvalues for the two-dimensional square
lattice are calculated on the basis of Eq. (76). Since the
qualitative shapes of the energy dispersion and diagram are not
dependent on the choice of the values of ε̄n0 1

2
+ 	ε̄n0 1

2 M and

K1(n 0 1
2 ,n 0 1

2 )1/2, they are taken from those for the crystalline

silicon, which are already listed in Tables II and III. Figure 1
shows the energy dispersion Ek for the two-dimensional square
lattice in the presence of the uniform magnetic field, where
p and q are fixed at 40 and 401, respectively. The inset
of Fig. 1 is the magnified view. The labels indicated in the
horizontal axis of Fig. 1 denote the special k points in the
magnetic first Brillouin zone, which is shown in Fig. 2. It is
found from Fig. 1 that Ek depends little on k, while the band
dispersion for the zero magnetic field case ordinarily depends
on k because it is written as the cosine curve with an amplitude
of 2|K1(3 0 1

2 ,3 0 1
2 )1/2| = 3.4782 eV. By applying the magnetic

field, the orbital motion of electrons in the plane perpendicular
to the magnetic field is essentially changed corresponding to
the quantization of the orbital motion of electrons in the mag-
netic field. As a result, Ek curves become nearly flat as shown
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FIG. 1. Energy dispersion for a two-dimensional square lattice
immersed in a uniform magnetic field. Values of p and q are 40 and
401, respectively. The inset is the magnified view. The labels in the
horizontal axis denote the special k points that are indicated in Fig. 2.

in Fig. 1. The bandwidths of these flat bands are obviously
dependent on the magnitude of the magnetic field. The widths
increase as the magnetic field becomes large, as shown in
Figs. 3(a)–3(c). This behavior can be observed also in the
crystalline silicon, which will be in the next section. Detailed
discussions on this bandwidth will be developed in Sec. V D.

The magnetic-field-dependent energy diagrams are calcu-
lated with and without the Zeeman term in Eq. (76). The results
with and without the Zeeman term are shown in Figs. 4(a)
and 4(b), respectively, where all values of Ek for k’s that
correspond to the horizontal axis of Fig. 1 are plotted in
each magnetic field. In these calculations, p changes from

π /qa

ky

kxΓ(0, 0) X( /a, 0)

M( /a, /qa)π π

π

FIG. 2. The magnetic first Brillouin zone for a two-dimensional
square lattice immersed in a uniform magnetic field.
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FIG. 3. Magnetic-field dependence of the energy dispersion for a
two-dimensional square lattice immersed in a uniform magnetic field.
Energy dispersions in the cases of (a) p/q = 1/101, (b) p/q = 1/31,
and (c) p/q = 1/11.

1 to 401 with fixing q at 401. Due to the Zeeman term of
Eq. (76), the energy diagram shown in Fig. 4(a) splits into
two parts. It is also confirmed that the magnitude of the band
splitting becomes large as the magnetic field increases. As
can be seen in Fig. 4(b), the Hofstadter butterfly diagram [8]
is reproduced in the case of no Zeeman term as is expected
from Eq. (76). Namely, Fig. 4(b) has the properties of the
Butterfly diagram, which are shown by D. Hofstadter [8]. For
example, the spectrum for p/q is identical with the spectra for
p/q + n (n: integers) and −p/q [8]. Thus the present MFRTB
method is recognized as a generalized method that includes the
Hofstadter method [8].

V. APPLICATION TO A CRYSTALLINE SILICON
IMMERSED IN A MAGNETIC FIELD

In this section, we shall apply the MFRTB method to
a crystalline silicon immersed in a magnetic field. Similar
to the case of a two-dimensional square lattice (Sec. IV),
nearly flat Ek curves and a magnetic-field dependence of their
bandwidths are observed also for this system. In addition, as
mentioned in Sec. I, the present MFRTB method suggests
a way to determine a formula of the magnetic field that is
consistent with the magnetic Bloch theorem. With emphasis on
these points, we present the electronic structure of a crystalline
silicon immersed in a magnetic field.

A. Magnetic Bloch theorem for the crystalline silicon

Crystalline silicon has the diamond structure, the lattice
of which is the face-centered cubic (FCC). The translation
vectors of the diamond structure with the lattice constant a are
given by

Rn = n1a1 + n2a2 + n3a3, (79)
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FIG. 4. (a) Dependence of the energy diagram on the magnetic
field for the two-dimensional square lattice. (b) Hofstadter butterfly
diagram calculated on the basis of the MFRTB method neglecting the
Zeeman term.

where

a1 = a

2
(ex + ey),

a2 = a

2
(ex + ez), (80)

a3 = a

2
(ey + ez)

z

x

y

a

a 2a

qa/2

qa

(a)
    

4π/qa

2π/qa

4π/a

4π/a

ky

kx

kz (b)
    

kz

Rz

Rx

P

Y

X
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Az

Γ

ky
kx

2 2

2 1 1 1 1X: ,0,
2 4 2 4a q q
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⎝ ⎠

( ): 0, 0, 0Γ

2

2 1 2P: 1, 0,
2a q

π ⎛ ⎞+
⎜ ⎟⎜ ⎟
⎝ ⎠

( )2R : 1, 0, 0x a
π

2 1A : 1, , 0x a q
π ⎛ ⎞
⎜ ⎟
⎝ ⎠

(c)

FIG. 5. (a) Schematic view of the lattice defined by the translation
vectors tn (= n1qa1 + n2a2 + n3a′

3). (b) Schematic view of the
reciprocal lattice spanned by Eq. (87). (c) Schematic view of the
magnetic first Brillouin zone for the crystalline silicon immersed in
a magnetic field directed along the z axis.

are the primitive translation vectors, and where n1, n2, and
n3 are integers. Two silicon atoms are located at d1 = 0 and
d2 = a(ex + ey + ez)/4 from each lattice point, respectively.
Suppose that the magnetic field is directed along the z axis,
and that its magnitude B is given by [48]

B = 16π�

ea2

p

q
, (81)
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where p and q are relatively prime integers, and q is supposed
to be a primitive number that is larger than 2. This form is
introduced so that the solution of Eq. (60) is consistent with
the magnetic Bloch theorem. This point will be discussed later.

Similar to the case of the two-dimensional square lattice,
let us consider a set of magnetic translation operators that
commute with each other. By using Eqs. (38), (63), (79), and
(81), the multiplication of two magnetic translation operators
is given by

U (Rn)U (Rm) = e
−2πi

2p

q
(m1+m2)(n1+n3)

U (Rn + Rm). (82)

Reversing the order of Rn and Rm in both sides of Eq. (82),
and canceling U (Rn + Rm) of Eq. (82) by using thus-obtained
equation, we get

U (Rn)U (Rm) = e
−2πi

2p

q
{(m1+m2)(n1+n3)−(m1+m3)(n1+n2)}

×U (Rm)U (Rn). (83)

Using Eq. (83), we can easily find what set of the translation
operators forms the Abelian group. Specifically, the following
set forms the Abelian group

{U (tn)| tn = n1qa1 + n2a2 + n3a′
3}, (84)

where a′
3 = a (ez − ex) /2. It is also shown that Eq. (84) has

the smallest period of the translation among the operator sets
that form the Abelian groups. Note that the set of three vectors
a1, a2, and a′

3 is one of the choices of the primitive translation
vectors of the FCC lattice as well as the set of a1, a2, and a3.
The set of lattice points {tn} forms the body-centered tetragonal
lattice, which is extended along the y axis as shown in Fig. 5(a).

According to the general discussion on the relation between
the eigenfunctions of the Hamiltonian and the basis functions
of IRs of the symmetry group [47], we can say that the
eigenfunctions of the Hamiltonian, which are denoted by

k(r), can be the basis functions of IRs of Eq. (84). In a similar

way to the case of the two-dimensional square lattice, we have

U (tn)
k(r) = eik·tn
k(r), (85)

with the wave vector k given by

k = k1b1 + k2b2 + k3b3, (86)

where k1, k2, and k3 are real numbers that take
− 1

2 � k1, k2, k3 < 1
2 , and where b1, b2, and b3 are

magnetic reciprocal lattice vectors for the crystalline silicon,
which are defined as

b1 = 4π

aq
ey,

b2 = 2π

a
(ex − ey + ez), (87)

b3 = 2π

a
(−ex + ey + ez).

The reciprocal lattice spanned by Eq. (87) and the
corresponding magnetic first Brillouin zone are given in
Figs. 5(b) and 5(c), respectively.

Equations (38), (63), and (85) lead to the magnetic Bloch
theorem for the crystalline silicon:


k(r − tn) = eik·tnei eB
�

tnxy
k(r). (88)

This theorem is used in the next section to reduce the order of
the simultaneous equations (60) to finite.

B. Reduction of simultaneous equations via the magnetic
Bloch theorem

The lattice vectors Rn are expressed by

tn + I a1 = (n1q + I )a1 + n2a2 + n3a′
3, (89)

where I = 0, 1, . . . , q − 1. Similar to the case of the two-
dimensional square lattice, substituting Eq. (29) into Eq. (88),
and using Eqs. (39) and (89), we have

∑
ξ

∑
tn

q−1∑
I=0

∑
i

{
C

ξ

k (tn + I a1 + di − tm) − eik·tmC
ξ

k (tn + I a1 + di)
}
ψ

ai, tn+I a1+di

ξ (r) = 0. (90)

Utilizing the orthonormality of the basis functions, i.e., Eq. (32), a relation between the expansion coefficients is obtained:

C
ξ

k (tm + I a1 + di) = e−ik·tmC
ξ

k (I a1 + di). (91)

Equation (91) is an alternative expression of the magnetic Bloch theorem.
Rewriting Eq. (60) by using tm + I ′a1 instead of Rm, and substituting Eq. (91) into this, we have(

ε̄
aj

n′l′J ′ + 	ε̄
aj , dj

n′l′J ′M ′ + eB

2m

2J ′ + 1

2l′ + 1
�M ′

)
Cn′l′J ′M ′

k (I ′a1 + dj ) +
∑
nlJM

∑
W

e−i eB
2�

TWx (dj )[TWy (dj )+2tmy+2I ′a1y+2djy ]

× tn′l′J ′M ′, nlJM (TW (dj ))CnlJM
k (TW (dj ) + I ′a1 + dj ) = EkC

n′l′J ′M ′
k (I ′a1 + dj ), (92)

where we remove the superscripts of the hopping integral since all sites are, of course, occupied by the silicon atoms. It should
be noticed that since TW (dj ) + I ′a1 + dj denotes the position of Si atom, this vector is rewritten in the form of tn′ + I ′′a1 + di ′ .
Therefore CnlJM

k (TW (dj ) + I ′a1 + dj ) in the left-hand side of Eq. (92) is rewritten as

CnlJM
k (TW (dj ) + I ′a1 + dj ) = e−ik·tn′ CnlJM

k (I ′′a1 + di ′), (93)

where Eq. (91) is used. Equations (92) and (93) mean the reduction of the simultaneous equation (60).
That is to say, they are regarded as the simultaneous equations for the finite number of coefficients
{CnlJM

k (I a1 + di)| I = 0, 1, 2, . . . , q − 1; i = 1, 2; nlJM}.
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TABLE V. Phase factors e−i eB
2�

TWx (d1)(TWy (d1)+2I ′a1y+2d1y) and coefficients CnlJM
k (TW (d1) + I ′a1 + d1) that appear in the left-hand side of

Eq. (95).

W TW (d1) e−i eB
2�

TWx (d1)(TWy (d1)+I ′a1y+2d1y) CnlJM
k (TW (d1) + I ′a1 + d1)

1 a

4 (1, 1, 1) e
−2πi

p
q

(
I ′+ 1

4

)
CnlJM

k (I ′a1 + d2)

2 a

4 (1,−1,−1) e
−2πi

p
q

(
I ′− 1

4

)
e2πik3CnlJM

k ((I ′ − 1)a1 + d2)

3 a

4 (−1, 1,−1) e
2πi

p
q

(
I ′+ 1

4

)
e2πik2CnlJM

k (I ′a1 + d2)

4 a

4 (−1,−1, 1) e
2πi

p
q

(
I ′− 1

4

)
CnlJM

k ((I ′ − 1)a1 + d2)

Equation (92) includes an important suggestion for a way to determine the formula of the magnetic field. Here, we shall give
an important comment on the formula of the magnetic field that is consistent with the magnetic Bloch theorem. If the magnetic
field were given by

B = 8π�

ea2

p

q
(94)

instead of Eq. (81), then the phase factor e−i eB
�

TWx (dj )tmy that appears in Eq. (92) would not be equal to 1 and would depend on tmy .
In this case, the simultaneous equations for the set of coefficients {CnlJM

k (I a1 + di)| I = 0, 1, 2, . . . , q − 1; i = 1, 2; nlJM}
vary with tmy although the set of coefficients, of course intrinsically, does not depend on tmy . This means that the original
simultaneous equations [Eq. (60)] for the magnetic field (94) lead to solutions that are not consistent with the magnetic Bloch
theorem [Eq. (91)]. This difficulty seems to come from the incompleteness of the set of basis functions {ψξ, ai

Rn+di
(r)}. In order

to avoid this difficulty, the magnitude of the magnetic field is chosen in the form of Eq. (81) [49]. Namely, if the form of the
magnetic field is chosen like Eq. (81), then the phase factor e−i eB

�
TWx (dj )tmy is shown to be equal to 1, which makes the solution of

Eq. (92) consistent with the magnetic Bloch theorem. Considering this fact, i.e., e−i eB
�

TWx (dj )tmy = 1, Eq. (92) is finally rewritten
as (

ε̄
aj

n′l′J ′ + 	ε̄
aj , dj

n′l′J ′M ′ + eB

2m

2J ′ + 1

2l′ + 1
�M ′

)
Cn′l′J ′M ′

k (I ′a1 + dj )

+
∑
nlJM

∑
W

e−i eB
2�

TWx (dj ){TWy (dj )+2I ′a1y+2djy } tn′l′J ′M ′, nlJM (TW (dj ))CnlJM
k (TW (dj ) + I ′a1 + dj ) = EkC

n′l′J ′M ′
k (I ′a1 + dj ).

(95)

C. Concrete expressions for the simultaneous equations

Let us give the concrete expressions for the simultaneous equations used in the actual calculations. In order to consider the
electronic states in the vicinity of the Fermi level, we shall take s and p electrons of the outer shells of the Si atom in calculating
the hopping integrals. Namely, we consider the hopping integrals between the following eight shells:

(n, l, J,M) = (
3,0, 1

2 , ± 1
2

)
,

(
3,1, 1

2 , ± 1
2

)
,
(
3,1, 3

2 , ± 1
2

)
,

(
3,1, 3

2 , ± 3
2

)
. (96)

Furthermore, we consider only the electron hoppings between the nearest-neighbor atoms. Specifically, four kinds of vectors
TW (dj ) ( W = 1 − 4) are considered in the calculations.

In the following, we show the concrete expression for Eq. (95) in the cases for (i) dj = d1 and (ii) dj = d2, individually. The
phase factors e−i eB

2�
TWx (dj ){TWy (dj )+2I ′a1y+2djy} and coefficients CnlJM

k (TW (dj ) + I ′a1 + dj ) in the left-hand side of Eq. (95) are
given in Tables V and VI for both cases [(i) and (ii)]. Using these, we have

TABLE VI. Phase factors e−i eB
2�

TWx (d2)(TWy (d2)+2I ′a1y+2d2y) and coefficients CnlJM
k (TW (d2) + I ′a1 + d2) that appear in the left-hand side of

Eq. (95).

W TW (d2) e−i eB
2�

TWx (d2)(TWy (d2)+2I ′a1y+2d2y) CnlJM
k (TW (d2) + I ′a1 + d2)

1 a

4 (1, 1, 1) e
2πi

p
q

(
I ′+ 1

2

)
CnlJM

k (I ′a1)

2 a

4 (1,−1,−1) e
2πi

p
q

(
I ′+ 3

4

)
e−2πik3CnlJM

k ((I ′ + 1)a1)

3 a

4 (−1, 1,−1) e
−2πi

p
q

(
I ′+ 1

2

)
e−2πik2CnlJM

k (I ′a1)

4 a

4 (−1,−1, 1) e
−2πi

p
q

(
I ′+ 3

4

)
CnlJM

k ((I ′ + 1)a1)
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(i) dj = d1,(
ε̄Si

3l′J ′ + 	ε̄
Si, d1
3l′J ′M ′ + eB

2m

2J ′ + 1

2l′ + 1
�M ′

)
C3l′J ′M ′

k (I ′a1)

+
∑
lJM

[
e
−2πi

p

q
(I ′+ 1

4 )
t3l′J ′M ′, 3lJM (T 1(d1)) + e

2πi
p

q
(I ′+ 1

4 )
e2πik2 t3l′J ′M ′, 3lJM (T 3(d1))

]
C3lJM

k (I ′a1 + d2)

+
∑
lJM

[
e
−2πi

p

q
(I ′− 1

4 )
e2πik3 t3l′J ′M ′, 3lJM (T 2(d1)) + e

2πi
p

q
(I ′− 1

4 )
t3l′J ′M ′, 3lJM (T 4(d1))

]
C3lJM

k ((I ′ − 1)a1 + d2)

= EkC
3l′J ′M ′
k (I ′a1) (97)

with

C3lJM
k ((I ′ − 1)a1 + d2) =

{
e2πik1C3lJM

k ((q − 1)a1 + d2) for I ′ = 0,

C3lJM
k ((I ′ − 1)a1 + d2) for I ′ �= 0.

(98)

(ii) dj = d2,(
ε̄Si

3l′J ′ + 	ε̄
Si, d2
3l′J ′M ′ + eB

2m

2J ′ + 1

2l′ + 1
�M ′

)
C3l′J ′M ′

k (I ′a1 + d2)

+
∑
lJM

[
e

2πi
p

q
(I ′+ 1

2 )
t3l′J ′M ′, 3lJM (T 1(d2)) + e

−2πi
p

q
(I ′+ 1

2 )
e−2πik2 t3l′J ′M ′, 3lJM (T 3(d2))

]
C3lJM

k (I ′a1)

+
∑
lJM

[
e

2πi
p

q
(I ′+ 3

4 )
e−2πik3 t3l′J ′M ′, 3lJM (T 2(d2)) + e

−2πi
p

q
(I ′+ 3

4 )
t3l′J ′M ′, 3lJM (T 4(d2))

]
C3lJM

k ((I ′ + 1)a1)

= EkC
3l′J ′M ′
k (I ′a1 + d2) (99)

with

C3lJM
k ((I ′ + 1)a1)

=
{

e−2πik1C3lJM
k (0) for I ′ = q − 1,

C3lJM
k ((I ′ + 1)a1) for I ′ �= q − 1.

(100)

In Eqs. (97) and (99), the summation on l, J , and M is
over eight states given in Eq. (96). The hopping integrals
can be transcribed by the TB parameters with the aid of the
relativistic Slater-Koster table shown in Table I. Equations (97)
and (99) form simultaneous equations with a finite number
of coefficients {C3lJM

k (I a1 + di) | I = 0, 1, . . . , q − 1; i =
1, 2; (3, l, J,M) = Eq. (96)}.

D. Energy bands for a crystalline silicon immersed
in a magnetic field

1. Energy dispersion

Figure 6 shows the energy bands for a crystalline silicon
immersed in a uniform magnetic field, where p and q are
fixed at 1 and 101, respectively. We have 16q (= 1616) energy
bands in the energy dispersion because 16q eigenvalues of Ek
are obtained for each k. The labels indicated in the horizontal
axis of Fig. 6 denote the points in the magnetic first Brillouin
zone [Fig. 5(c)]. Points P , Rx , and Ax are quite close to each
other owing to the present magnetic field. Their coordinates are
explicitly given in Fig. 5(c). It is found from Fig. 6 that values
of Ek obviously change depending on kz (� - X - P line). This
corresponds to the fact that the electron is not subjected to
the Lorentz force in the z direction, and makes the relatively
large hopping along the z direction. On the other hand, Ek

depends little on kx and ky , and gap structures are observed in
the Rx - Ax - � line, similar to the case of the two-dimensional
square lattice. Zooming in these flat bands for several cases
[Figs. 7(a)–7(e)], we can find the following five properties in
Ek curves.

(i) It is found that Ek is periodic in the kx-ky plane. Similar
to the case of the two-dimensional square lattice [50], this
periodicity comes from the symmetry of the crystalline silicon
immersed in the z-directed magnetic field. Namely, since Ek

is a periodic function of ky with the period of 4π/aq that
corresponds to the width of the magnetic first Brillouin zone,
Ek also becomes a periodic function of kx with the same period.

(ii) In order to investigate the gap structures observed in the
kx-ky plane, let us consider the case where the rational number
p/q in Eq. (81) is given by 1/q (p = 1). It is expected that
the number of allowed bands is approximately proportional to
q, because the number of energy bands Ek is given by 16q.
Indeed, we find a relation such that N ∝ 6q, where N is the
number of allowed bands, which is directly confirmed through
numerical calculations. From this property, the bandwidth is
expected to decrease with q. The magnetic-field dependence
of the bandwidth will be discussed in property (iv).

(iii) Next, we consider the case where p/q is nearly equal
to 1/q ′, i.e., q ≈ pq ′, where q ′ is a prime integer. Figures
7(a)–7(e) show energy bands in the kx-ky plane for the cases of
1/q ′ = 1/11, p/q = 2/23, 3/31, 4/41, and 5/53, respectively.
It is found from these figures that p allowed bands are observed
in the case of p/q, while one allowed band is observed in the
case of 1/q ′. Therefore N allowed bands for the case of 1/q ′
are respectively divided into p allowed bands for the case
of p/q.
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FIG. 6. Energy dispersions for a crystalline silicon immersed in
a uniform magnetic field. The values of p and q are 1 and 101,
respectively. The labels in the horizontal axis denote the special k
points that are indicated in Fig. 5(c).

This property can be recognized as follows. Because of the
relation q ≈ pq ′, in the case of p/q, the period of tn along
the a1 direction is p times longer than that in the case of 1/q ′.
Therefore, due to the folding of the magnetic first Brillouin
zone, p energy gaps may be induced at the boundaries of the
magnetic first Brillouin zone by the Bragg reflection. This is
the reason why the number of allowed bands in the case of
p/q is p times more than that in the case of 1/q ′ (≈ p/q).

(iv) In the case of p/q, the energy width of the cluster
consisting of p allowed bands is referred to as the cluster
width. It is found from Figs. 7(a)–7(e) that the energy width
of the allowed band for the case of 1/q ′ is nearly equal to
the cluster width for the case of p/q. (Note that, although the
cluster width in Fig. 7(b) is exceptionally a little smaller than
those of other cases [Figs. 7(c)–7(e)], this discrepancy is not
essential. This discrepancy comes from the error of the premise
1/q ′ ≈ p/q, i.e., the accuracy of the premise is not good in
the case of p/q = 2/23 as compared with other cases.)

Due to this property, we can say that the outlines of gap
structures for five cases with 1/q ′ ≈ p/q resemble each other
if the full energy bands are plotted in the larger energy scale
[Figs. 8(a)–8(e)]. Therefore we may regard the cluster width
for the case of p/q as the “bandwidth” that is nearly identical
with the real bandwidth for the case of 1/q ′.
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FIG. 7. Magnified views of flat bands for several cases. Energy
dispersions in the kx-ky plane for the cases of (a) p/q = 1/11, (b)
2/23, (c) 3/31, (d) 4/41, and (e) 5/53.

(v) As mentioned in property (iv), the gap structure for
the case of 1/q ′ is similar to those for the cases of p/q (≈
1/q ′). So, we shall discuss the magnetic-field dependence of
the bandwidth by using the bandwidth for the case of 1/q ′.
Figures 9(a)–9(e) show the energy bands in the kx-ky plane
for the cases of moderately weak magnetic field p/q < 0.1.
It is found from these figures that there exist bandwidths that
depend on the magnitude of the magnetic field. The bandwidths
definitely increase as the magnetic field becomes large. When
the magnetic field is quite weak, then the electronic states are
comparably less affected by the magnetic field. At that time,
the effective mass approximation seems to be valid, so that
the property of the Landau level still survives in the electronic
states. On the other hand, when the magnetic field increases,
the electron hopping between the electronic states becomes
larger, which results in making the bandwidth of the energy
dispersion large.

This is easily comprehended from the following discussion.
In the solids with no magnetic field, the electron hopping
between the atomic orbitals generally takes some nonzero
value, and correspondingly yields the nonzero width of the
energy dispersion. As the magnetic field increases, the spatial
broadening of the electronic state gets close to that of the
usual atomic orbital, which may facilitate the electron hopping
between two neighboring states. Therefore we can also say that
the magnitude of the bandwidth corresponds to the degree of
the infeasibility of the effective mass approximation in the
region of moderately weak magnetic field p/q < 0.1.
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2. Butterfly diagram for a crystalline silicon immersed
in a magnetic field

The magnetic-field-dependent energy diagrams are shown
in Figs. 10(a) and 10(b). These are calculated under two
conditions. One is that all values of Ek for k’s that correspond
to the horizontal axis of Fig. 5(c) are plotted in each magnetic
field [Fig. 10(a)]. Another is that all values of Ek for k’s
that are in the kx-ky plane are plotted in each magnetic field
[Fig. 10(b)]. Due to the Zeeman term, the energy diagrams
of both figures become wide as the magnetic field increases.
Correspondingly, the energy diagrams for the crystalline
silicon are not symmetric, similar to the case of the two-
dimensional square lattice [Fig. 4(a)]. Comparing Fig. 10(a)
with Fig. 10(b), the characteristic gap structures can be found
in Fig. 10(b), while almost all of them disappear in Fig. 10(a).
Especially, in Fig. 10(b), energy diagrams that are similar to
the Hofstadter butterfly diagrams can be observed. In addition,
recursive structures can be confirmed in Fig. 10(c). Since q

are prime numbers, and since a quite small range of p/q is
magnified in Fig. 10(c), the nonuniformity of plotted p/q,
which inevitably emerges, is a little noticeable. However, we
can definitely confirm the recursive patterns of energy gaps in
Fig. 10(c).

It is easily understood that the disappearance of gap
structures in Fig. 10(a) is due to the fact that values of Ek

vary depending on kz. However, the appearance of the butterfly
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FIG. 9. Magnetic-field dependence of the energy dispersion for
a crystalline silicon immersed in a uniform magnetic field. Energy
dispersions in the kx-ky plane for the cases of (a) 1/q ′ = 1/101, (b)
1/71, (c) 1/41, (d) 1/23, and (e) 1/11.

diagrams in Figs. 10(b) and 10(c) would indicate the peculiar
properties of the electronic states of a crystalline silicon
immersed in a magnetic field. The magnetic-field dependence
of gap structures of Ek bands in the kx-ky plane is essential
for the appearance of the butterfly diagrams. This means that
the electronic states of the crystalline silicon immersed in the
magnetic field partially loose the two-dimensional degree of
freedom depending on the magnitude of the magnetic field,
though the crystalline silicon itself has three-dimensional
structure. That is to say, the motion of electrons in the
two-dimensional plane is restricted to a degree depending on
the magnitude of the magnetic field, so that the energy diagram
of the butterfly shape correspondingly emerges.

Thus it is shown by means of the MFRTB method that the
butterfly diagram, which includes recursive structures, appears
in the energy diagrams of a crystalline silicon immersed
in a magnetic field. There is a future possibility that such
energy structures are observed experimentally also in a
silicon-based system as already observed in the GaAs/AlGaAs
heterostructure system [51,52].

3. Valence and conduction bands

As can be seen in Figs. 10(a), 10(b), and 6, when the
magnetic field is weak, an energy gap appears in the vicinity
of −6 eV. We shall focus on this energy gap, and show that
it just corresponds to the energy gap between the valence
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FIG. 10. Dependence of the energy diagram on the magnetic field for a crystalline silicon (a) in the case of varying wave vectors in the
magnetic first Brillouin zone and (b) in the case of varying wave vectors in the kx-ky plane of the magnetic first Brillouin zone. The magnified
view of the energy diagram is shown in (c), where the recursive structures can be found.

and conduction bands. Although there exist 8q energy bands
bellow and above this energy gap, respectively, in Fig. 6, we
will show that they correspond to the valence and conduction
bands, respectively.

First, let us confirm the following two points. (i) As shown
in Secs. IV B and V B, the magnetic Bloch theorem makes the
diagonalization problem of deriving all the eigenvalues of the
system split into that for deriving the eigenvalues of each k
belonging to the magnetic first Brillouin zone. This statement
is straightforwardly expressed by Eqs. (73) and (91). (ii) All
electronic states of the system can be indicated by the wave
numbers k that lie within the magnetic first Brillouin zone. This
can be easily shown by using the magnetic Bloch theorem in
a similar way to the case of no magnetic field [53]. Using
these two points, it is proved that the number of k involved in
the magnetic first Brillouin zone is equal to that of tn, which
are distributed in the whole system. We shall denote such a
number as Ntn .

Next, we consider the number of electrons in the whole
system. One lattice point has two Si atoms and correspondingly
eight electrons (two sets of four outer-shell electrons) belong
to it. As shown in Fig. 5(a), the “magnetic” primitive unit cell
of the crystalline silicon immersed in the magnetic field has
q lattice points. Correspondingly, 8q electrons are contained
in the magnetic primitive unit cell. Since the system has Ntn
points of tn, the number of electrons in the whole system is
8qNtn .

As mentioned above, the magnetic first Brillouin zone has
Ntn allowed points of k, so that 8q bands are occupied in order
of energy. Namely, the 8q bands bellow the energy gap that
exists around −6 eV are valence bands, and the higher bands
are conduction bands. Using this fact, it is also confirmed in
Fig. 10(a) that the original energy gap of the crystalline silicon,
which ranges from about −6.5 eV to −5.3 eV at p/q = 0,
remains up to the magnitude of the magnetic field, p/q = 0.2.
This would be due to both the increase of the top of the valence

band and the decrease of the bottom of the conduction band
that are mainly caused by the Zeeman term.

VI. CONCLUDING REMARKS

We develop the MFRTB method that enables us to calculate
the electronic structure of materials immersed in a uniform
magnetic field. The formulation is accomplished in the
orthodox coordinate representation. The striking features of
the MFRTB method and findings obtained by this method are
as follows.

(1) The MFRTB method enables us to calculate the
electronic structure of actual crystalline materials immersed
in a magnetic field by taking both relativistic and magnetic
field effects into account.

(2) It is shown that within the lowest-order perturbation
theory the magnetic hopping integrals are approximated as the
relativistic hopping integrals multiplied by the Peierls phase
factor. This approximation for the magnetic hopping integrals
can be improved systematically by incorporating higher-order
correction terms.

(3) The relativistic version of the Slater-Koster table is
provided in Table I, in which relativistic hopping integrals
are explicitly expressed in terms of relativistic TB parameters.
Specifically, the explicit forms of 64 kinds of relativistic
hopping integrals are given by the linear combination of
relativistic TB parameters. The relativistic TB parameters can
be readily obtained from electronic structure calculations for
zero magnetic field case.

(4) An appropriate expression for the magnetic field, which
leads to reasonable solutions consistent with the magnetic
Bloch theorem, is revealed. In the case of the crystalline silicon,
such a formula is given by Eq. (81).

(5) It is shown that the MFRTB method includes the
Hofstadter’s method [8]. Namely, if the MFRTB method is
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applied to the two-dimensional square lattice model with only
s electrons, and if the spin Zeeman term is neglected, then
the MFRTB method reproduces the magnetic-field-dependent
energy diagram, that is, the so-called Hofstadter butterfly
diagram.

(6) We apply the MFRTB method to a crystalline silicon
immersed in a uniform magnetic field. Recursive structures
of energy spectra, i.e., butterfly patterns, can be seen in the
kx-ky plane of the magnetic first Brillouin zone [Figs. 10(b)
and 10(c)], but due to the kz dependence of energy bands,
such characteristic structures disappear in the magnetic-field-
dependent energy diagram [Fig. 10(a)]. Recursive structures
are expected to be observed by experiments, e.g., angle-
resolved photoemission spectroscopy, and/or by preparing
appropriate silicon-based systems such as the Si/SiC het-
erostructure.

(7) It is also found that the widths of energy bands in
the kx-ky plane increase with the magnitude of the magnetic
field [Figs. 9(a)–9(e)]. This suggests that the useful range
of the effective mass approximation, which leads to the
Landau levels, is limited to the region of the low magnetic
field.

Thus we successfully obtain a first-principles method,
i.e., MFRTB method, which can describe phenomena that
are related to the magnetic Bloch electrons. Especially, the
MFRTB method can be used to reveal the dependence of the
elastic constants of a boron-doped silicon containing vacancies
on the magnetic field [1]. The next work to be done is to
consider the effects of boron dopants and vacancies contained
in the crystalline silicon. To do so, we have to combine the
present MFRTB method with the so-called supercell method
[54], which is just our next task. Furthermore, using the
MFRTB method, the alternative description of the dHvA effect
from the view point of the first-principles calculation would
be possible. This is also one of our future works [33]. In
this manner, we expect that more evidence for the validity and
usefulness of the MFRTB method will be accumulated through
applications to various systems.
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[22] J. Kübler, Theory of Itinerant Electron Magnetism (Oxford

University Press, New York, 2000), Chap. 1.
[23] D. D. Koelling and G. O. Arbman, J. Phys. F 5, 2041 (1975).
[24] T. Takeda, Z. Phys. B 32, 43 (1978).
[25] M. Higuchi and A. Hasegawa, J. Phys. Soc. Jpn. 64, 830 (1995).
[26] M. R. Norman and D. D. Koelling, in Handbook on the Physics

and Chemistry of Rare Earths, edited by K. A. Gschneidner Jr.,
L. Eyring, G. H. Lander, and G. R. Choppin (North-Holland,
Amsterdam, 1993), Vol. 17, Chap. 110.

[27] Y. Onuki and A. Hasegawa, in Handbook on the Physics and
Chemistry of Rare Earths, edited by K. A. Gschneidner Jr.

075122-21

http://dx.doi.org/10.1143/JPSJ.75.044602
http://dx.doi.org/10.1143/JPSJ.75.044602
http://dx.doi.org/10.1143/JPSJ.75.044602
http://dx.doi.org/10.1143/JPSJ.75.044602
http://dx.doi.org/10.1143/JPSJ.77.043601
http://dx.doi.org/10.1143/JPSJ.77.043601
http://dx.doi.org/10.1143/JPSJ.77.043601
http://dx.doi.org/10.1143/JPSJ.77.043601
http://dx.doi.org/10.1143/JPSJ.78.054702
http://dx.doi.org/10.1143/JPSJ.78.054702
http://dx.doi.org/10.1143/JPSJ.78.054702
http://dx.doi.org/10.1143/JPSJ.78.054702
http://dx.doi.org/10.1143/JPSJ.80.094601
http://dx.doi.org/10.1143/JPSJ.80.094601
http://dx.doi.org/10.1143/JPSJ.80.094601
http://dx.doi.org/10.1143/JPSJ.80.094601
http://dx.doi.org/10.7566/JPSJ.82.124604
http://dx.doi.org/10.7566/JPSJ.82.124604
http://dx.doi.org/10.7566/JPSJ.82.124604
http://dx.doi.org/10.7566/JPSJ.82.124604
http://dx.doi.org/10.7566/JPSJ.83.034702
http://dx.doi.org/10.7566/JPSJ.83.034702
http://dx.doi.org/10.7566/JPSJ.83.034702
http://dx.doi.org/10.7566/JPSJ.83.034702
http://dx.doi.org/10.1016/j.ssc.2011.07.020
http://dx.doi.org/10.1016/j.ssc.2011.07.020
http://dx.doi.org/10.1016/j.ssc.2011.07.020
http://dx.doi.org/10.1016/j.ssc.2011.07.020
http://dx.doi.org/10.1103/PhysRevB.14.2239
http://dx.doi.org/10.1103/PhysRevB.14.2239
http://dx.doi.org/10.1103/PhysRevB.14.2239
http://dx.doi.org/10.1103/PhysRevB.14.2239
http://dx.doi.org/10.1103/PhysRevB.85.195458
http://dx.doi.org/10.1103/PhysRevB.85.195458
http://dx.doi.org/10.1103/PhysRevB.85.195458
http://dx.doi.org/10.1103/PhysRevB.85.195458
http://dx.doi.org/10.1103/PhysRevB.74.205414
http://dx.doi.org/10.1103/PhysRevB.74.205414
http://dx.doi.org/10.1103/PhysRevB.74.205414
http://dx.doi.org/10.1103/PhysRevB.74.205414
http://dx.doi.org/10.1103/PhysRevB.67.195336
http://dx.doi.org/10.1103/PhysRevB.67.195336
http://dx.doi.org/10.1103/PhysRevB.67.195336
http://dx.doi.org/10.1103/PhysRevB.67.195336
http://dx.doi.org/10.1103/PhysRevLett.19.1385
http://dx.doi.org/10.1103/PhysRevLett.19.1385
http://dx.doi.org/10.1103/PhysRevLett.19.1385
http://dx.doi.org/10.1103/PhysRevLett.19.1385
http://dx.doi.org/10.1103/PhysRev.168.686
http://dx.doi.org/10.1103/PhysRev.168.686
http://dx.doi.org/10.1103/PhysRev.168.686
http://dx.doi.org/10.1103/PhysRev.168.686
http://dx.doi.org/10.1063/1.3021962
http://dx.doi.org/10.1063/1.3021962
http://dx.doi.org/10.1063/1.3021962
http://dx.doi.org/10.1063/1.3021962
http://dx.doi.org/10.1088/0305-4470/30/15/011
http://dx.doi.org/10.1088/0305-4470/30/15/011
http://dx.doi.org/10.1088/0305-4470/30/15/011
http://dx.doi.org/10.1088/0305-4470/30/15/011
http://dx.doi.org/10.1103/PhysRevB.23.5185
http://dx.doi.org/10.1103/PhysRevB.23.5185
http://dx.doi.org/10.1103/PhysRevB.23.5185
http://dx.doi.org/10.1103/PhysRevB.23.5185
http://dx.doi.org/10.1103/PhysRevB.23.5191
http://dx.doi.org/10.1103/PhysRevB.23.5191
http://dx.doi.org/10.1103/PhysRevB.23.5191
http://dx.doi.org/10.1103/PhysRevB.23.5191
http://dx.doi.org/10.1103/PhysRevB.60.7744
http://dx.doi.org/10.1103/PhysRevB.60.7744
http://dx.doi.org/10.1103/PhysRevB.60.7744
http://dx.doi.org/10.1103/PhysRevB.60.7744
http://dx.doi.org/10.1088/0953-8984/13/14/310
http://dx.doi.org/10.1088/0953-8984/13/14/310
http://dx.doi.org/10.1088/0953-8984/13/14/310
http://dx.doi.org/10.1088/0953-8984/13/14/310
http://dx.doi.org/10.1088/0305-4608/5/11/016
http://dx.doi.org/10.1088/0305-4608/5/11/016
http://dx.doi.org/10.1088/0305-4608/5/11/016
http://dx.doi.org/10.1088/0305-4608/5/11/016
http://dx.doi.org/10.1007/BF01322185
http://dx.doi.org/10.1007/BF01322185
http://dx.doi.org/10.1007/BF01322185
http://dx.doi.org/10.1007/BF01322185
http://dx.doi.org/10.1143/JPSJ.64.830
http://dx.doi.org/10.1143/JPSJ.64.830
http://dx.doi.org/10.1143/JPSJ.64.830
http://dx.doi.org/10.1143/JPSJ.64.830


HIGUCHI, HAMAL, AND HIGUCHI PHYSICAL REVIEW B 91, 075122 (2015)

and L. Eyring (North-Holland, Amsterdam, 1995), Vol. 20,
Chap. 135.

[28] M. Higuchi and A. Hasegawa, J. Phys. Soc. Jpn. 65, 1302 (1996).
[29] Y. Tokiwa, T. Maehira, S. Ikeda, Y. Haga, E. Yamamoto, A.

Nakamura, Y. Onuki, M. Higuchi, and A. Hasegawa, J. Phys.
Soc. Jpn. 70, 2982 (2001).

[30] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
[31] K. Higuchi, K. Koide, T. Imanishi, and M. Higuchi, Int. J.

Quantum Chem. 113, 709 (2013).
[32] P. G. de Gennes, Superconductivity of Metals and Alloys

(Addison-Wesley, New York, 1966).
[33] D. B. Hamal, K. Higuchi, and M. Higuchi (unpublished).
[34] D. Shoenberg, Magnetic Oscillations in Metals (Cambridge

University Press, Cambridge, 1984).
[35] A. Messiah, Quantum Mechanics (North-Holland, Amsterdam,

1966), Chap. 20.
[36] In general, the energy of the crystal field appears also in the

off-diagonal elements of the Hamiltonian matrix. The general
form of the effect of the crystal field is given by

∫
ϕ

ai

n′l′J ′M ′ (r − d i)
†
{∑

Rm

∑
k

vak
(r − Rm − dk)

}

× (Rm + dk �= di)ϕ
ai

nlJM (r − d i)d
3r. (101)

Since the relativistic atomic orbitals ϕ
ai

n′ l′J ′M ′ (r − d i) and
ϕ

ai

nlJM (r − d i) are localized around r = d i , we can reason-
ably approximate vak

(r − Rm − dk) by the constant value at
r = d i (vak

(d i − Rm − dk)) in the above integrals. Due to
the orthogonality of ϕ

ai

n′l′J ′M ′ (r − d i) and ϕ
ai

nlJM (r − d i) for
(n′,l′,J ′,M ′) �= (n,l,J,M), the above integral vanishes under
this approximation. Therefore the off-diagonal elements of the
energy of the crystal field are negligibly small as compared to
the diagonal elements.

[37] R. M. Martin, Electronic Structure (Cambridge University Press,
Cambridge, 2004), Chap. 14.

[38] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[39] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[40] Similar to the energy of the crystal field for the zero magnetic

field case, the energy of the crystal field that appears in the off-
diagonal elements can be neglected. For the nonzero magnetic
field case, the off-diagonal elements of the energy of the crystal
field is given by the following form:

∫
ψai ,Rn+di

η (r)†
{∑

Rm

∑
k

vak
(r − Rm − dk)

}

× (Rm + dk �= Rn + di)ψ
ai ,Rn+di

ξ (r)d3r, (102)

where η �= ξ . The relativistic atomic orbital in the magnetic
field is also localized in the vicinity of the atom as well as
the relativistic atomic orbital of the zero magnetic field case.
Therefore the approximation used in Ref. [32] is also applicable
to the above integral. As a result, the orthogonality between
ψai ,Rn+di

η (r) and ψ
ai ,Rn+di

ξ (r) leads to an approximation such
that the off-diagonal elements are negligible.

[41] We neglect the constant part of the solution in Eq. (38), because
it gives only the trivial phase factor in Eq. (39), which is not
expressed generally.

[42] Using Eq. (62), the magnitude of the magnetic field can
be calculated by B = 1.403 × 104 (p/q) T if we suppose
a = 0.543 nm, that is, the lattice constant of the silicon
crystal.

[43] From Eq. (62), p/q corresponds to the ratio of flux through
a unit cell (a2B) to one flux quantum (2π�/e). According to
Hofstadter’s paper [8], F. Bloch indicated that p/q is recognized
as the ratio of two kinds of periods: (1) the period of motion of
an electron with the crystal momentum 2π�/a, which is given
by a2m/2π�, and (2) the reciprocal of the cyclotron frequency
eB/m.

[44] For example, see E. Brown, Phys. Rev. 133, A1038 (1964).
[45] It is shown that U (tn) chosen like Eq. (67) takes the smallest

period of the translation among the sets of U (tn) that form the
Abelian group.

[46] The symmetry group of the Hamiltonian consists of the operators
that commute with the Hamiltonian.

[47] T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and Its
Applications in Physics (Springer-Verlag, Berlin, 1990).

[48] Using Eq. (81), the magnitude of the magnetic field can be
calculated by B = 1.122 × 105 (p/q) (T), where we use the
lattice constant of silicon crystal a = 0.543 (nm).

[49] Also in the conventional TB method [37], there exists this
kind of difficulty. In the conventional TB method [37], Bloch
functions, which are constructed from the atomic orbitals
and are called Bloch sum, are usually used as the basis
functions, which makes the solution consistent with the Bloch
theorem.

[50] Y. Hasegawa, Y. Hatsugai, M. Kohmoto, and G. Montambaux,
Phys. Rev. B 41, 9174 (1990).

[51] C. Albrecht, J. H. Smet, K. von Klitzing, D. Weiss, V. Umansky,
and H. Schweizer, Phys. Rev. Lett. 86, 147 (2001); ,Physica E
(Amsterdam) 20, 143 (2003).

[52] M. C. Geisler, J. H. Smet, V. Umansky, K. von Klitzing, B.
Naundorf, R. Ketzmerick, and H. Schweizer, Phys. Rev. Lett.
92, 256801 (2004).

[53] C. Kittel, Introduction to Solid State Physics (Wiley, New York,
2005), Chap. 9.

[54] For example, see, Sec. 13.4 of Ref. [37].

075122-22

http://dx.doi.org/10.1143/JPSJ.65.1302
http://dx.doi.org/10.1143/JPSJ.65.1302
http://dx.doi.org/10.1143/JPSJ.65.1302
http://dx.doi.org/10.1143/JPSJ.65.1302
http://dx.doi.org/10.1143/JPSJ.70.2982
http://dx.doi.org/10.1143/JPSJ.70.2982
http://dx.doi.org/10.1143/JPSJ.70.2982
http://dx.doi.org/10.1143/JPSJ.70.2982
http://dx.doi.org/10.1103/PhysRev.94.1498
http://dx.doi.org/10.1103/PhysRev.94.1498
http://dx.doi.org/10.1103/PhysRev.94.1498
http://dx.doi.org/10.1103/PhysRev.94.1498
http://dx.doi.org/10.1002/qua.24054
http://dx.doi.org/10.1002/qua.24054
http://dx.doi.org/10.1002/qua.24054
http://dx.doi.org/10.1002/qua.24054
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.133.A1038
http://dx.doi.org/10.1103/PhysRev.133.A1038
http://dx.doi.org/10.1103/PhysRev.133.A1038
http://dx.doi.org/10.1103/PhysRev.133.A1038
http://dx.doi.org/10.1103/PhysRevB.41.9174
http://dx.doi.org/10.1103/PhysRevB.41.9174
http://dx.doi.org/10.1103/PhysRevB.41.9174
http://dx.doi.org/10.1103/PhysRevB.41.9174
http://dx.doi.org/10.1103/PhysRevLett.86.147
http://dx.doi.org/10.1103/PhysRevLett.86.147
http://dx.doi.org/10.1103/PhysRevLett.86.147
http://dx.doi.org/10.1103/PhysRevLett.86.147
http://dx.doi.org/10.1016/j.physe.2003.09.031
http://dx.doi.org/10.1016/j.physe.2003.09.031
http://dx.doi.org/10.1016/j.physe.2003.09.031
http://dx.doi.org/10.1016/j.physe.2003.09.031
http://dx.doi.org/10.1103/PhysRevLett.92.256801
http://dx.doi.org/10.1103/PhysRevLett.92.256801
http://dx.doi.org/10.1103/PhysRevLett.92.256801
http://dx.doi.org/10.1103/PhysRevLett.92.256801



