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We investigate possible realizations of exotic SU(N ) symmetry-protected topological (SPT) phases with
alkaline-earth cold fermionic atoms loaded into one-dimensional optical lattices. A thorough study of two-
orbital generalizations of the standard SU(N ) Fermi-Hubbard model, directly relevant to recent experiments, is
performed. Using state-of-the-art analytical and numerical techniques, we map out the zero-temperature phase
diagrams at half-filling and identify several Mott-insulating phases. While some of them are rather conventional
(nondegenerate, charge-density wave, or spin-Peierls-like), we also identify, for even N , two distinct types of
SPT phases: an orbital Haldane phase, analogous to a spin-N/2 Haldane phase, and a topological SU(N ) phase,
which we fully characterize by its entanglement properties. We also propose sets of nonlocal order parameters
that characterize the SU(N ) topological phases found here.
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I. INTRODUCTION

High continuous symmetry based on the SU(N ) unitary
group with N > 2 plays a fundamental role in the standard
model of particle physics. The description of hadrons stems
from an approximate SU(N ) symmetry where N is the number
of species of quarks, or flavors. In contrast, the SU(N )
symmetry was originally introduced in condensed matter
physics as a mathematical convenience to investigate the
phases of strongly correlated systems. For instance, we enlarge
the physically relevant spin-SU(2) symmetry to SU(N ) and use
the N as a control parameter that makes various mean-field
descriptions possible in the large-N limit. We then carry out
the systematic 1/N expansion to recover the original N = 2
case [1,2].

Extended continuous symmetries have been also used
to unify several seemingly different competing orders in
such a way that the corresponding order parameters can
be transformed to each other under the symmetries [3,4].
A paradigmatic example is the SO(5) theory [3,5] for the
competition between d-wave superconductivity and antifer-
romagnetism, where the underlying order parameters are
combined to form a unified order-parameter quintet. The high
continuous symmetry often emerges from a quantum critical
point unless it is simply introduced phenomenologically. In
this respect, for instance, the consideration of SU(4) symmetry
might be a good starting point to study strongly correlated
electrons with orbital degeneracy [6–10].

At the experimental level, realizations in condensed matter
systems of enhanced continuous symmetry [in stark con-
trast to the SU(2) case] are very rare since they usually
require substantial fine tuning of parameters. Semiconductor
quantum dots technology provides a notable exception as it
enables the realization of an SU(4) Kondo effect resulting
from the interplay between spin and orbital degrees of
freedom [11].

Due to their exceptional control over experimental param-
eters, ultracold fermions loaded into optical lattices might be

ideal systems to investigate strongly correlated electrons with
a high symmetry. While ultracold atomic gases with alkali
atoms can, in principle, explore the physics with SO(5) and
SU(3) symmetries [12–17], alkaline-earth atoms are likely
to be the best candidates for experimental realizations of
exotic SU(N ) many-body physics [18–20]. These atoms and
related ones, such as ytterbium atoms, have a peculiar energy
spectrum associated with the two-valence outer electrons. The
ground state (“g” state) is a long-lived singlet state 1S0 and the
spectrum exhibits a metastable triplet excited state (“e” state)
3P0. Due to the existence of an ultranarrow optical transition
1S0-3P0 between these states, alkaline-earth-like atoms appear
to be excellent candidates for atomic clocks and quantum
simulation applications [21]. Moreover, the g and e states
have zero electronic angular momentum, so that the nuclear
spin I is almost decoupled from the electronic spin. The
nuclear spin-dependent variation of the scattering lengths is
expected to be smaller than ∼10−9 for the g state and ∼10−3

for the e state [18]. This decoupling of the electronic spin
from the nuclear one in atomic collisions paves the way to the
experimental realization of fermions with an SU(N ) symmetry
where N = 2I + 1 (I being the nuclear spin) is the number of
nuclear states.

The cooling of fermionic isotopes of these atoms below the
quantum degeneracy has been achieved for strontium atoms
87Sr with I = 9

2 [22,23] and ytterbium atoms 171Yb, 173Yb
with I = 1

2 , 5
2 [24,25]. These atoms enable the experimental

exploration of the physics of fermions with an emergent
SU(N ) symmetry where N can be as large as 10. In this
respect, experiments on 173Yb atoms loaded into a three-
dimensional (3D) optical lattice have stabilized an SU(6)
Mott insulator [26] while the one-dimensional (1D) regime
has also been investigated [27]. Very recent experiments
on 87Sr (respectively 173Yb) atoms in a two-dimensional
(2D) [respectively three-dimensional (3D)] optical lattice have
directly observed the existence of the SU(N ) symmetry and
determined the specific form of the interactions between the g

and e states [28,29]. All these results and future experiments
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might lead to the investigation of the rich exotic physics of
SU(N ) fermions as for instance the realization of a chiral spin
liquid phase with non-Abelian statistics [20,30].

The simplest effective Hamiltonian to describe an N -
component Fermi gas with an SU(N ) symmetry loaded into an
1D optical lattice is the SU(N ) generalization of the famous
Fermi-Hubbard model:

HSU(N) = −t
∑
i,α

(c†α, icα, i+1 + H.c.) + U

2

∑
i

n2
i , (1)

c
†
α, i being the fermionic creation operator for site i and nuclear

spin states α = 1, . . . ,N , and ni = ∑
α c

†
α, icα, i is the density

operator. All parameters in model (1) are independent from
the nuclear states which express the existence of a global
SU(N ) symmetry: cα, i �→ ∑

β Uαβcβ, i , U being an SU(N )
matrix. Model (1) describes alkaline-earth atoms in the g

state loaded into the lowest band of the optical lattice. The
interacting coupling constant U is directly related to the
scattering length associated with the collision between two
atoms in the g state. In stark contrast to the N = 2 case,
the SU(N ) Hubbard model (1) is not integrable by means
of the Bethe ansatz approach. However, most of its physical
properties are well understood thanks to field-theoretical and
numerical approaches. For a commensurate filling of one atom
per site, which best avoids issues of three-body loss, a Mott
transition occurs for a repulsive interaction when N > 2 be-
tween a multicomponent Luttinger phase and a Mott-insulating
phase with N − 1 gapless degrees of freedom [31,32]. In
addition, the fully gapped Mott-insulating phases of model (1)
are known to be spatially nonuniform for commensurate
fillings [33].

The search for exotic 1D Mott-insulating phases with
SU(N ) symmetry requires thus to go beyond the simple
SU(N ) Fermi-Hubbard model (1). One possible generalization
is to exploit the existence of the e state in the spectrum of
alkaline-earth atoms and to consider a two-orbital extension
of the SU(N ) Fermi-Hubbard model which is directly rel-
evant to recent experiments [28,29]. The interplay between
orbital and SU(N ) nuclear spin degrees of freedom is then
expected to give rise to several interesting phases, including
symmetry-protected topological (SPT) phases [34,35]. The
latter refer to nondegenerate fully gapped phases which
do not break any symmetry and cannot be characterized
by local order parameters. Since any gapful phases in one
dimension have short-range entanglement, the presence of a
symmetry is necessary to protect the properties of that 1D
topological phase, in particular the existence of nontrivial edge
states [35,36].

In this paper, we will map out the zero-temperature phase
diagrams of several two-orbital SU(N ) lattice models at
half-filling by means of complementary use of analytical and
numerical approaches. A special emphasis will be laid on the
description of SU(N ) SPT phases which can be stabilized in
these systems. In this respect, as it will be shown here, several
distinct SPT phases will be found. In the particular N = 2 case,
i.e., atoms with nuclear spin I = 1

2 , the paradigmatic example
of 1D SPT phase, i.e., the spin-1 Haldane phase [37,38], will be
found for charge, orbital, and nuclear spin degrees of freedom.
This phase is a nondegenerate gapful phase with spin- 1

2 edges

states which are protected by the presence of at least one
of the three discrete symmetries: the dihedral group of π

rotations along the x,y,z axes, time-reversal and inversion
symmetries [39]. In the general N case, we will show that the
spin-N/2 Haldane phase emerges only for the orbital degrees
of freedom in the phase diagram of the two-orbital SU(N )
model. The resulting phase will be called orbital Haldane (OH)
phase and is an SPT phase when N/2 is an odd integer. On
top of these phases, new 1D SPT phases will be found which
stem from the higher SU(N ) continuous symmetry of these
alkaline-earth atoms. These phases are the generalization of
the Haldane phase for SU(N ) degrees of freedom with N > 2.
As will be argued in the following, these topological phases
for general N are protected by the presence of PSU(N ) =
SU(N )/ZN symmetry. Even in the absence of the latter
symmetry, SU(N ) topological phases may remain topological
in the presence of other symmetries. For instance, with the
(link-)inversion symmetry present, our SU(N ) topological
phase when N/2 is odd (i.e., I = 1

2 , 5
2 , 9

2 , . . . which is directly
relevant to ytterbium and strontium atoms) crosses over to the
topological Haldane phase. A brief summary of these results
has already been given in a recent paper [40] where we have
found these SU(N ) topological phases for a particular 1D
two-orbital SU(N ) model.

The rest of the paper is organized as follows. In Sec. II, we
introduce two different lattice models of two-orbital SU(N )
fermions and discuss their symmetries. Then, strong-coupling
analysis is performed which gives some clues about the
possible Mott-insulating phases and the global phase structure.
We also establish the notations and terminologies used in the
following sections, and characterize the main phases that are
summarized in Table III.

The basic properties of the SU(N ) SPT phase identified
in the previous section are then discussed in detail in Sec. III
paying particular attention to the entanglement properties. The
use of nonlocal (string) order parameters to detect the SU(N )
SPT phases will be discussed, too. In Sec. IV, a low-energy
approach of the two-orbital SU(N ) lattice models is developed
to explore the weak-coupling regime of the lattice models.
The main results of this section are summarized in the phase
diagrams in Sec. IV C. As this section is rather technical, those
who are not familiar with field-theory techniques may skip
Secs. IV A and IV B for the first reading.

In order to complement the low-energy and the strong-
coupling analyses, we present, in Sec. V, our numerical
results for N = 2 and 4 obtained by the density matrix
renormalization group (DMRG) simulations [41]. Readers
who want to quickly know the ground-state phase structure
may read Sec. II first and then proceed to Sec. V. Finally,
our concluding remarks are given in Sec. VI and the paper is
supplied with four appendices which provide some technical
details and additional information.

II. MODELS AND THEIR STRONG-COUPLING LIMITS

In this section, we present the lattice models related to
the physics of the 1D two-orbital SU(N ) model that we will
investigate in this paper. In addition, the different strong-
coupling limits of the models will be discussed to reveal the
existence of SPT phases in their phase diagrams.
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A. Alkaline-earth Hamiltonian

Let us first consider alkaline-earth cold atoms where the
atoms can occupy the ground state g and excited metastable
state e. In this case, four different elastic scattering lengths can
be defined due to the two-body collisions between two atoms
in the g state (agg), in the e state (aee), and finally between the
g and e states (a±

ge) [18]. On general grounds, four different
interacting coupling constants are then expected from these
scattering properties and a rich physics might emerge from
this complexity. The model Hamiltonian, derived by Gorshkov
et al. [18], which governs the low-energy properties of these
atoms loaded into a 1D optical reads as follows (g-e model):

Hg-e = −
∑

m=g,e

tm
∑

i

N∑
α=1

(c†mα, icmα, i+1 + H.c.)

−
∑

m=g,e

μ(m)
∑

i

nm,i+
∑

m=g,e

Umm

2

∑
i

nm, i(nm, i − 1)

+V
∑

i

ng, ine, i + V g-e
ex

∑
i,αβ

c
†
gα, ic

†
eβ, icgβ, iceα, i , (2)

where the index α labels the nuclear-spin multiplet (I z =
−I, . . . , + I , N = 2I + 1, α = 1, . . . ,N) and the orbital
indices m = g and e label the two atomic states 1S0 and 3P0,
respectively. The fermionic creation operator with quantum
numbers m,α on the site i is denoted by c

†
mα, i . The local

fermion numbers of the species m = g,e are defined by

nm,i =
N∑

α=1

c
†
mα,icmα,i =

N∑
α=1

nmα,i . (3)

We also introduce the total fermion number at the site i:

ni =
∑

m=g,e

nm,i . (4)

In order to understand the processes contained in this
Hamiltonian, it is helpful to represent it as two coupled
(single-band) SU(N ) Hubbard chains (see Fig. 1). On each
chain, we have the standard hopping t along each chain (which
may be different for g and e) and the Hubbard-type interaction
U , and the two are coupled to each other by the g-e contact
interaction V and the g-e exchange process V

g-e
ex . Model (2) is

“e”

“g”

FIG. 1. (Color online) The two-leg ladder representation of the
g-e model (2). Two single-band SU(N ) Hubbard chains are coupled
to each other only by the interchain particle exchange (V g-e

ex ) and the
interchain density-density interaction (V ). Note that splitting of a
single physical chain into two is fictitious.

invariant under continuous U(1)c and SU(N ) symmetries:

cmα, i �→ eiθ cmα, i , cmα, i �→
∑

β

Uαβcmβ, i , (5)

with U being an SU(N ) matrix. The two transformations (5),
respectively, refer to the conservation of the total number of
atoms and the SU(N ) symmetry in the nuclear-spin sector.
On top of these obvious symmetries, the Hamiltonian is also
invariant under

cgα, i �→ eiθocgα, i , ceα, i �→ e−iθoceα, i . (6)

This is a consequence of the fact that the total fermion numbers
for g and e are conserved separately [42].

In the case of SU(2), it is well known that the orbital (g,
e) exchange process can be written in the form of the Hund
coupling. Let us write such expressions in two ways. First,
we introduce the second-quantized SU(N ) generators of each
orbital

ŜA
m,i = c

†
mα,i(S

A)αβcmβ,i (m = g,e, A = 1, . . . ,N2 − 1),

(7)

as well as the orbital pseudospin T a
i (a = x,y,z):

T a
i = 1

2
c
†
mα, iσ

a
mncnα, i =

N∑
α=1

T a
α,i (m,n = g,e), (8)

where a summation over repeated indices is implied in the
following and σa denotes the Pauli matrices. If we normalize
the SU(N ) generators SA as [43]

Tr (SASB) = δAB, (9)

the generators SA satisfy the following identity:

N2−1∑
A=1

(SA)αβ(SA)γ δ =
(

δαδδβγ − 1

N
δαβδγ δ

)
. (10)

The above U(1)o transformation (6) amounts to the rotation
along the z axis:

T ±
i �→ e∓2iθoT ±

i , T z
i �→ T z

i (11)

generated by

T z
i = 1

2 (ng, i − ne, i). (12)

Then, it is straightforward to show that the orbital exchange
(g ↔ e) can be written as the Hund coupling for the SU(N )
“spins” or that for the orbital pseudospins:∑

i

c
†
gα, ic

†
eβ, icgβ, iceα, i = −

∑
i

ŜA
g,i Ŝ

A
e,i − 1

N

∑
i

ng,ine,i

=
∑

i

(Ti)
2 − 1

4

∑
i

nm,i(nm,i − 1)

− 3

4

∑
i

ni + 1

2

∑
i

ng,ine,i . (13)

The fermionic anticommutation is crucial in obtaining the two
opposite signs in front of the Hund couplings. The above
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expression enables us to rewrite the original alkaline-earth
Hamiltonian (2) in two different ways:

Hg-e = −
∑

i

∑
m=g,e

tm(c†mα, icmα, i+1 + H.c.)

−
∑

i

∑
m=g,e

μ(m)nm,i +
∑

i

∑
m=g,e

Umm

2
nm, i(nm, i − 1)

+
(

V − 1

N
V g-e

ex

)∑
i

ng, ine, i − V g-e
ex

∑
i

ŜA
g,i Ŝ

A
e,i

= −
∑

i

∑
m=g,e

tm(c†mα, icmα, i+1 + H.c.)

−
∑

i

∑
m=g,e

(
μ(m) + 3

4
V g-e

ex

)
nm,i

+
∑

i

∑
m=g,e

Umm − V
g-e

ex /2

2
nm, i(nm, i − 1)

+ (
V + V g-e

ex /2
)∑

i

ng, ine, i + V g-e
ex

∑
i

(Ti)
2. (14)

From this, one readily sees that positive (negative) V
g-e

ex tends
to quench (maximize) orbital pseudospin T and maximize
(quench) the SU(N ) spin. This dual nature of the orbital and
SU(N ) is the key to understand the global structure of the
phase diagram.

Using the orbital pseudospin T a , we can rewrite the original
g-e Hamiltonian (2) as

Hg-e = −
∑

i

∑
m=g,e

tm(c†mα, icmα, i+1 + H.c.)

− 1

2
(μe + μg)

∑
i

ni − (μg − μe)
∑

i

T z
i

+ U

2

∑
i

n2
i + Udiff

∑
i

T z
i ni

+ J
∑

i

{(
T x

i

)2 + (
T

y

i

)2} + Jz

∑
i

(
T z

i

)2
, (15)

with

U = 1
4 (Ugg + Uee + 2V ), Udiff = 1

2 (Ugg − Uee),

J = V g-e
ex , Jz = 1

2 (Uee + Ugg − 2V ),
(16)

μg = 1
2

(
2μ(g) + Ugg + V g-e

ex

)
,

μe = 1
2

(
2μ(e) + Uee + V g-e

ex

)
.

The site-local part of the above Hamiltonian (15) gives the
starting point for the strong-coupling expansion:

Hatomic = −1

2
(μe + μg)

∑
i

ni − (μg − μe)
∑

i

T z
i

+ U

2

∑
i

n2
i + Udiff

∑
i

T z
i ni

+ J
∑

i

{(
T x

i

)2 + (
T

y

i

)2} + Jz

∑
i

(
T z

i

)2
. (17)

Since the model contains many coupling constants, it is highly
desirable to consider a simpler effective Hamiltonian which
encodes the most interesting quantum phases of the problem.
In this respect, for the DMRG calculations of Sec. V, we will
set tg = te = t , Ugg = Uee = Umm, and μg = μe to get the
following Hamiltonian (generalized Hund model) [44]:

HHund = −t
∑

i

(c†mα, icmα, i+1 + H.c.)

−μ
∑

i

ni + U

2

∑
i

n2
i

+ J
∑

i

{(
T x

i

)2 + (
T

y

i

)2} + Jz

∑
i

(
T z

i

)2
. (18)

Now, the equivalence mapping between the models (2)
and (18) reads as

J = V g-e
ex , Jz = Umm − V,

(19)

U = Umm + V

2
, μ = Umm + V

g-e
ex

2
+ μg.

It is obvious that the first three terms in Eq. (18) are U(2N )
invariant and the remaining orbital part (J and Jz) breaks it
down to

U(2N ) = U(1)c×SU(2N )
J=Jz(�=0)−−−−−→ U(1)c×SU(N )s×SU(2)o

J �=Jz−−→ U(1)c×SU(N)s×U(1)o. (20)

Therefore, the generic continuous symmetry of this model is
U(1)c × SU(N )s × U(1)o. Physically, the orbital-U(1)o sym-
metry of Hg-e (15) may be traced back to the vanishingly
weak g ↔ e transition [18].

B. p-band Hamiltonian

There is yet another way to realize the two orbitals using
a simple setting. Let us consider a one-dimensional optical
lattice (running in the z direction) with moderate strength of
(harmonic) confining potential V⊥(x,y) = 1

2mω2
xy(x2 + y2) in

the direction (i.e., xy) perpendicular to the chain. Then, the
single-particle part of the Hamiltonian reads as

H0 =
{
− �

2

2m
∂2
z + Vper(z)

}
+
{
− �

2

2m

(
∂2
x + ∂2

y

) + V⊥(x,y)

}
≡ H⊥(x,y) + H‖(z), (21)

where Vper(z) is a periodic potential that introduces a lattice
structure in the chain (i.e., z) direction. If the chain is infinite
in the z direction, we can assume the Bloch function in the
following form:

ψ
(n)
nx,ny ,kz

(x,y,z) = φnx,ny
(x,y)ϕ(n)

kz
(z). (22)

The two functions ϕ
(n)
kz

(z) and φnx,ny
(x,y), respectively, satisfy

H‖(z)ϕ(n)
kz

(z) = ε(n)(kz)ϕ
(n)
kz

(z) (23a)

and

H⊥(x,y)φnx,ny
(x,y) = εnx,ny

φnx,ny
(x,y). (23b)

Since the second equation is the Schrödinger equation of
the two-dimensional harmonic oscillator, the eigenvalues εnx ,ny
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“py”

“px”

FIG. 2. (Color online) The two-leg ladder representation of the
p-band model (27). On top of the interactions included already in
the g-e model, pair-hopping processes between the two orbitals are
allowed.

are given by

εnx,ny
= (nx + ny + 1)�ωxy (nx,ny = 0,1,2, . . .). (24)

The full spectrum of H0 is given by

E(n)
nx,ny

(kz) = ε(n)(kz) + εnx,ny
(25)

and each Bloch band specified by n splits into the subbands
labeled by (nx,ny). We call the subbands with (nx,ny) = (0,0),
(1,0), and (0,1) as s, px , and py , respectively. The shape of
the bands depends only on the band index n and the set of
integers (nx,ny) determines the kz-independent splitting of the
subbands.

Now, let us consider the situation where only the n = 0
bands are occupied, and, among them, the lowest one (the s

band) is completely filled. Then, it is legitimate to keep only the
next two bands px and py in the effective Hamiltonian [45,46].
To derive a Hubbard-type Hamiltonian, we follow the standard
strategy [47] and move from the Bloch basis ψ

(n)
nx,ny ,kz

(x,y,z)
to the Wannier basis

W
(n)
nx,ny ;R(x,y,z) ≡ 1√

Ncell
φnx,ny

(x,y)
∑
kz

e−ikzRϕ
(n)
kz

(z) (26)

(R labels the center of the Wannier function and Ncell is then
number of unit cells). Expanding the creation/annihilation
operators in terms of the Wannier basis and keeping only the
terms with n = 0 and (nx,ny) = (1,0) or (0,1), we obtain the
following Hamiltonian (see Appendix B):

Hp-band = −t
∑

i

(c†mα,icmα,i+1 + H.c.)

+
∑

i

∑
m=px,py

(εm − t0) nm,i

+ 1

2
U1

∑
i

nm,i(nm,i − 1) + U2

∑
i

npx,inpy,i

+U2

∑
i

c
†
pxα,ic

†
pyβ,icpxβ,icpyα,i

+U2

∑
i

{(
T x

i

)2 − (
T

y

i

)2}
. (27)

In the above, we have introduced a shorthand notation m =
px,py with px = (nx,ny) = (1,0) and py = (nx,ny) = (0,1).
The last term comes from the pair hopping between the
two orbitals (see Fig. 2 and Appendix B) and breaks U(1)o

symmetry in general. Since the Wannier functions are real and
the two orbitals W

(0)
px/py ;R(r) are related by C4 symmetry, there

are only two independent couplings U1 and U2 [see Eq. (B7)].

In fact, due to the axial symmetry of the potential V⊥(x,y),
even the ratio U1 = 3U2 is fixed and we are left with a single
coupling constant.

Except for the last term, Hp-band coincides with the
Hamiltonian (18) after the identification

U = 1
2 (U1 + U2), Udiff = 0, J = U2, Jz = U1 − U2,

μ = −(εm − t0) + 1
2 (U1 + U2). (28)

Incorporating the last term, we obtain the following (orbital)
anisotropic model:

Hp-band = −t
∑

i

(c†mα, icmα, i+1 + H.c.)

−μ
∑

i

ni + 1

4
(U1 + U2)

∑
i

n2
i

+
∑

i

{
2U2

(
T x

i

)2 + (U1 − U2)
(
T z

i

)2}
. (29)

One may think that the last term breaks U(1)o. However, as
U1 = 3U2 for any axially symmetric V⊥(x,y), it has in fact
a hidden U(1)o symmetry: 2U2{(T x

j )2 + (T z
j )2} and Hp-band

reduces to HHund [Eq. (18)] after the due redefinition of T [48].
Higher continuous symmetries may also appear in model (29)
when U2 = 0 since it decouples into two independent U(N )
Hubbard chains, as it can be easily seen from Eq. (27)
(see Fig. 2). Moreover, along the line U1 = U2, the p-band
model (29) is equivalent to the U2 = 0 case after a redefinition
of T. Finally, as we will see in the next section, the p-band
model for N = 2 at half-filling enjoys an enlarged SU(2) ×
SU(2) ∼ SO(4) symmetry for all U1,U2 which stems from an
additional SU(2) symmetry for the charge degrees of freedom
at half-filling [46].

The p-band model is convenient since the axial symmetry
guarantees that the parameters are fully symmetric for the two
orbitals px and py . However, the same symmetry locks the
ratio U1/U2(=3) and we cannot control it as far as V⊥(x,y)
is axially symmetric. One simplest way of changing the ratio
is to break the axial symmetry and consider the following
anharmonic potential:

V⊥(x,y) = 1
2mω2

xy(x2 + y2) + 1
2β(x4 + y4) (β � 0). (30)

In Fig. 3, we plot the ratio U1/U2 as a function of anharmonic-
ity β. Clearly, the ratio calculated using Eqs. (B6) and (B7)
deviates from 3 with increasing β. In that case (U1 < 3U2),
the original anisotropic model (29) should be considered.

C. Symmetries

The different models that we have introduced in the pre-
vious section enjoy generically an U(1)c × SU(N )s × U(1)o

continuous symmetry or an U(1)c × SU(N )s symmetry for
the p-band model. On top of these continuous symmetries,
the models display hidden discrete symmetries which are
very useful to map out their global zero-temperature phase
diagrams.

1. Spin-charge interchange

The first transformation is a direct generalization of the
Shiba transformation [49,50] for the usual Hubbard model
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FIG. 3. The ratio U1/U2 for anharmonic potential (30) obtained
by solving the Schrödinger equation (23b) numerically.

and is defined only for N = 2:

cm↑,i �→ c̃m↑,i ,
(31)

cm↓,i �→ (−1)i c̃†m↓,i (m = g,e or px,py).

It is easy to show that it interchanges spin and charge [see
Eq. (7)]:

SA
m,i ↔ KA

m,i (A = x,y,z), (32)

where KA
m,i are defined as

K+
m,i ≡ (−1)ic†m↑,ic

†
m↓,i , K−

m,i ≡ (−1)icm↓,icm↑,i ,

Kz
m,i ≡ 1

2 (nm↑,i + nm↓,i − 1) = 1
2 (nm,i − 1). (33)

The latter operator carries charge and is a SU(2) spin singlet.
It generalizes the η-pairing operator introduced by Yang for
the half-filled spin- 1

2 Hubbard model [51] or by Anderson in
his study of the BCS superconductivity [52].

Now, let us consider how the transformation (31) affects the
fermion Hamiltonians Hg-e [Eq. (2)] and Hp-band [Eq. (29)].
The first three terms of the alkaline-earth Hamiltonian Hg-e

[Eq. (14)] do not change their forms under the transforma-
tion (31), while the last two are asymmetric in Sm,i and Km,i .
Hence, the g-e Hamiltonian Hg-e does not preserve its form
under Sm,i ↔ Km,i .

On the other hand, the p-band Hamiltonian, written in terms
of Sm,i and Km,i ,

Hp-band = −t
∑

i

(c†mα,icmα,i+1 + H.c.)

+U1

∑
i

(nm↑,i − 1/2)(nm↓,i − 1/2)

− 2U2

∑
i

Spx,i ·Spy,i + 2U2

∑
i

Kpx,i ·Kpy,i , (34)

preserves its form and the Shiba transformation (31) changes
the coupling constants as

(U1, U2) → (−U1,−U2). (35)

The expression (34) reveals the hidden symmetry of the
half-filled p-band model for N = 2. On top of the SU(2)

symmetry for the nuclear spins, which is generated by∑
i,m Sm,i , the p-band Hamiltonian (34) enjoys a second in-

dependent SU(2) symmetry related to the (charge) pseudospin
operator (33): [

Hp-band,
∑
i,m

Km,i

]
= 0.

The continuous symmetry group of the N = 2 half-filled p-
band model is therefore SU(2) × SU(2) ∼ SO(4) for all U1,U2,
i.e., without any fine tuning. In this respect, the latter model
shares the same continuous symmetry group as the half-filled
spin- 1

2 Hubbard chain [53,54] but, as we will see later, the
physics is strongly different.

2. Orbital-charge interchange

For general N , we can think of another “Shiba” transfor-
mation:

cgα,i �→ c̃gα,i ,
(36)

ceα,i �→ (−1)i c̃†eα,i (α = 1, . . . ,N),

which interchanges the orbital pseudospin Ti and another
charge SU(2) Ki . Now the charge SU(2) is generated by the
following orbital-singlet operators:

K+
i ≡ (−1)ic†gα,ic

†
eα,i , K−

i ≡ (−1)iceα,icgα,i ,
(37)

Kz
i ≡ 1

2 (ng,i + ne,i − N ) = 1
2 (ni − N ).

The transformation (36) changes the g-e Hamiltonian (14)
by flipping the sign of (V − V

g-e
ex /N ) and replacing SA

e,i with
the generators of the conjugate representation. Therefore, one
sees that only when J (=V

g-e
ex ) = 0 the g-e Hamiltonian Hg-e

preserves its form after

V �→ −V (or Jz ↔ 2U ). (38)

We will come back to this point later in Sec. V C in the
discussion of the numerical phase diagram of the N = 4 g-e
model.

The case N = 2 is special since any SU(2) representations
are self-conjugate. In fact, when N = 2, the transforma-
tion (36), supplemented by the π rotation along the y axis
in the SU(2) space (ce↑,i �→ −ce↓,i , ce↓,i �→ ce↑,i), preserves
the form of the Hamiltonian after the mapping

V − 1
2V g-e

ex → −(
V − 1

2V g-e
ex

) (
or V → −V + V g-e

ex

)
,

V g-e
ex → V g-e

ex , Umm → Umm. (39)

Due to the orbital anisotropy {(T x
j )2 − (T y

j )2} in Hp-band [the
last term Eq. (27)], the p-band Hamiltonian in general does
not preserve its form under the orbital-charge interchange (36).
When U2 = 0, the model is U(1)-orbital symmetric and is
invariant (self-dual) under (36). A summary of the effect of the
two Shiba transformations on the two models is summarized
in Tables I and II.

D. Strong-coupling limits

Useful insight into the global structure of the phase diagram
may be obtained by investigating the strong-coupling limit
where the hopping t(g,e) are very small. Then, the starting
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TABLE I. Two Shiba transformations and g-e Hamiltonian
[Eq. (2)].

Transformation Mapping

Spin charge [Eq. (31)] Not defined
Orbital charge [Eq. (36)] N = 2: V → −V + V g-e

ex

N � 3: V → −V (V g-e
ex = 0)

point is the atomic-limit Hamiltonian (17). In the following,
we assume that N = 2I + 1 is even since the nuclear spin I

is half odd integer for alkaline-earth fermions. The dominant
phases found in the strong-coupling analysis are summarized
in Table III.

1. Positive J

First, we assume that U and the chemical potential μg + μe

[see Eq. (16)] are tuned in such a way that the fermion number
at each site is ni = N . Then, the remaining T-dependent terms
in Eq. (17) determine the optimal orbital and SU(N ) states.
From Eq. (14), we see that for large positive J (=V

g-e
ex ) the

orbital pseudospin T at each site tends to be quenched, thereby
maximizing the SU(N ) spin as

N/2 (N = even) .

(40)

When considering second-order perturbation, it is convenient
to view our system as a two-leg ladder of SU(N ) fermions
(see Fig. 1). The resulting effective Hamiltonian reads then as
follows:

HSU(N) = Js

N2−1∑
A=1

SA
i SA

i+1 + const, (41)

where the exchange coupling Js is N independent:

Js ≡ 1

2

{
(t (g))2

U + Udiff + J + Jz

2

+ (t (e))2

U − Udiff + J + Jz

2

}
. (42)

In the case of Hp-band, T z is no longer conserved and we
cannot use the same argument as above. However, we found
that when U1 > U2(>0), the lowest-energy state has T = 0
enabling us to follow exactly the same steps and obtain

HSU(N) = t2

U1 + U2

N2−1∑
A=1

SA
i SA

i+1 + const. (43)

One observes that models (41) and (43) take the form of an
SU(N ) spin chain in the self-conjugate representation (40) at

TABLE II. Two Shiba transformations and p-band Hamiltonian
[Eq. (29)]. Orbital-charge interchange exists only when U2 = 0 and
then the Hamiltonian is kept invariant.

Transformation Mapping

Spin charge [Eq. (31)] N = 2: U1,2 → −U1,2

Orbital charge [Eq. (36)] N arbitrary: invariant (only for U2 = 0)

TABLE III. List of dominant phases and their abbreviations.
Local SU(N )/orbital degrees of freedom are shown, too.

Phases Abbreviation SU(N ) Orbital (T )

Spin-Haldanea SH S = 1 Local singlet
Orbital-Haldane OH Local singlet N/2
Charge-Haldanea CH Local singlet
Orbital large-Dx,y OLDx,y Local singlet N/2
Rung singlet (OLDz)b RS Local singlet N/2
Spin-Peierls SP N/2
Charge-density wave CDW Local singlet Local singlet
Orbital-density wavec ODW Local singlet N/2

aOnly in N = 2.
bProduct of T z = 0 states (large-D state) of T = N/2.
cNéel-ordered state of T = N/2.

each site and is not solvable. The physical properties of that
model are unknown for general N . In the special N = 2 case
where the model reduces to the SU(2) spin-1 Heisenberg chain,
it is well known that the Haldane phase [37,38] is formed by the
nuclear spins. The resulting spin Haldane (SH) phase for N =
2 is depicted in Fig. 4(a). Using the spin-charge interchange
transformation (31), one concludes, for N = 2, the existence
of a charge Haldane (CH) phase [55] in the p-band model for
U2 < 0 which is illustrated in Fig. 4(c). We will come back to
this point later in Sec. II D 3.

When N > 2, the situation is unclear and a nondegenerate
gapful phase is expected from the large-N analysis of
Refs. [56,57]. We will determine the nature of the underlying
phase in the next section.

2. J = 0

Another interesting line is the generalized Hund model (18)
with J = Jz = 0 which becomes equivalent to the U(2N )
Hubbard model. In the strong-coupling limit with U > 0,

(a)

(b)

(d)

(c)

e

g

FIG. 4. (Color online) Four translationally invariant Mott states
for N = 2: (a) spin Haldane (SH), (b) orbital Haldane (OH),
(c) charge Haldane (CH), and (d) rung-singlet (RS) phases (see
also Appendix D). Singlet bonds formed between spins (orbital
pseudospins) are shown by thick solid (dashed) lines [singlet bonds
are not shown in (c)]. Dashed ovals (rectangles) denote spin singlets
(triplets).
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(a)

(b)

e
g

FIG. 5. (Color online) Two density-wave states for N = 2.
In-phase and out-of-phase combinations of two density waves in
g and e orbitals, respectively, form (a) CDW and (b) ODW.

the lowest-energy states correspond to representations of the
SU(2N ) group which transform in the antisymmetric self-
conjugate representations of SU(2N ), described by a Young
diagram with one column of N boxes. The model is then
equivalent to an SU(2N ) Heisenberg spin chain where the
spin operators belong to the antisymmetric self-conjugate
representation of SU(2N ). The latter model is known for
all N to have a dimerized or spin Peierls (SP) twofold-
degenerate ground state, where dimers are formed between
two neighboring sites [58–62].

In the attractive case (U < 0), the lowest-energy states are
the empty and the fully occupied states, which is an SU(2N )
singlet. At second order of perturbation theory, the effective
model reads as [63]

Heff = t2

N (2N − 1)|U |
∑

i

(nini+1 − Nni). (44)

The first term introduces an effective repulsion interaction
between nearest-neighbor sites. This leads to a twofold-
degenerate fully gapped charge-density wave (CDW) where
empty (ni = 0) and fully occupied (ni = 2N ) states alternate.
The resulting CDW phase for N = 2 is depicted in Fig. 5(a).

3. Negative J

Now let us discuss the case with J < 0 (and U > 0). For
small enough anisotropies |J − Jz|, |μg − μe|, the atomic-
limit ground states are obtained by applying the lowering
operators T −

i onto the reference state

c
†
g1,ic

†
g2,i . . . c

†
gN,i |0〉. (45)

To carry out the second-order perturbation, it is convenient to
regard the model Hg-e as the N -coupled Hubbard-type chains,
along which the g and e fermions move (see Fig. 6). Since

“1”

“2”

“N”

FIG. 6. (Color online) The N -leg ladder representation of the
model (2). N Hubbard-type chains for “spinful” fermions (g and e)
are coupled to each other by U (interchain density-density interaction
among like fermions), V (that between g and e), and the interchain
Hund couplings (V g-e

ex ).

each “site” of the chains is occupied by exactly one fermion
in the ground states, it is clear that the two hopping processes
must occur on the same chain. Therefore, the calculation is
similar to that in the usual single-band Hubbard chain (except
that we have to symmetrize the N resultant T = 1

2 chains at
the last stage) and we finally obtain the pseudospin T = N/2
Hamiltonian

Horb =
∑

i

{
Jxy

(
T x

i T x
i+1 + T

y

i T
y

i+1

) + JzT
z
i T z

i+1

− (J − Jz)
(
T z

i

)2}
+

∑
i

{NUdiff − (μg − μe)}T z
i + const (46)

with the following exchange couplings:

Jxy ≡ 4tgte

N
{
U − J

(
N + 1

2

)} , (47a)

Jz ≡ 2
{
t2
g + t2

e

}
N
{
U − J

(
N + 1

2

)} (Jxy � Jz). (47b)

Since the atomic-limit ground state where we have started
does not depend on N , the final effective Hamiltonian (46) is
valid for both even N and odd N . When g and e are symmetric
(i.e., Udiff = 0, μg = μe, tg = te), Jxy = Jz and the above
effective Hamiltonian (46) reduces to the usual spin T = N/2
Heisenberg model with the single-ion anisotropy, whose phase
diagram has been studied extensively (see, e.g. Refs. [64–66]
and references cited therein). It is well known [37,38] that
the behavior of the spin-S(=N/2) Heisenberg chain differs
dramatically depending on the parity of N . Therefore, we may
conclude that, when N is even, the gapped “orbital” Haldane
(OH) phase [44] appears for large negative J (at least for
small anisotropy J ≈ Jz, tg ≈ te), while, for odd N , the same
region is occupied by the gapless Tomonaga-Luttinger-liquid
phase. The nontrivial hidden ordering of orbital degrees
of freedom in the OH phase is illustrated for N = 2 in
Fig. 4(b).

When we increase |J − Jz| (J < Jz), the OH phase finally
gets destabilized and is taken over by a gapful SU(N )-singlet
nondegenerate phase. This is an orbital analog of the “large-
D phase” whose wave function is given essentially by a
product of T z

i = 0 states [see Fig. 4(d)]. In the following,
we call it “rung singlet (RS)” as this state reduces in the
case of N = 2 to the well-known rung-singlet state in the
spin- 1

2 two-leg ladder [67]. On the other hand, when J − Jz

takes a large positive value (as will be seen in Sec. V F 2),
the effective Hamiltonian (46) develops easy-axis anisotropy
and enters a phase with antiferromagnetic ordering of the
orbital pseudospin T z: −N/2,+N/2,−N/2,+N/2, . . . [see
Fig. 5(b)]. This phase will be called “orbital-density wave
(ODW)” and is depicted in Fig. 5(b) for N = 2.

Due to the strong easy-plane anisotropy in the orbital sector,
a different conclusion is drawn for the p-band model (29).
Now, the single-site energy is given as

−μni + 1
4 (U1 + U2)n2

i + {
2U2

(
T x

i

)2 + (U1 − U2)
(
T z

i

)2}
.

(48)
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Since V
g-e

ex = J ↔ U2, the condition J < 0 translates to U2 <

0 in the p-band model. Since the condition U2 < 0 in the
physical region U1 � 3U2 implies an attractive interaction
U1 + U2 < 0, we have to take into account several different
values of ni . We follow the same line of argument as in
Sec. II D 2 to show that at μ = −N |U1 + U2|, we have two
degenerate SU(N )-singlet states ni = 0 (T = 0) and ni = 2N

(T = 0) which feel a repulsive interaction coming from t2

processes. Therefore, 2kF CDW occupies a region around the
line U1 = 3U2 for N � 3.

The case N = 2 is exceptional due to the existence of
the spin-charge symmetry (35). In fact, at μ = −4|U2|, the
following three spin-singlet states

c
†
px↑,ic

†
px↓,ic

†
py↑,ic

†
py↓,i |0〉 (ni = 4),

1√
2

(
c
†
px↑,ic

†
px↓,i + c

†
py↑,ic

†
py↓,i

)|0〉 (≡|OLDy〉,ni = 2),

|0〉 (ni = 0) (49)

are degenerate on the U(1)-symmetric line U1 = 3U2 and form
a triplet of charge SU(2) at each site.

The effective Hamiltonian for the ground-state manifold
spanned by these triplets is readily obtained by applying
the transformation (32) to (43), which is nothing but the
spin-1 Heisenberg model. From the known ground state of
the effective Hamiltonian, one sees that, instead of CDW for
N � 3, CH appears around the line U1 = 3U2 when N = 2.
Note that the existence of the Shiba transformation, which
guarantees the symmetry between spin and charge, is crucial
for the appearance of the CH phase in the N = 2 case.

III. SU(N) TOPOLOGICAL PHASE

In this section, we investigate the nature of the ground state
of the SU(N ) Heisenberg spin chain (41) and its main physical
properties.

A. SU(N) valence-bond-solid (VBS) state

In Sec. II, we have seen that for positive J (or positive
U2), we obtain the SU(N ) Heisenberg models (41) or (43)
for relatively wide parameter regions. This SU(N ) spin chain
has the self-conjugate representation (with N/2 rows and 2
columns) at each site and is not solvable. Nevertheless, we can
obtain [40] a fairly good understanding of the properties of the
ground state by constructing a series of model ground states,
the VBS states [68,69], whose parent Hamiltonian is close to
the original ones (41) and (43).

We start from a pair of the self-conjugate representations
[characterized by a Young diagram with one column and N/2

FIG. 7. (Color online) SU(N ) VBS states are constructed out of
a pair of self-conjugate representations at each site. Dashed lines
denote maximally entangled pairs. (a) SU(4) with 20-dimensional
representation and (b) SU(6) with 175-dimensional representation.
(a)′ and (b)′ are the corresponding matrix-product states.

rows; see (50)] on each site and create maximally entangled
pairs between adjacent sites [see Figs. 7(a) and 7(b)]. To
obtain the physical wave function, we apply the projection
[see Figs. 7(a)′ and 7(b)′]

N/2 ⊗ (50)

onto the tensor-product state obtained above and construct
the physical Hilbert space [i.e., SU(N ) representation with its
Young diagram having N/2 rows and two columns] at each
site. This procedure may be most conveniently done by using
the matrix-product state (MPS) [70]∑
{mi }

A1(m1)A2(m2) . . . Ai(mi) . . . |m1,m2, . . . ,mi, . . .〉, (51)

where mi labels the states of the d-dimensional local Hilbert
space at the site i and Ai(mi) is D×D matrices with D being
the bond dimensions. The dimensions of the local Hilbert space
are d = 20 [SU(4)], d = 175 [SU(6)], d = 1764 [SU(8)], and
so on.

Although it is in principle possible to write the MPS for
general N , the construction rapidly becomes cumbersome
with increasing N . Therefore, we focus below only on the
N = 4 case where the ground state is given by the MPS with
D = 6 (the dimensions of ). The parent Hamiltonian bearing
the above VBS state as the exact ground state is not unique
and, aside from the overall normalization, there are two free
(positive) parameters. Among them, the one with lowest order
in (SA

i SA
i+1) is given by [40]

H(N=4)
VBS = Js

∑
i

{
SA

i SA
i+1 + 13

108

(
SA

i SA
i+1

)2 + 1

216

(
SA

i SA
i+1

)3
}
,

(52)

where SA
i (A = 1, . . . ,15) denote the SU(4) spin opera-

tors in the 20-dimensional representation [normalized as
Tr (SASB ) = 16δAB] and Js is the exchange interaction
between SU(N ) “spins” [71]. The ground state is SU(4)
symmetric and featureless in the bulk, and has the “spin-spin”
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correlation functions

〈
SA

j SA
j+n

〉 =
{

12
5

(− 1
5

)n
, n �= 0

4
5 , n = 0

(53)

that are exponentially decaying with a very short correlation
length 1/ ln 5 ≈ 0.6213. In spite of the featureless behavior
in the bulk, the system exhibits a certain structure near the
boundaries. In fact, if one measures 〈SA

i 〉 (with SA
i being any

three commuting generators), one can clearly see the structure
localized around the two edges. At each edge, there are six
different states distinguished by the value of the set of the three
generators 〈SA

i 〉. As in the spin-1 Haldane systems where two
spin- 1

2 ’s emerge at the edges [69,72], one may regard these six

edge states as the emergent SU(N ) “spin” appearing near
each edge.

B. Symmetry-protected topological phases

We observe that the model (52) is not very far from the
original pure Heisenberg Hamiltonian (41) or (43) obtained
by the strong-coupling expansion in Sec. II D. This strongly
suggests that the SU(4) topological phase realizes in the strong-
coupling regime of the SU(N ) fermion system Hg-e [Eq. (2)]
or Hp-band [Eq. (27)] with the emergent edge states that belong
to the six-dimensional representation of SU(4). In Ref. [73],
it is predicted using the group-cohomology approach [74–76]
that there are N topologically distinct phases (including one
trivial phase) protected by PSU(N ) = SU(N )/ZN symmetry,
which are characterized by the number of boxes ny (mod N )
contained in the Young diagram corresponding to the emergent
edge “spin” at the (right) edge. Since the six-dimensional
representation appears at the edge of the N = 4 VBS
state (51), one expects that the ground state of the Heisenberg
Hamiltonian (41) [or (43)] as well as that of the N = 4 VBS
Hamiltonian (52) belongs to the ny = 2 member (we call it
class-2 hereafter) of the four topological classes.

Nevertheless, the observation of the edge-state degeneracy
alone may lead to erroneous answers. A firmer evidence may
be provided by the entanglement spectrum [77], which is
essentially the logarithm of the eigenvalues of the reduced
density matrix. For instance, by tracing the entanglement
spectrum, we can distinguish between different topological
phases [39,78–80]. On general grounds, one may expect that
any representations compatible with the group-cohomology
classification [74,76] can appear in the entanglement spec-
trum [81]. Quite recently, the entanglement spectrum for the
model (42) has been calculated [82] by using the infinite-time
evolving block decimation (iTEBD) [83,84] method. It has
been found that the spectrum indeed consists of several
different levels whose degeneracies are all compatible with the
dimensions of the SU(4) irreducible representations allowed
for the edge states of the class-2 topological phase. Specif-
ically, the lowest-lying entanglement levels consist of (6-

dimensional), (64-dimensional), (50-dimensional),

etc. Moreover, the continuity between the ground state of the
model (41) and that of (52) has been demonstrated [82] by

tracing the entanglement spectrum along the path (0 � λ � 1)

H(λ) = Js

∑
i

SA
i SA

i+1

+ λJs

∑
i

{
13

108

(
SA

i SA
i+1

)2 + 1

216

(
SA

i SA
i+1

)3
}
. (54)

At λ = 0, H(λ) reduces to the effective Hamiltonian HSU(N)

[Eqs. (41) or (43)] and H(1) is the VBS Hamiltonian (52)
whose entanglement spectrum consists only of the sixfold-
degenerate level. When we move from λ = 0 to 1, the
entanglement levels other than the lowest one gradually go
up and finally disappear from the spectrum at λ = 1 while
preserving the structure of the spectrum.

It is interesting to consider the protecting symmetries
other than PSU(N ). The result from group cohomology [85]
H 2[PSU(N),U(1)] = H 2[ZN×ZN,U(1)] = ZN suggests that
ZN×ZN will do the job. Since it has been recently demon-
strated that the evenfold-degenerate structure in the entangle-
ment spectrum signals the topological Haldane phase [39,78],
one may ask whether there is a relation between our class-2
topological phase and the Haldane phase. However, as we will
show in the following, the evenfold degeneracy found in the
entanglement spectrum of our SU(4) state comes from the
protecting Z4×Z4 symmetry that is a subgroup of PSU(4).

The first Z4 generator Q is defined in terms of the two
commuting SU(4) generators (Cartan generators) as

Q ≡ ei 3π
4 exp

(
i
2π

4
GQ

)
, Q4 = 1,

GQ ≡ 2H1 + H2.

(55)

On the other hand, the second Z4 is generated by

P ≡ ei 3π
4 exp

(
i
2π

4
GP

)
, P 4 = 1,

GP ≡ −1

2

∑
α

Eα + i

2

(
3∑

i=1

Eαi
− Eα1+α2+α3

)

− i

2

(
3∑

i=1

E−αi
− E−α1−α2−α3

)
.

(56)

In the above equations, we have used the Cartan-Weyl basis
{Ha,Eα} that satisfies

[Ha,Hb] = 0, [Ha,Eα] = (α)aEα,

[Eα,E−α] =
3∑

a=1

(α)aHa, Tr (HaHb) = 16δab

(a,b = 1,2,3)

(57)

with α being the roots of SU(4) normalized as |α| = √
2

which are generated by the simple roots αi (i = 1,2,3). The
summation

∑
α is taken over all 12 roots α of SU(4). Here, we

do not give the explicit expressions of the generators which
depend on a particular choice of the basis since giving the
commutation relations suffices to define Z4×Z4. In the actual
calculations, one may use, e.g., the generators and the weights
given in Sec. 13.1 of Ref. [86] with due modification of the
normalization [87].
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It is important to note that the two Z4’s defined above
commute with each other (i.e., [Q,P ] = 0) only when the
number of boxes in the Young diagram is an integer multiple of
4. To put it another way, the two operators Q and P constructed
here generate Z4×Z4 only for PSU(4) as the two π rotations
along the x and z axes generate Z2×Z2 only when the spin
quantum number is integer.

Now, let us consider the relation between the PSU(4)
topological classes and the above Z4×Z4 symmetry. To this
end, we recall the fundamental property of MPS. If a given
MPS generated by the matrices {A(m)} is invariant under the
Z4×Z4 symmetry introduced above, there exist a set of unitary
matrices UQ and UP satisfying [88]

A(m)
Q−→ eiθQU

†
QA(m)UQ,

A(m)
P−→ eiθP U

†
P A(m)UP .

(58)

Then, the property QP = PQ mentioned above implies [89]
that they obey the following nontrivial relation [90]:

UQUP = ωnyUP UQ

(
ω ≡ ei 2π

N

)
(59)

with the same ny(=0,1,2,3) as above. Reflecting the entan-
glement structure, UP and UQ are both block-diagonal. By
taking the determinant of both sides, one immediately sees
that the degree of degeneracy Dξ of each entanglement level ξ

(i.e., the size of each block) satisfies ωDξ ny = 1. In our SU(4)
case, Dξ = 4n (n: positive integer) for class-1 (ny = 1) and
class-3 (ny = 3), while Dξ = 2n for class-2 (ny = 2). The
relation (59) implies that the crucial information on the PSU(4)
topological phase is encoded in the exchange property of the
projective representations UQ and UP of Z4×Z4. This is the
key to the construction of nonlocal string order parameters of
our PSU(N ) topological phases.

C. Nonlocal order parameters

By definition, local order parameters are not able to capture
the SU(N ) SPT phases. Nevertheless, elaborate choice [91–93]
of nonlocal order parameters could detect hidden topolog-
ical orders in those phases. We adapt the method [90] of
constructing nonlocal order parameters in generic (ZN×ZN )-
invariant systems to our SU(4) system. As in the usual spin
systems [94,95], one can construct the following sets of order
parameters in terms of SU(4) generators:

O1(m,n) ≡ lim
|i−j |↗∞

˝
{X̂P (i)}m

⎧⎨
⎩

∏
i�k<j

Q̂(k)n

⎫⎬
⎭ {X̂†

P (j )}m
˛
,

(60a)

O2(m,n) ≡ lim
|i−j |↗∞

˝
{X̂Q(i)}m

⎧⎨
⎩

∏
i<k�j

P̂ (k)n

⎫⎬
⎭ {X̂†

Q(j )}m
˛

(0 � m,n < N ). (60b)

The subscripts 1 and 2 refer to the string order parameters
corresponding to the two commuting ZN ’s. The operators X̂Q

and X̂P appearing in the above can be expressed by the SU(4)

TABLE IV. Three sets of string-order parameters characterizing
the four distinct phases protected by PSU(4). The entry “finite” means
that the corresponding O1,2 in principle can take nonzero values.

Phases O1,2(1,3) O1,2(2,1) O1,2(1,1)

Trivial (ny = 4n) 0 0 0
Class-1 (ny = 4n + 1) Finite 0 0
Class-2 (ny = 4n + 2) 0 Finite 0
Class-3 (ny = 4n + 3) 0 0 Finite

generators as

X̂Q = 1

2
(E−α1 + E−α2 + E−α3 + Eα1+α2+α3 ),

X̂P = 1√
2

(H1 − iH3)
(61)

and obey the following relations (ω = ei 2π
4 ):

Q̂†X̂QQ̂ = ωX̂Q, P̂ †X̂QP̂ = X̂Q,

Q̂†X̂P Q̂ = X̂P , P̂ †X̂P P̂ = ω−1X̂P

(62)

for any irreducible representations of SU(4).
It is known [92,93] that the boundary terms of O1,2(m,n)

carry crucial information about the projective representation
under which the physical edge states transform and hence
give a physical way of characterizing the topological phases.
By carefully analyzing the phase factors appearing in the
boundary terms, one sees that the three sets of nonlo-
cal string order parameters {O1,2(1,3),O1,2(2,1),O1,2(1,1)}
can distinguish among the four distinct phases (one trivial
and three topological) protected by PSU(4) symmetry (see
Table IV) [82]. In fact, one can check [82] numerically that
O1,2(2,1) remains finite all along the interpolating path H(λ),
while all the others are zero [at the solvable point λ = 1,
O1,2(2,1) = 1].

IV. WEAK-COUPLING APPROACH

In this section, we map out the zero-temperature phase
diagram of the different lattice models (2), (18), and (29)
related to the physics of the 1D two-orbital SU(N ) cold
fermions by means of a low-energy approach. In particular,
we will investigate the fate of the different topological Mott-
insulating phases, revealed in the strong-coupling approach,
in the regime where the hopping term is not small.

A. Continuum description

The starting point of the analysis is the continuum descrip-
tion of the lattice fermionic operators cmα, i in terms of 2N

left-right moving Dirac fermions (m = g,e or m = px,py ,
α = 1, . . . ,N) [96,97]:

cmα, i → √
a0[Lmα(x)e−ikFx + Rmα(x)eikFx], (63)

where x = ia0 (a0 being the lattice spacing). Here, we assume
tg = te and μ(g) = μ(e), and hence k

(g)
F = k

(e)
F = kF = π/(2a0)

for half-filling. The noninteracting Hamiltonian is equivalent
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to that of 2N left-right moving Dirac fermions:

H0 = −ivF(R†
mα∂xRmα − L†

mα∂xLmα), (64)

where vF = 2ta0 is the Fermi velocity. The noninteracting
model (64) enjoys an U(2N )|L ⊗ U(2N )|R continuous symme-
try which results from its invariance under independent unitary
transformations on the 2N left and right Dirac fermions.
It is then very helpful to express the Hamiltonian (64)
directly in terms of the currents generated by these continuous
symmetries. To this end, we introduce the U(1)c charge current
and the SU(2N )1 current which underlie the conformal field
theory (CFT) of massless 2N Dirac fermions [59,98]:

JcL =: L†
nαLnα : U(1)c charge current,

JA
L = L†

mαT A
m,α;n,βLnβ SU(2N)1currents

(65)

with m,n = g,e (or m,n = px,py for the p-band model),
α,β = 1, . . . ,N , and we have similar definitions for the
right currents. In Eq. (65), the symbol : . . . : denotes the
normal ordering with respect to the Fermi sea, and T A (A =
1, . . . ,4N2 − 1) stand for the generators of SU(2N ) in the fun-
damental representation normalized such that Tr(T AT B) =
δA B/2. The noninteracting model (64) can then be written in
terms of these currents (the so-called Sugawara construction
of the corresponding CFT [99])

H0 = πvF

2N

[
: J 2

cR : + : J 2
cL :

]
+ 2πvF

2N + 1

[
: JA

R JA
R : + : JA

L JA
L :

]
. (66)

The noninteracting part is thus described by an U(1)c ×
SU(2N )1 CFT. Since the lattice model has a lower SU(N )
symmetry originating from the nuclear spin degrees of free-
dom, it might be useful to consider the following conformal
embedding [99], which is also relevant to multichannel Kondo
problems [100]: U(1)c × SU(2N )1 ⊃ U(1)c × SU(N )2 ×
SU(2)N . In this respect, let us define the following currents
which generate the SU(N )2 × SU(2)N CFT:

J a
L = L†

nα(T a)α,βLnβ SU(N )2 (nuclear) spin currents,

j i
L = L†

mα(σ i/2)m,nLnα SU(2)N orbital currents,

J a,i
L = L†

mαT
a,i
m,α;n,βLnβ remaining SU(2N )1 currents,

(67)

where T a (a = 1, . . . ,N2 − 1) and σ i (i = x,y,z), respec-
tively, are the SU(N ) generators and the Pauli matrices. The
4N2 − 1 SU(2N ) generators can be expressed in a unifying
manner as a direct product between the SU(N ) and the SU(2)
generators:

T a,0 = 1√
2
T a ⊗ I2,

T 0,i = 1

2
√

N
IN ⊗ σ i,

T a,i = 1√
2
T a ⊗ σ i,

(68)

where all the above generators are normalized in such a way
that Tr(T XT Y ) = δX Y /2 [X,Y = (a,i)]. The current j i

L, being
the sum of N SU(2)1 currents, the CFT corresponding to spin- 1

2

degrees of freedom [96], becomes an SU(2)N current, that
accounts for the critical properties of the orbital degrees of
freedom. Similarly, J a

L is a sum of two level-1 SU(N ) currents
and the low-energy properties of the nuclear spin degrees are
governed by an SU(N )2 CFT which is generated by the J a

L
(a = 1, . . . ,N2 − 1) current.

At half-filling, we need to introduce, on top of these
currents, additional operators which carry the U(1) charge to
describe various umklapp operators in the continuum limit:

A
αβ+
mnL = −i

2
(L†

mαL
†
nβ − L

†
mβL†

nα),

S
αβ+
L = 1

2
(L†

gαL
†
eβ + L

†
gβL†

eα),

(69)

with m,n = g,e (or m,n = px,py for the p-band model), and
α,β = 1, . . . ,N . We introduce a similar set of operators for
the right fields as well.

With all these definitions at hand, we are able to derive
the continuum limit of two-orbital SU(N ) models of Sec. II.
We will neglect all the velocity anisotropies for the sake
of simplicity. Performing the continuum limit, we get the
following interacting Hamiltonian density:

Hint = g1J
a
L J a

R + g2

2

(
J a,+

L J a,−
R + H.c.

) + g3J a,3
L J a,3

R

+ g4

2
(j+

L j−
R + H.c.) + g5j

z
Ljz

R + g6JcLJcR

+ g7
(
S

αβ+
L S

αβ−
R + H.c.

)
+ g8

2

∑
m=g,e

(
A

αβ+
mmLA

αβ−
mmR + H.c.

)

+ g9
(
A

αβ+
geL A

αβ−
geR + H.c.

)
. (70)

Although the different lattice models, having the same con-
tinuous symmetry, share the same continuum Hamiltonian (70)
in common, the sets of initial coupling constants are different.
For the generalized Hund model (18), we find the following
identification for the coupling constants:

g1 = −
(

U + J + Jz

2

)
a0,

g2 = (−2U + Jz)a0,

g3 = (−2U + 2J − Jz)a0,

g4 =
(

−2U

N
+ 2J + Jz

N

)
a0,

g5 =
(

−2U

N
+ 2J

N
+ 2N − 1

N
Jz

)
a0,

g6 =
(

U (2N − 1)

2N
− J

2N
− Jz

4N

)
a0,

g7 = −
(

−U + J + Jz

2

)
a0,

g8 =
(

U + Jz

2

)
a0,

g9 =
(

U + J − Jz

2

)
a0,

(71)
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while, for the g-e model with fine tuning Ugg = Uee = Umm,
we use Eq. (19) to obtain

g1 = −a0
(
Umm + V g-e

ex

)
, g2 = −2a0V,

g3 = 2a0
(
V g-e

ex − Umm

)
, g4 = 2a0

(
V g-e

ex − V

N

)
,

g5 = 2a0

(
(N − 1)

N
Umm + 1

N
V g-e

ex − V

)
,

g6 = a0

2N

[−V g-e
ex + (N − 1)Umm + NV

]
,

g7 = a0
(
V − V g-e

ex

)
,

g8 = a0Umm,

g9 = a0
(
V + V g-e

ex

)
.

(72)

Since the effective Hamiltonian (70) enjoys an U(1)c ×
SU(N )s × U(1)o continuous symmetry, it governs also the low-
energy properties the p-band model (29) with a harmonic
confinement potential where U1 = 3U2 and also along the line
U1 = U2 as discussed in Sec. II B. In absence of the U(1)o
orbital symmetry, model (70) will be more complicated with
12 independent coupling constants and we will not investigate
this case here.

B. RG analysis

The interacting part (70) consists of marginal current-
current interactions. The one-loop RG calculation enables one
to deduce the infrared (IR) properties of that model and thus the
nature of the phase diagram of the SU(N ) two-orbital models.
After very cumbersome calculations, we find the following
one-loop RG equations:

ġ1 = N

4π
g2

1 + N

8π
g2

2 + N

16π
g2

3 + N + 2

4π
g2

7

+ N − 2

4π

(
2g2

8 + g2
9

)
,

ġ2 = N

2π
g1g2 + N2 − 4

4πN
g2g3 + 1

2π
(g2g5 + g3g4)

+ N

π
g7g8 + N − 2

π
g8g9,

ġ3 = N

2π
g1g3 + N2 − 4

4πN
g2

2 + 1

π
g2g4 + N

π
g7g9 + N − 2

π
g2

8,

ġ4 = 1

2π
g4g5 + N2 − 1

2πN2
g2g3 + 2(N − 1)

πN
g8g9,

ġ5 = N2 − 1

2πN2
g2

2 + 1

2π
g2

4 + 2(N − 1)

πN
g2

8,

ġ6 = N + 1

4πN
g2

7 + N − 1

2πN
g2

8 + N − 1

4πN
g2

9,

ġ7 = (N + 2)(N − 1)

2πN
g1g7 + 2

π
g6g7

+ N − 1

4π
(2g2g8 + g3g9),

ġ8 = N + 1

4π
g2g7 + 2

π
g6g8 + 1

2π
(g4g9 + g5g8)

+ (N − 2)(N + 1)

4πN
(2g1g8 + g2g9 + g3g8),

ġ9 = N + 1

4π
g3g7 + 1

π
(g4g8 + 2g6g9)

+ (N − 2)(N + 1)

2πN
(g1g9 + g2g8), (73)

where ġi = ∂gi/∂l(i = 1, . . . ,9) with l being the RG time.
First, we note that the RG flow of these equations is drastically
different for N = 2 and N > 2 as we observe, from Eqs. (73),
that some terms vanish in the special N = 2 case. In the
latter case, the RG analysis has been done in detail already
in Refs. [44,101], where the phase diagram of the generalized
Hund and g-e cold fermions have been mapped out. We
thus assume N > 2 hereafter and, for completeness, we will
also determine the phase diagram of the half-filled p-band
model (29) for N = 2 (see Appendix D).

The next step is to solve the RG equations (73) nu-
merically using the Runge-Kutta procedure. For the initial
conditions (71) and (72) corresponding to the different lattice
models of Sec. II, the numerical analysis reveals the existence
of the two very different regimes that we will now investigate
carefully below.

1. Phases with dynamical symmetry enlargement

One striking feature of 1D interacting Dirac fermions is
that when the interaction is marginally relevant, a dynamical
symmetry enlargement (DSE) [102–104] emerges very often
in the far IR. Such DSE corresponds to the situation where
the Hamiltonian is attracted under a RG flow to a manifold
possessing a symmetry higher than that of the original field
theory. Most of DSEs have been discussed within the one-loop
RG approach. Among those examples is the emergence of
SO(8) symmetry in the low-energy description of the half-filled
two-leg Hubbard model [102,105] and the SU(4) half-filled
Hubbard chain model [61].

It is convenient to introduce the following rescaling of the
coupling constants to identify the possible DSEs compatible
with the one-loop RG equations (73):

f1,7,8,9 = N

π
g1,7,8,9, f2,3 = N

2π
g2,3,

f4,5 = N2

2π
g4,5, f6 = 2N2

π
g6.

(74)

One then observes that along a special direction of the flow
(dubbed “ray”) [106] where fi = f , all the nine one-loop RG
equations (73) reduce to a single equation:

ḟ = 2N − 1

N
f 2. (75)

This signals the emergence of an SO(4N ) symmetry which
is the maximal continuous symmetry enjoyed by 2N Dirac
fermions, i.e., 4N Majorana (real) fermions. To see this, one
notes that along this special ray, model (70) reduces to the
SO(4N ) Gross-Neveu (GN) model [107]

HGN = −ivF(R†
mα∂xRmα − L†

mα∂xLmα)

+ πf

2N
(L†

mαRmα − H.c.)2, (76)

where the SO(4N ) symmetry stems from the decomposition of
Dirac fermions into Majorana fermions: Lmα = ξmα + iχmα .
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The GN model (76) is a massive integrable field theory when
f > 0 whose mass spectrum is known exactly [108,109].

The numerical integration of RG equations (73) revealed
that for some set of initial conditions, the coupling constants
flow along the highly symmetric ray where fi = f > 0 in
the far IR (see Sec. IV C). The model is then equivalent to
the SO(4N ) GN model and a nonperturbative spectral gap is
generated. The development of this strong-coupling regime in
the SO(4N ) GN model signals the formation of a SP phase for
all N � 2 with the order parameter:

OSP = i(L†
mαRmα − H.c.), (77)

which is the continuum limit of the SP operator on a lattice

OSP(i) = (−1)i
∑
mα

c
†
mα,i+1cmα,i . (78)

Since the interacting part of the GN model (76) can be written
directly in terms of OSP, Hint

GN = −πfO2
SP/(2N ), we may

conclude that 〈OSP〉 �= 0 in the ground state for f > 0, i.e.,
the emergence of a dimerized phase. The latter is twofold
degenerate and breaks spontaneously the one-step translation
symmetry:

Ta0 : Lmα → −iLmα , Rmα → iRmα, (79)

sinceOSP → −OSP under Ta0 . It turns out that the SU(2N ) line
(J = Jz = 0) with U > 0 of the generalized Hund model (18)
is described by the fi = f > 0 manifold with an SO(4N )
DSE. This is in full agreement with the fact that the repulsive
SU(2N ) Hubbard model for N � 2 displays a SP phase at half
filling [62].

On top of this phase, we can define other DSE phases
with global SO(4N ) symmetry. These phases are described
by RG trajectories along the rays fi = εif (εi = ±1) in the
long-distance limit. The physical properties of these phases
are related to those of the SO(4N ) GN model up to some
duality symmetries on the Dirac fermions [103]. These duality
symmetries can be determined using the symmetries of the RG
equations (73):

�1 : f7,8,9 → −f7,8,9, (80a)

�2 : f2,4,8 → −f2,4,8, (80b)

�3(=�1�2) : f2,4,7,9 → −f2,4,7,9, (80c)

which are indeed symmetries of Eqs. (73) in the general
N case. Using the definitions (67), (69), and (70), one can
represent these duality symmetries simply in terms of the Dirac
fermions:

�1 : Lmα → iLmα,

�2 : Lmα → (−1)miLmα,

�3 : Lmα → (−1)m+1Lmα,

(81)

while the right fermions remain invariant. These transforma-
tions are automorphisms of the different current algebra in
Eq. (67) [103].

Starting from the gapful SP phase found above, one can
deduce the three other insulating phases by exploiting the

duality symmetries (81):

OSP
�1−→ OCDW ≡ L†

mαRmα + H.c.,

OSP
�2−→ OODW ≡

∑
m

(−1)mL†
mαRmα + H.c., (82)

OSP
�3−→ OSPπ

≡
∑
m

(−1)mi(L†
mαRmα − H.c.).

Using (63), one can identify the lattice order parameters
corresponding to these operators as

OCDW(i) = (−1)ini,

OODW(i) = (−1)i
∑
m

(−1)mc
†
mα,icmα,i , (83)

OSPπ
(i) = (−1)i

∑
m

(−1)mc
†
mα,i+1cmα,i ,

which describe, respectively, a CDW, an orbital-density wave
(ODW), and an alternating SP phase (SPπ ). For instance, by
using �1, one can immediately conclude that on the SU(2N )
line (J = Jz = 0) with U < 0, the generalized Hund model
is in a CDW phase 〈OCDW〉 �= 0 exhibiting the SO(4N ) DSE.
This is fully consistent with the known result that the attractive
SU(2N ) Hubbard model for N � 2 displays a CDW phase at
half-filling Refs. [62,63].

In summary, in the first regime of the RG flow characterized
by DSE, we found four possible Mott-insulating phases which
are twofold degenerate and spontaneously break the one-site
translation symmetry. The RG approach developed here tells
that each of these four phases is characterized by one of the
four SO(4N )-symmetric DSE rays related to each other by the
duality symmetries �1,2,3.

2. Nondegenerate Mott-insulating phases

In the second regime, the RG flow displays no symmetry
enlargement, and we can no longer use any duality symmetry
to relate the underlying insulating phases to a single phase
(e.g., the SP phase in the above). Indeed, in stark contrast,
the numerical solution of the one-loop RG equations (73) for
N > 2 reveals that the coupling constant g1 in the low-energy
effective Hamiltonian (70) reaches the strong-coupling regime
before the other coupling constants such as g2,4,5,8. Since the
operator corresponding to g1 depends only on the nuclear spin
degrees of freedom, one expects a separation of the energy
scales in this second region of the RG flow. Neglecting all
the other couplings for the moment, the resulting perturbation
corresponds to an SU(N )2 CFT perturbed by a marginally
relevant current-current interaction g1 > 0. This model is an
integrable massive field theory [110,111] and a spin gap �s

thus opens for the SU(N ) (nuclear) spin sector in this regime.
The next task is to integrate out these (nuclear) spin degrees of
freedom to derive an effective Hamiltonian for the remaining
degrees of freedom in the low-energy limit E � �s from
which the physical properties of the second regime of the
RG approach will be determined.

a. SU(2)o-symmetric case. Let us first consider the SU(2)o-
symmetric case to derive the low-energy limit E � �s. In this
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case, the model (70) simplifies as

HSU(2)o
int = g1J

a
L J a

R + g2J a,i
L J a,i

R + g4 jL · jR

+ g6JcLJcR + g7
(
S

αβ+
L S

αβ−
R + H.c.

)
+ g8

2

[
A

αβ+
mnLA

αβ−
mnR + H.c.

]
(84)

since g2 = g3, g4 = g5, and g8 = g9 as a consequence of
the SU(2)o symmetry. At this point, we need to express all
operators appearing in Eq. (84) in the U(1)c× SU(2)N×
SU(N )2 basis. To this end, we will use the so-called non-
Abelian bosonization [98,112]

L†
mαRnβ � exp(i

√
2π/N�c)gnmGβα,

R†
mαLnβ � exp(−i

√
2π/N�c)g†

mnG
†
αβ,

(85)

where the charge field �c is a compactified bosonic field with
radius Rc = √

N/2π : �c ∼ �c + √
2πN . This field describes

the low-energy properties of the charge degrees of freedom.
In Eq. (85), g (respectively G) is the SU(2)N [respectively
SU(N )2] primary field with spin- 1

2 [respectively which trans-
forms in the fundamental representation of SU(N )]. The
scaling dimensions of these fields are given as

�g = 3

N + 2
, �G = N2 − 1

N (N + 2)
(86)

(see Appendix C) so that Eq. (85) is satisfied at the level
of the scaling dimension: 1 = 1/2N + 3/(N + 2) + (N2 −
1)/N (N + 2).

By the correspondence (85), the different operators of the
low-energy effective Hamiltonian (84) can then be expressed
in terms of the U(1)c× SU(2)N× SU(N )2 basis. Let us first find
the decomposition of J a,i

L J a,i
R of Eq. (84). Using the SU(N )

identity ∑
a

T a
αβT a

γρ = 1

2

(
δαρδβγ − 1

N
δαβδγρ

)
(87)

and �σmn · �σpq = 2(δmqδnp − 1
2 δmnδpq), we obtain

J a,i
L J a,i

R = −1

2
L
†
lαRlαR

†
mβLmβ + 1

4
L
†
lαRmαR

†
mβLlβ

+ 1

2N
L
†
lαRlβR

†
mβLmα − 1

4N
L
†
lαRmβR

†
mβLlα.

(88)

Using Eq. (85), we get

J a,i
L J a,i

R = − 1
2

[
Tr(g)Tr(g†) − 1

2gmng
†
mn]

× [Tr(G†)Tr(G) − GβαG
†
βα/N]. (89)

Now, we use the expression of the trace of the SU(2)N
primary field which transforms in the spin-1 representation
that we have derived in Appendix C [Eq. (C8)] and a similar
one for the SU(N )2 primary field in the adjoint representation
of SU(N ):

Tr
(
�

SU(N)2
adj

) = Tr(G†)Tr(G) − 1

N
GβαG

†
βα, (90)

so that Eq. (88) simplifies as follows:

J a,i
L J a,i

R ∼ −Tr
(
�

SU(2)N
j=1

)
Tr
(
�

SU(N)2
adj

)
. (91)

The expression of the operator S
αβ+
L S

αβ−
R in Eq. (84) in the

U(1)c× SU(2)N× SU(N )2 basis can be obtained by observing
that S

αβ+
L is symmetric with respect to the exchange α ↔

β and a singlet under the SU(2) orbital. The decomposition
will then involve the SU(N )2 primary field in the symmetric
representation of SU(N ) with dimension N (N + 1)/2:

S
αβ+
L S

αβ−
R ∼ exp(i

√
8π/N�c)Tr(�SU(N)2

s ). (92)

Finally, the last operator in Eq. (84) is symmetric under the
SU(2) orbital symmetry and antisymmetric with respect to
the exchange α ↔ β of SU(N ). Therefore, it will involve
the spin-1 operator �

SU(2)N
j=1 and SU(N )2 primary field in

the antisymmetric representation of SU(N ) with dimension
N (N − 1)/2:

A
αβ+
mnLA

αβ−
mnR ∼ ei

√
8π/N�c Tr

(
�

SU(2)N
j=1

)
Tr
(
�SU(N)2

a

)
. (93)

In the low-energy limit E � �s, we can average the SU(N )
degrees of freedom in the decompositions (91)–(93) to get the
effective interacting Hamiltonian which controls the physics
in the second region of the RG analysis:

HSU(2)o
eff = λ2Tr

(
�

SU(2)N
j=1

) + g4 jL · jR

+ 2Ng6

π
∂x�cL∂x�cR + λ7 cos(

√
8π/N�c)

+ λ8Tr
(
�

SU(2)N
j=1

)
cos(

√
8π/N�c), (94)

where we have used the bosonized description of the chiral
charge currents: JcL,R = √

2N/π ∂x�cL,R. In Eq. (94), the
coefficients are phenomenological since they involve the form
factors of the SU(N ) operators in the integrable model with
SU(N )2 current-current interaction which are not known to
the best of our knowledge: λ2 � −2g2〈Tr(�SU(N)2

adj )〉, λ7,8 �
g7,8〈Tr(�SU(N)2

S,A ) + H.c.〉. We assume, in the following, that
the expectation values of the SU(N )2 operators are positive.
We can safely neglect the last term (λ8) in Eq. (94) which is
less relevant than the perturbations with λ2 and λ7 to obtain
the following residual interaction for the charge and the orbital
sectors:

HSU(2)o
eff = λ2Tr

(
�

SU(2)N
j=1

) + g4 jL · jR

+ λ7 cos(
√

8πKc/N�c), (95)

where the charge Luttinger parameter Kc satisfies

Kc = 1√
1 + 2Ng6/πvF

< 1 (96)

since g6 > 0 from the numerical solution of the RG flow in
the second region.

Therefore, for the energy scale lower than the gap �s in the
nuclear-spin sector, the effective Hamiltonian for the charge
degrees of freedom is the well-known sine-Gordon model
at β2

c = 8πKc/N . The model is known to develop a charge
gap �c for all N satisfying Kc < N , which is always the
case as far as the weak-coupling expression (96) is valid. The
development of the strong-coupling regime of the sine-Gordon
model is accompanied by the pinning of the charged field on

075121-15



BOIS, CAPPONI, LECHEMINANT, MOLINER, AND TOTSUKA PHYSICAL REVIEW B 91, 075121 (2015)

either of the two minima:

〈�c〉 =
√

Nπ

8Kc
+ p

√
Nπ/2Kc (p = 0,1) (97)

since λ7 > 0 in the second region of the RG flow.
For energy smaller than the charge gap �c, the effective

interaction (95) governing the fate of the orbital degrees of
freedom simplifies as follows:

HSU(2)o
eff = λ2Tr

(
�

SU(2)N
j=1

) + g4 jL · jR, (98)

which is nothing but the low-energy theory of the spin-N/2
SU(2) Heisenberg chain derived by Affleck and Haldane in
Ref. [113]. This is quite natural in view of the strong-coupling
effective Hamiltonian (46) obtained in Sec. II D.

The nature of the ground state of this Hamiltonian can be
inferred from a simple semiclassical approach. The operator
with the coupling constant λ2 in Eq. (98) has the scaling
dimension 4/(N + 2) and is strongly relevant. By using
Eq. (C8), the minimization of that operator in the second
regime of the RG flow with λ2 > 0 (since g2 < 0) gives the
condition Tr g = 0, g being an SU(2) matrix. We have thus
g = iσ · n, with n being a unit vector. From Eq. (85), one
may expect that the “‘dimerization” operator for the orbital
pseudospin Ti = c

†
mα, iσmncnα, i/2 would be related, when

E � �c, to g as

(−1)iTi+1·Ti ∼ Tr g. (99)

Therefore, the ground state is not dimerized when λ2 > 0. The
nature of the phase can be determined by exploiting the result
of Affleck and Haldane in Ref. [113] that model (98) with
g = iσ · n is the nonlinear sigma model with the topological
angle θ = πN . Since N is even in our cold fermion problem,
the topological term is trivial and the resulting model is then
equivalent to the nonlinear sigma model which is a massive
field theory in (1 + 1) dimensions [108]. As is well known, the
latter model describes the physics of integer-spin Heisenberg
chain in the large-spin limit [37].

To summarize, in the SU(2)o-symmetric case, the second
region of the RG flow describes the emergence of a nondegen-
erate gapful phase with no CDW or SP ordering. Such phase
is a Haldane phase for the orbital pseudospin T, i.e., the OH
phase that we found in the strong-coupling investigation for
all even N (see Sec. II D). The resulting OH phase exhibits a
hidden ordering which is revealed by a nonlocal string order
parameter. On top of this hidden ordering, the OH phase
has edge state with pseudospin Tedge = N/4. According to
Ref. [39], this is a SPT phase when N/2 is odd.

b. U(1)o-symmetric case. We now investigate the nature of
the RG flow in the second regime in the generic case J �= Jz

with a U(1)o symmetry. For energy E � �c, the interacting
part (98) of the effective Hamiltonian for the orbital sector now
takes the following anisotropic form:

HU(1)o
eff = λ2‖

(
�1

1,1 + �1
−1,−1

) + λ2⊥�1
0,0

+ g4⊥
2

(j+
L j−

R + H.c.) + g4‖jz
Ljz

R, (100)

where the SU(2)N primary operators with spin j = 0, . . . ,N/2
are denoted by �

j
m,m̄ (−j � m,m̄ � j ) with scaling dimension

dj = 2j (j + 1)/(N + 2) (see Appendix C).

The low-energy properties of model (100) can then be
determined by introducing ZN parafermion degrees of free-
dom and relating the fields of the SU(2)N CFT to those
of the U(1)o CFT. Such a mapping is realized by the
conformal embedding: ZN ∼ SU(2)N /U(1)o, which defines
the series of the ZN parafermionic CFTs with central charge
c = 2(N − 1)/(N + 2) [114,115]. These CFTs describe the
critical properties of two-dimensional ZN generalizations
of the Ising model [114], where the lattice spin σr takes
values ei2πm/N , m = 0, . . . ,N − 1, and the corresponding
generalized Ising lattice Hamiltonian is ZN invariant. In the
scaling limit, the conformal fields σk with scaling dimensions
�k = k(N − k)/N(N + 2) (k = 1, . . . ,N − 1) describe the
long-distance correlations of σ k

r at the critical point [114].
In the context of cold atoms, the ZN CFT is also very useful
to map out the zero-temperature phase diagram of general 1D
higher-spin cold fermions [14,62,116].

The orbital SU(2)N currents can be directly expressed in
terms of the first parafermionic current �1L,R with scaling
dimension 1 − 1/N and a bosonic field �o which accounts for
orbital fluctuations [114]

j
†
L,R �

√
N

2π
: exp(±i

√
8π/N �oL,R) : �1L,R,

(101)

jz
L,R �

√
N

2π
∂x�oL,R,

where the orbital bosonic field �o = �oL + �oR is a com-
pactified bosonic field with radius Ro = √

N/2π : �o ∼ �o +√
2πN . Under the ZN symmetry, the parafermionic currents

�1L,R transform as [114]

�1L,R → ei2πk/N�1L,R, (102)

with k = 0, . . . ,N − 1. Using Eq. (101), we identify the ZN

symmetry of the parafermions directly on the Dirac fermions
through

Lgα → e−iπk/NLgα, Leα → eiπk/NLeα, (103)

with a similar transformation for the right-moving Dirac
fermions. It is easy to check that the low-energy descrip-
tion (70) is invariant under this transformation, and thus ZN

symmetric. Using the definition (63), one can deduce a lattice
representation of this ZN in terms of the original fermions
cmα,i :

cgα → e−iπk/Ncgα, ceα → eiπk/Nceα, (104)

which is indeed a symmetry of all lattice models introduced in
Sec. II.

As described in the Appendix, the SU(2)N primary op-
erators can be related to that of the ZN CFT. Using the
results (C10) and (C12) of Appendix C and Eq. (101), the
low-energy effective Hamiltonian (100) can then be expressed
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in terms of ZN primary fields as follows:

HU(1)o
eff = λ2‖{μ2 exp(−i

√
8π/N �o) + H.c.} − λ2⊥ε1

+ g4⊥N

2π
{�1L�

†
1R exp(i

√
8π/N �o) + H.c.}

+ Ng4‖
2π

∂x�oL∂x�oR, (105)

where ε1 (respectively μ2) is the thermal (respectively second
disorder) operator of the ZN CFT with scaling dimension
4/(N + 2) [respectively (N − 2)/N(N + 2)]. In our conven-
tion, 〈ε1〉 > 0 in a phase where the ZN symmetry is broken
so that the disorder parameters do not condense 〈μk〉 = 0
(k = 1, . . . ,N − 1), as they are dual to the order fields σk .
Since the second disorder and the thermal operators themselves
are known to be ZN invariant, the model (105) is invariant
under the ZN symmetry as it should be.

The low-energy effective field theory (105) appears in such
different contexts as the field-theory approach to the Haldane’s
conjecture [117] and the half-filled 1D general spin-S cold
fermions [62]. It was shown [62] that the phase diagram of
the latter model strongly depends on the parity of N . The
numerical solution of the RG flow shows that the operator
with the coupling constant λ2⊥ dominates the strong-coupling
regime. Such perturbation describes an integrable deformation
of the ZN CFT [118] which is always a massive field theory
for all sign of λ2⊥; when λ2⊥ > 0 (i.e., g3 < 0), we have
〈ε1〉 > 0 and the mass is generated from the spontaneous ZN -
symmetry breaking and all the order fields of the ZN CFT
condense: 〈σk〉 �= 0, while the disorder one 〈μk〉 = 0 for all
k = 1, . . . ,N − 1.

One can immediately see that the nature of the under-
lying phase can be captured neither by the SP nor by the
density-order parameters (78) and (82) since they are all
invariant under the ZN symmetry (103). In fact, by using
the identifications (C10), it is straightforward to check that
these order parameters involve the first disorder operator μ1

and therefore cannot sustain a long-range ordering in the ZN

broken phase. In this respect, the first regime, in which we
have DSE, corresponds to a region where the ZN symmetry is
not broken spontaneously.

Since all the parafermionic operators in Eq. (105) average
to zero in the ZN broken phase, one has to consider higher
orders in perturbation theory to derive an effective theory for
the orbital bosonic field �o. When N is even, one needs the
N/2-th order of perturbation theory to cancel out the operator
μ2 in Eq. (105). The resulting low-energy Hamiltonian then
reads as follows:

Heven
o = vo

2

{
1

Ko
(∂x�o)2 + Ko(∂x�o)2

}

+ go cos(
√

2πN �o), (106)

where vo and Ko are the velocity and the Luttinger parameters
for the orbital boson �o:

Ko = 1√
1 + Ng4‖/(2πvF)

. (107)

A naive estimate of the coupling constant go in higher orders
of perturbation theory reads as go ∼ −(−λ2‖)N/2.

The resulting low-energy Hamiltonian (106) which governs
the physical properties of the orbital sector takes the form of the
sine-Gordon model at β2

o = 2πNKo. The latter turns out to be
the effective field theory of a spin-S = N/2 Heisenberg chain
with a single-ion anisotropy as shown by Schulz in Ref. [64].
From the integrability of the quantum sine-Gordon model,
we expect that a gap for orbital degrees of freedom opens
when Ko < 4/N . As usual, it is very difficult to extract the
precise value of the Luttinger parameter Ko from a perturbative
RG analysis. Along the SU(2)o line, the exact value Ko is
known by the SU(2) symmetry, i.e., Ko = 1/N , since the β2

o =
2π sine-Gordon model is known to display a hidden SU(2)
symmetry [119]. In the vicinity of that line, we thus expect
that there is a region where Ko < 4/N and a Mott-insulating
phase emerges. In that situation, the orbital bosonic field is
pinned into the following configurations:

〈�o〉 =
√

π

2N
+ p

√
2π

N
, if go > 0

〈�o〉 = p

√
2π

N
, if go < 0

where p = 0, . . . ,N − 1. This semiclassical analysis naively
gives rise to a ground-state degeneracy. However, there is
a gauge redundancy in the continuum description. On top
of the ZN symmetry (103) of the parafermions CFT, there
is an independent discrete symmetry Z̃N , such that the
parafermionic currents transform as follows [114]:

�1L,R → e±i2πm/N�1L,R, (109)

with m = 0, . . . ,N − 1. The twoZN symmetries are related by
a Kramers-Wannier duality transformation [114]. The thermal
operator ε1 is a singlet under the Z̃N while the disorder operator
μ2 transforms as μ2 → ei4πm/Nμ2 [114]. The combination of
the Z̃N (109) and the identification on the orbital bosonic field

�o ∼ �o − m

√
2π

N
+ p

√
Nπ

2
, m = 0, . . . ,N − 1 (110)

becomes a symmetry of model (105), as it can be easily seen. In
fact, this symmetry is a gauge redundancy since it corresponds
to the identity in terms of the Dirac fermions. Using the
redundancy (110), we thus conclude that the gapful phase of
the quantum sine-Gordon model (106) is nondegenerate with
ground state:

〈�o〉 =
√

π

2N
, if go > 0

(111)〈�o〉 = 0, if go < 0.

The lowest massive excitations are the soliton and the
antisoliton of the quantum sine-Gordon model; they carry the
orbital pseudospin

T z = ±
√

N/2π

∫
dx ∂x�o = ±1, (112)

and correspond to massive spin-1 magnon excitations.
At this point, it is worth observing that the duality symmetry

�2 of Eq. (81) plays a subtle role in the even-N case. Indeed,
the change of sign of the coupling constants g2,4 can be
implemented by the shift �o → �o + √

N/8π so that the
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cosine term of Eq. (106) transforms as

cos(
√

2πN �o) → (−1)N/2 cos(
√

2πN �o). (113)

The latter result calls for a separate analysis depending on the
parity of N/2.

N/2 odd case. When N/2 is odd, the cosine term of
Eq. (106) is odd under the �2 duality transformation and there
are thus two distinct fully gapped phases depending on the
sign of go. The numerical solution of the RG equations shows
that g2 < 0, i.e., λ2‖ > 0, in the vicinity of the SU(2)o line. We
thus expect that go > 0 in this region and the ground state of
the sine-Gordon model (107) with Ko < 4/N is described
by the pinning 〈�o〉 = √

π/2N [first line of Eq. (111)].
The corresponding Mott-insulating phase is the continuation
of the OH phase that we have found along the SU(2)o line. This
phase can be described by a string-order parameter which takes
the form

lim
|i−j |→∞

〈
T z

i eiπ
∑j−1

k=i+1 T z
k T z

j

〉
� lim

|x−y|→∞
〈sin(

√
Nπ/2 �o(x)) sin(

√
Nπ/2 �o(y))〉

�= 0. (114)

This result is in full agreement with the known properties of
the Haldane phase when the orbital pseudospin T = N/2 is
odd.

According to Eq. (113), the duality symmetry �2 changes
the sign of the cosine operator in the sine-Gordon model (106)
when N/2 is odd. Therefore, there exists yet another Mott-
insulating phase obtained by the duality �2 when Ko < 4/N

which is characterized by the pinning 〈�o〉 = 0 [the second
of Eq. (111)]. In this phase, the string-order parameter (114)
vanishes, i.e., we have a new fully gapped nondegenerate phase
which is different from the OH phase. A simple nonzero string-
order parameter in this phase, that we can estimate within our
low-energy approach, reads as follows:

lim
|i−j |→∞

˝
cos

(
π
∑
k<i

T z
k

)
cos

⎛
⎝π

∑
k<j

T z
k

⎞
⎠
˛

� lim
|x−y|→∞

〈cos(
√

Nπ/2 �o(x)) cos(
√

Nπ/2 �o(y))〉

�= 0. (115)

The latter phase is expected to be the RS phase (i.e., the orbital
analog of the large-D phase with T z = 0) that we have already
identified in the strong-coupling analysis of Sec. II D.

N/2 even case. When N/2 is even, the cosine term of
Eq. (106) is now even under the �2 duality transformation
and there is thus a single fully gapped phase. In this phase,
we have go < 0 and the orbital bosonic field is pinned when
Ko < 4/N into configurations 〈�o〉 = 0. The phase is thus
characterized by the long-range ordering of the string-order
parameter (115) while the standard one (114) vanishes. In
this respect, the physics is very similar to the properties of
the even-spin Haldane phase. The authors of Ref. [39] have
conjectured that there is an adiabatic continuity between the
Haldane and large-D phases in the even-spin case. Such
continuity has been shown numerically in the spin-2 XXZ
Heisenberg chain with a single-ion anisotropy by finding a

path where the two phases are connected without any phase
transition [66]. The Haldane phase for integer spin is thus
equivalent to a topologically trivial insulating phase in this
case. In our context, the two nondegenerate Mott-insulating
OH and RS (the orbital large-D) phases belong to the same
topologically trivial phase when N/2 is even, while they
exhibit very different topological properties for odd N/2.

Orbital Luttinger-liquid phase. Regardless of the parity of
N/2, there is room to have, on top of the Mott-insulating
phases, an algebraic (metallic) one since the Luttinger pa-
rameter Ko can be large in the second region of the RG
flow. When Ko > 4/N , the interaction of the sine-Gordon
model (106) becomes irrelevant and a critical Luttinger-liquid
phase emerges having one gapless mode in the orbital sector.
At low energies E � �c, the staggered part of the orbital pseu-
dospin Ti simplifies as follows using the identifications (C10):

T +
π ∼ σ1e

i
√

2π/N �o (〈ei
√

2πKc/N�c〉〈Tr G〉 + c.c.),

T z
π ∼ 〈ei

√
2πKc/N�c〉〈TrG〉(μ1e

−i
√

2π/N�o − μ
†
1e

i
√

2π/N�o )

+ H.c. (116)

Since the ZN symmetry is broken in the second region of
the RG flow, we have 〈σ1〉 �= 0 and 〈μ1〉 = 0 so that the z

component of Tπ is thus short range while the transverse
ones are gapless: T +

π ∼ ei
√

2π/N�o . Taking into account the
uniform part of the z component of the orbital pseudospin
Ti , i.e., the SU(2)N current jz

L + jz
R, we get the following

leading asymptotics for the equal-time orbital-pseudospin
correlations:

〈T +(x)T −(0)〉 ∼ (−1)x/a0x−1/NKo ,
(117)

〈T z(x)T z(0)〉 ∼ − NKo

4π2x2
.

The leading instability is thus the transverse orbital correlation
when Ko > 4/N , i.e., the formation of a critical orbital XY
phase, i.e., an orbital Luttinger-liquid phase.

C. Phase diagrams

We have determined the possible phases of general 1D
two-orbital SU(N ) models in the weak-coupling regime by
means of the one-loop RG analysis combined with CFT
techniques. We now exploit all these results to map out
the zero-temperature phase diagram of the generalized Hund
model (18) and the g-e model (2) defined in Sec. II. The
phase diagram of the N = 2 p-band model (29) is presented
in Appendix D, together with the study of its low-energy
limit. The correspondence between the parameters used in the
phase diagrams and the physical interactions is summarized in
Table V.

Before solving numerically the one-loop RG analysis, one
immediately observes that our global approach of the phases
in the weak-coupling regime does not give any SPT phases
when N > 2 in stark contrast to the strong-coupling result of
Sec. II D. It might suggest that there is no adiabatic continuity
between weak- and strong-coupling regimes and necessarily a
quantum phase transition occurs in some intermediate regime
which is not reachable by the one-loop RG analysis. In this
respect, a two-loop analysis might be helpful, but it is well
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TABLE V. Three models considered in Secs. IV and V and their parametrization. See Figs. 1 and 2 for the physical process to which each
parameter corresponds. In the first two models, pair hopping does not exist.

Models Parameters Hopping Intraorbital Interorbital Hund Pair hopping

g-e modela [Eq. (2)] (t,Umm,V,V g-e
ex ) t Umm V V g-e

ex

Generalized Hund modelb [Eq. (18)] (t,U,J,Jz) t U + Jz/2 U − Jz/2 J

p-band modelc [Eq. (27)] (t,U1,U2) t U1 U2 U2 U2

aWe have set tg = te = t , Ugg = Uee = Umm.
bEquivalent to g-e model through Eq. (19).
cU1 = 3U2 for axially symmetric trap.

beyond the scope of this work. The possible occurrence of
a quantum phase transition will be investigated in Sec. V by
means of DMRG calculations to study the extension of the
SU(4) SPT phase.

The sets of first-order differential equations obtained with
the one-loop RG analysis {ġi} = {∂gi/∂l}, l being the RG
time, can be solved numerically with Runge-Kutta methods.
The initial conditions gi,0 depend on the lattice model and we
loop on values of the couplings taken in [−0.1; 0.1] to scan
the zero-temperature phase diagrams in the weak-coupling
regime. For each run, the couplings gi flow to the strong-
coupling regime as the RG time increases. The procedure is
stopped at lmax when one of the couplings, which turns out to
be g1 (see Sec. IV B 2), reaches an arbitrary large value gmax.
Typically, we choose gmax � 1010 so that the directions taken
by the RG flow in the far IR appear clearly. For simplicity, we
consider renormalized ratios gi(lmax)/g1(lmax). For instance,
when the procedure stops in the SP phase, all the couplings
have reached a value gi(lmax)/g1(lmax) ∼ +1, as a signature of
the SO(4N ) maximal DSE.

As discussed in Sec. IV B, we distinguish in the weak-
coupling limit two types of regimes: phases with DSE and
nondegenerate Mott-insulating phases. On the one hand, the
first ones can be readily identified by looking at the ratios
gi(lmax)/g1(lmax) that are either +1 in the SP phase or ±1 in
the phases obtained by applying the duality symmetries (80a)–
(80c). On the other hand, couplings g2,4,5,8 flow very slowly
to the strong-coupling regime in the nondegenerate phases.
Determining the exact nature of the phase is thus more
approximative in that case. In particular, as detailed in
Sec. IV B 2 b, the sign of g2 allows us to distinguish between
OH and the RS phase only in the N/2 odd case. Next, we
therefore show results for N = 6 [120]. In order to have an
overview of the phases that appear, we first compute the general
phase diagram of the generalized Hund model (18) for all Jz,
J , and U (see Fig. 8). We solve the RG equations (73) using
the initial conditions (71) and introduce sphere variables

U = R sin 4φ cos θ,

J = R sin 4φ sin θ, (118)

Jz = R cos 4φ,

where R = 0.1. Eight quadrants are required to get all the
possible combinations of signs for U , J , and Jz (θ ∈ [0,2π ]
and φ ∈ [0, π

4 ]). We directly identify three phases with DSE
(SP, CDW, and ODW) while the SPπ phase obtained by
applying the duality �3 (80c) is not realized [121]. The SU(2)o

symmetry (J = Jz) corresponds to θ = arcsin(cot 4φ) and is
shown with bold dashed lines in Fig. 8. In the “no-DSE” region,
the sign of g2 changes on the blue line and the nature of
the phases obtained is discussed next, in special cuts of the
phase diagram. The one-loop RG analysis does not allow us
to confirm if the SU(2)o line is exactly at the ODW/“no-DSE”
transition, but the latter is clearly in its vicinity as seen in
Fig. 8.

1. Generalized Hund model

Let us continue with the generalized Hund model (18) and
take a closer look at special cuts in the general phase diagram
Fig. 8.

a. SU(2)o-symmetric case. We first consider the case of
SU(2) orbital symmetry (J = Jz, along bold dashed lines
in Fig. 8). We focus on N = 6, although the position of
the phases is almost not sensitive to the value of N in this
case. In Fig. 9, we identify three regions: the SP phase,
the degenerate CDW phase obtained by applying the duality
symmetry �1 [Eq. (80a)], and a region that displays no
DSE with |g2,4,5,8(lmax)| � gmax. The latter was identified in
Sec. IV B 2 a as the nondegenerate OH phase for even N . It is
a SPT phase for N/2 odd. Besides, on the particular SU(2N )
line J = 0, for U > 0 (respectively U < 0) we recover the
SP (respectively CDW) phase expected for the repulsive
(respectively attractive) SU(2N ) Hubbard model at half-filling.

FIG. 8. (Color online) General phase diagrams for the N = 6
generalized Hund model (18) obtained by solving numerically the
one-loop RG equations (73) with initial conditions (71). T -coupling
constants (Jz,J,U ) are parametrized by (θ,φ) as Eqs. (118) and
the meaning of the extra bold lines is discussed in the text. The
signs of Jz, J , and U in each quadrant are indicated. In the region
shown as “no-DSE,” RGE flow does not exhibit dynamical symmetry
enlargement. For other abbreviations, see Table III.
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FIG. 9. (Color online) Phase diagram for the N = 6 generalized
Hund model (18) with SU(2)o symmetry obtained by solving numer-
ically the one-loop RG equations (73) with initial conditions (71).

b. U(1)o-symmetric case. We now turn to the phase dia-
grams of the generic case of U(1) orbital symmetry (J �= Jz)
at N = 6. We chose arbitrary cuts of the general phase diagram
Fig. 8 at constant Jz: Jz = −0.03, Jz = 0, and Jz = 0.03 (see
Fig. 10). As discussed in the N/2 odd case of Sec. IV B 2 b,
the sign of g2 allows us to determine if the nondegenerate
Mott-insulating phase (blue “no-DSE” region in Fig. 8) is
either OH or RS. We find that the change of sign takes place
at J ∗

z < 0. The one-loop RG analysis does not allow us to
determine the value of the Luttinger parameter Ko except

FIG. 10. (Color online) Phase diagram for the N = 6 generalized
Hund model (18) obtained by solving numerically the one-loop RG
equations (73) with initial conditions (71). From top to bottom, and
from right to left, Jz/t = −0.03, Jz/t = 0, and Jz/t = 0.03.

in the vicinity of the SU(2)o-symmetric line where Ko is
fixed by symmetry. We cannot thus conclude that the phases,
obtained by varying Jz, are indeed fully gapped from this
analysis. However, the DMRG calculations in this regime of
parameters strongly support that Ko is small enough to get
gapful phases. In Fig. 10, for Jz = 0 and Jz > 0, we find thus
that the nondegenerate Mott-insulating phase is the RS phase,
while for Jz < 0, a transition takes place between RS and OH.
At the transition, the line g2 = 0 (bold dashed line in Fig. 10,
top panel) corresponds to the Luttinger critical line in which the
cosine term of Eq. (106) is canceled. Interestingly, the phase
diagram for Jz < 0 obtained in the weak-coupling regime is
in agreement with the prediction from the strong-coupling
regime, i.e., an OH region followed by a RS region as |J − Jz|
increases (see Sec. II D 2).

2. g-e model

For completeness, we also present the phase diagrams of the
g-e model (2) with coupling constants Ugg = Uee = Umm,V

and V
g-e

ex . The mapping to the couplings J , Jz, and U is defined
in Eqs. (19), in particular, V g-e

ex = J . As explained in Sec. IV A,
the g-e model shares the same continuum Hamiltonian with the
generalized Hund model. Only the initial conditions differ and
we solve the set of equations (73) starting from (72). In Fig. 11,
we show the phase diagrams for the SU(2)o-symmetric (i.e.,
V = Umm − V

g-e
ex ) cases, V

g-e
ex /t = −0.06, V

g-e
ex /t = 0, and

V
g-e

ex /t = 0.02. In the presence of the orbital SU(2)o symmetry,
we recover the SP, CDW, and OH phases from Fig. 9. For
V

g-e
ex > 0 and V

g-e
ex = 0, the phase diagram exhibits only

regions with DSE (SP, CDW, and ODW), in agreement with the
phase found for J � 0 in the preceding section. Their positions

FIG. 11. (Color online) Phase diagram for the N = 6 g-e
model (2) obtained by solving numerically the one-loop RG equa-
tions (73) with initial conditions (72). From top to bottom, and from
right to left: SU(2)o symmetry, V g-e

ex /t = −0.06, V g-e
ex /t = 0, and

V g-e
ex /t = 0.02.
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are little affected by the value of V
g-e

ex . Finally, for V
g-e

ex < 0,
as for J < 0, we have a nondegenerate Mott-insulating region
in which the sign of g2 changes. We thus identify the OH and
the RS regions.

V. DMRG CALCULATIONS

We now turn to numerical simulations using the DMRG
algorithm in order to determine some of the phase diagrams
that were discussed in the previous sections (Secs. II D
and IV C), namely, the g-e model with orbital SU(2)o

symmetry (2), the generalized Hund model with or without
SU(2)o symmetry (18), and the p-band model (29). As already
mentioned in Sec. II A, for concreteness we assume that the two
orbitals behave in a similar manner, i.e., we restrict ourselves
to the case

tg = te = t, Ugg = Uee = Umm, μg = μe (119)

of the g-e model (2) or the generalized Hund one (18).
The parametrization used in the three models (g-e model,
generalized Hund model, and p-band model) considered
here is summarized in Table V. Also, the definitions of the
abbreviations used in the phase diagrams are given in Table III.

This numerical investigation is especially needed (i) to
check our weak-coupling predictions (Sec. IV C) and (ii) to
go beyond this regime and make a connection with strong-
coupling results (Sec. II D). Moreover, it allows us to get
precise numerical estimates of the locations of the phases
and the transitions among them, which is of fundamental
importance to decide whether they could be accessed ex-
perimentally. Typically, we used open boundary conditions,
keeping between 2000 and 4000 states depending on the model
and the parameters in question in order to keep a discarded
weight below 10−6. Note also that for the sake of the efficiency
of the simulations, for all models with N = 4 and for the
p-band with N = 2 too, we map the original two-orbital
SU(N ) models onto the equivalent (pseudo)spin- 1

2 (where the
pseudospin corresponds to the orbital) fermionic models on
some N -leg ladder (with generalized rung interactions which
are tailored to reproduce the original interactions) shown in
Fig. 6. As a last remark, let us mention that we worked
at half-filling and except for the p-band model, we have
implemented the Abelian U(1) symmetry corresponding to
the conservation of particles in each orbital.

In order to map out the phase diagrams, we worked at
fixed length L = 36 (for N = 4) or L = 64 (for N = 2) and
measured the local quantities (densities, pseudospin densities,
kinetic energies, etc.) as well as the presence/absence of edge
states. One may wonder why we do not use the string-order
parameters introduced in Sec. III C in determining (a part
of) the phase diagram. In fact, for purely bosonic models,
the string-order parameters combined with, e.g., the Binder-
parameter analysis may yield reasonably good results [122].
However, the string-order parameters are defined for fixed
SU(N ) spins which are meaningful only deep inside the
Mott phases [32]. When the charge fluctuations are not
negligible, entanglement spectrum necessarily contains the
contribution from the fermionic sector [93], for which the
relation between the SPTs and the string-order parameters
mentioned in Sec. III C is not very clear. For this reason,
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FIG. 12. (Color online) Phase diagram for N = 2 g-e model (2)
obtained by DMRG. Top and bottom panels correspond, respectively,
to V g-e

ex /t = −1 and V g-e
ex /t = 1. Due to the symmetry Eq. (39) (which

exists only for N = 2), CH and OH, as well as CDW and ODW, appear
in a symmetrical way with respect to the symmetry axis V = V g-e

ex /2
indicated with a dashed line.

in order for the search in the full parameter space, more
conventional methods seem robust. We refer the interested
reader to Refs. [44,101] which contain more details on our
procedure.

A. N = 2 g-e model

For completeness, we present, in Fig. 12, some phase
diagrams of the g-e model (2) with N = 2 which exhibit
a large variety of phases: (i) charge density wave (CDW),
(ii) orbital density wave (ODW), (iii) spin Peierls (SP), (iv)
charge Haldane (CH), (v) orbital Haldane (OH), (vi) spin
Haldane (SH), and (vii) rung singlet (RS) (see the previous
sections and Table III for the definitions). These very rich phase
diagrams are in rather good agreement with the low-energy
predictions, and they were already discussed in Ref. [101].
In Fig. 12, one notes that the phases concerning the charge
sector (CDW and CH) and those concerning the orbital sector
(ODW and OH) appear in a very symmetric manner. In fact,
this is quite natural since the N = 2 g-e model possesses the
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FIG. 13. (Color online) Phase diagram for N = 2 p-band
model (29) obtained by DMRG. Note the mapping (35) (U1,U2) →
(−U1, −U2) which interchanges spin and charge. The line U1 = 3U2

corresponds to the axially symmetric trapping scheme. The two other
lines denote the transitions and are compatible with the expected
c = 2 Luttinger-liquid behavior.

symmetry discussed in Sec. II C 2:

V → −V + V g-e
ex , V g-e

ex → V g-e
ex , Umm → Umm (120)

that swaps a phase related to charge and the corresponding
orbital phase.

B. N = 2 p-band model

We now map out the phases of the N = 2 p-band model (29)
as a function of (U1/t,U2/t). While the physical realization
with a harmonic trap imposes U1 = 3U2, we think that it is
worth investigating the full phase diagram which could be
accessible using other trapping schemes for instance (see
Sec. II B). Note also that Kobayashi et al. have recently
reported in Ref. [45] the presence of the spin Haldane (SH)
phase in the same model at a slightly different ratio U2/U1.

The phase diagram (Fig. 12) obtained exhibits a remarkable
symmetry with respect to the origin. In fact, as has been
discussed in Sec. II C 1, the p-band model possesses the
symmetry under the Shiba transformation (31) under which
spin and charge are interchanged by the mapping: (U1,U2) �→
(−U1,−U2). Consequently, the SH and CH phases appear
in a symmetric manner in Fig. 13. The remaining areas of the
phase diagram are filled, respectively, with the trivial RS phase
(with T z = 0) and its symmetry partner, the orbital large-D
(OLDx,) one. We have not investigated in details the transition
between these phases, but their locations are in excellent
agreement with the weak-coupling predictions (i.e., U2 = 0
and U1 = U2). Moreover, using block entanglement entropy
scaling at the transition, one can obtain an estimate of the
central charge [123,124], estimated to be 1.8 (on L = 64 chain
with U1 = U2 = −8t , for instance, data not shown), rather
close to the expected c = 2 behavior discussed in Appendix D.

C. N = 4 g-e model

Here, we consider again model Hg-e (2) as in Sec. V A, but
in the N = 4 case. In the low-energy analysis of Sec. IV, it
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FIG. 14. (Color online) Phase diagrams for N = 4 g-e model (2)
obtained by DMRG. From top to bottom, panels correspond,
respectively, to V g-e

ex /t = −1, V g-e
ex /t = 0, and V g-e

ex /t = 1. Symbols
correspond to the numerical data obtained by DMRG with L =
36 while colored regions and dashed lines indicate the one-loop
numerical RG results.

was argued that, in comparison with the rich N = 2 case, there
were no more (symmetry-protected) topological phases for
the nuclear spin degrees of freedom, but only degenerate ones
(CDW, ODW, or SP) and the nondegenerate OH and RS phases.
Our numerical simulations do confirm these predictions at
weak coupling as shown in Fig. 14 for fixed V

g-e
ex /t = −1,
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FIG. 15. (Color online) DMRG results for the local fermion
densities and kinetic energies for each flavor α = 1, . . . ,4 in the
N = 4 case. Panel (a) corresponds to the g-e model with U/t = 8,
V = 0, and Vex/t = 1 on the L = 54 chain. Panel (b) corresponds
to the p-band model with U1/t = 12 and U2/t = 4 on the L = 54
chain. The presence of localized edge states is clearly visible in both
cases.

0, and 1, although the one-loop RG results from Sec. IV C
were obtained at much smaller V

g-e
ex /t values. The phase

diagram for V
g-e

ex /t = 0 clearly shows symmetry with respect
to V = 0 (see the middle panel of Fig. 14). Actually, this
is a natural consequence of the orbital-charge interchange
symmetry discussed in Sec. II C 2; the transformation V →
−V maps the CDW phase on the V > 0 side to the ODW one
on the V < 0 side (see Table I).

Moreover, both CDW and ODW are rather insensitive to
the value of V

g-e
ex . On the contrary, as was emphasized in the

previous sections, the sign of V
g-e

ex plays a major role in the
positive Umm region. For V

g-e
ex < 0, the SP phase gives way

to the trivial RS phase. For V
g-e

ex > 0, on the other hand, the
SP phase remains stable at weak and intermediate coupling as
found using RG. There is, however, a crucial difference for
V

g-e
ex /t = 1 at strong coupling since we also find a large region

of the topological SU(4) phase discussed in Sec. III (see the
lower panel of Fig. 14).

Clear signatures of the topological SU(4) phase are given
by the existence of sixfold-degenerate edge states [40] [see
Fig. 15(a)], or by the sixfold degeneracy of the dominant
eigenvalue in the entanglement spectrum of half a system [82]
(data not shown). While the edge states should not occur in the
true ground state, which is highly entangled but exponentially
close in energy to the other low-lying states (similarly to the
spin-1 Haldane nonmagnetic ground state which lies very
close to the so-called Kennedy triplets), it is known that
DMRG will target a minimally entangled state [125] and
thus for a large enough system size (at a fixed number of
states m), the DMRG algorithm will ultimately lead to one
of the quasidegenerate ground states with some edge states
configurations, as is observed in Fig. 15. For N = 4, a simple
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FIG. 16. (Color online) Phase diagram for the N = 4 g-e
model (2) with SU(2)o symmetry, i.e., Umm − V = V g-e

ex . Symbols
correspond to the numerical data obtained by DMRG with L =
36 while colored regions and dashed lines indicate the one-loop
numerical RG results. We also plot the special line V = Umm/5 (see
text).

physical interpretation of the sixfold degeneracy is given by the
number of ways of choosing two colors among four. Using the
VBS wave function obtained in Sec. III A, one can explicitly
compute the local fermion densities nα,i (α = 1,2,3,4). Near
the left edge of a sufficiently large system, two of the four {nα,i}
decay as 1 + 3(−1/5)r and the other two as 1 − 3(−1/5)r (r
being the distance from the left edge). The existence of the
two different kinds of color pairing on the left and right edges
is clearly seen in Fig. 15(a) and gives another support for the
SPT nature of the SU(4) phase found here.

D. N = 4 SU(2)o g-e model

We now consider the same N = 4 model but impos-
ing SU(2)o symmetry, i.e., Umm − V = V

g-e
ex [J = Jz; see

Eq. (19)]. The phase diagram as a function of (Umm,V ) is
shown in Fig. 16 together with the one-loop RG result. We
observe that the agreement is excellent at weak coupling,
and rather good at all couplings for the phase boundaries
CDW/SP, CDW/OH, and OH/SP. Still, we emphasize that the
RG results shown as dashed lines are mostly a guide to the
eyes for these transitions. Moreover, as expected from our
strong-coupling analysis, we do confirm the presence of the
SU(4) topological phase along the special line V = Umm/5 at
strong V > 0 [126]. In fact, this topological phase occupies
a large fraction of the phase diagram, which in our opinion
makes its potential observation quite promising. A quantum
phase transition necessarily takes place between the SP and the
SU(4) topological phase. A precise numerical determination
of its nature is beyond the scope of this paper.

E. N = 4 SU(2)o generalized Hund model

As discussed in Sec. II A, the SU(2)o model can also be
parametrized as a function of (U,J ) in the generalized Hund
model (18). This means that we can simply take the data of
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FIG. 17. (Color online) Phase diagram for the N = 4 generalized
Hund model (18) with SU(2)o symmetry. Symbols correspond to
the numerical data obtained by DMRG with L = 36 while colored
regions and dashed lines indicate the one-loop numerical RG results.
We also plot the special line J = 4U/3 (see text).

the previous paragraph and replot them accordingly in Fig. 17.
Obviously, we obtain the same set of phases, and the same
extent of agreement with the one-loop RG numerical result
as far as the structure in the weak-coupling region and the
locations of the phase transitions are concerned. As already
noted in Ref. [40], the topological SU(4) phase is stable along
the special line J = 4U/3 at strong coupling J > 0, but our
numerical results prove that it has an unexpectedly large extent
in the first quadrant U,J > 0.

F. N = 4 generalized Hund model without SU(2)o symmetry

1. Jz = 0

We can also investigate parameter region without SU(2)o

symmetry (J �= Jz) for the generalized Hund model (18) in
order to check the robustness of the observations made for the
(fine-tuned) SU(2)-symmetric model. In Fig. 18, we present
our numerical results for Jz = 0 together with the RG phase
boundaries. Again, we obtained remarkable agreement at weak
coupling as well as the semiquantitative results concerning the
phase transitions. The main difference from the SU(2)o case
consists in the disappearance of the OH which is replaced by
the trivial singlet phase RS. In the strong-coupling picture,
this result is obvious since the model maps onto a large-D
spin-2 chain [see Eq. (46)]. However, the topological SU(4)
phase is scarcely affected by the breaking of SU(2)o and it
still occupies a large fraction of the U,J > 0 region. Finally,
we have indicated in Fig. 18 the J = U line which can be
mapped onto the special line U1 = 3U2 of the N = 4 p-band
model upon the identification J = U = 2U2. We will use this
property later in Sec V H.

2. Jz/ t = ±4

For fixed finite Jz, generically there is no SU(2)o symmetry.
Nevertheless, one can understand part of the phase diagram
starting from the line J = Jz.
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FIG. 18. (Color online) Phase diagram for the N = 4 generalized
Hund model (18) with Jz = 0. Symbols correspond to the numerical
data obtained by DMRG with L = 36 while colored regions and
dashed lines indicate the one-loop numerical RG results. We also
plot the special line J = U where the model can be mapped onto the
N = 4 p-band model.

For Jz/t = 4, as is seen in Fig. 17, if we fix J = Jz then
the system will evolve from the CDW phase to the topological
SU(4) one through the SP region with increasing U . Since
these are all gapped phases, they must have a finite extension in
the phase diagram. Our numerical results in Fig. 19(a) confirm
this expectation and moreover prove that these phases occupy
a large fraction of the phase diagram. The remaining part of it
contains the RS phase in agreement with the strong-coupling
picture.

Considering now a fixed Jz/t = −4 and our previous
results in Fig. 17 for J = Jz, we expect the appearance of
CDW and OH by varying U . Our numerical phase diagram
in Fig. 19(b) recovers, of course, this result, but there is
a crucial difference from the previous case. Indeed, our
strong-coupling analysis reveals that starting from the OH
phase, deviations from J = Jz will induce an effective D(T z)2

term with D = Jz − J [see Eq. (46)]. This onsite anisotropy
is well known for spin-2 chain [127], and it drives the OH
phase either to the Ising ODW phase for large D < 0, or
to a nondegenerate singlet phase for D > 0 (the so-called
large-D phase, which is equivalent to RS here) through an
intermediate extended gapless c = 1 phase lying in the interval
0.04 � D/J � 3.0, whereJ = Jxy = Jz is the effective spin
exchange (47) [128]. This scenario away from the OH region
is confirmed by our numerical phase diagram, although the
extent of the intermediate critical region is rather small in
Fig. 17 due to the smallness of J . For the same reason, we
have not investigated here whether the intermediate-D phase,
which has been proposed a long time ago by Oshikawa [129]
and only recently observed numerically in anisotropic spin-2
chains [66,130–132], could appear in our phase diagram.

The existence of the critical region may be further evidenced
by the measurement of the pseudospin correlation functions.
Using the low-energy predictions (117) for N = 4, and taking
into account that we are measuring correlation from the middle
of a chain with OBC, we use the appropriate functional form
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FIG. 19. (Color online) Phase diagram for the N = 4 generalized
Hund model (18) with Jz/t = 4 (a) and Jz/t = −4 (b). Symbols
correspond to the numerical data obtained by DMRG with L = 36.
Dashed-dotted lines correspond to SU(2)o lines when J = Jz. The
critical region for Jz/t = −4 is almost invisible on this scale (see
text).

for the distance [133–135]:

〈T +(L/2)T −(L/2 + x)〉 ∼ (−1)x[dc(x)]−1/4Ko , (121)

where

dc(x) = d[x + L/2|2(L + 1)]d[x − L/2|2(L + 1)]√
d[2x|2(L + 1)]d[L|2(L + 1)]

(122)

with d(x|L) = L|sin(πx/L)|/π is the conformal distance.
Thus, fitting, we get an excellent agreement (see Fig. 20) with
the data and a Luttinger parameter Ko = 1.09 indeed larger
than 1 as expected. An identical value was obtained when
fitting the longitudinal correlations, too. This critical phase is
thus described by the orbital Luttinger liquid (106).

Another difference from the weak-coupling results lies in
the large J/t > 0 region where we have found surprisingly the
reentrance of the SP and topological SU(4) phases that were
found in other parts of the full three-dimensional parameters
phase diagram. This confirms again that, contrary to the OH
phase whose stability is limited to the proximity of the SU(2)o-
symmetric points, the SU(4) SPT phase could be stabilized for
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|<T+(L/2) T-(L/2+x)>|
|<Tz(L/2) Tz(L/2+x)>|
2/dc(x|L)1/4Ko

Ko/(πx)2

FIG. 20. (Color online) Absolute values of the transverse and
longitudinal pseudospin correlation functions measured from the
middle of the chain on a L = 72 system with parameters U = 0,
J/t = −4.1, and Jz/t = −4. Both can be fitted with a similar
Luttinger parameter Ko � 1.09 > 1 and appropriate functional forms
(see text).

a large variety of parameters and thus could potentially be
realized experimentally.

G. Varying Jz in the N = 4 g-e model

As was shown before, if one starts from the OH phase
in the SU(2)o case and then increases Jz, the OH phase will
ultimately be replaced by the trivial RS phase. However, in
the strong coupling, we have an effective spin-N/2(=2) chain
with some onsite anisotropy D term. For such a system, we
know that the transition from the Haldane phase to the trivial
large-D phase goes through an extended gapless region [127]
with central charge c = 1. In Fig. 21, we present measurements
of the von Neumann entropy SvN versus conformal distance
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c=0.95

FIG. 21. (Color online) Von Neumann entanglement entropy SvN

of a block of x sites (starting from the left open edge) vs conformal
distance d(x|L) = (L/π ) sin(πx/L) for U = 0 and J/t = −4 with
varying parameters Jz from the SU(2)o point Jz = J with OH phase
to the Jz = 0 RS singlet phase. In the intermediate region, there is an
extended critical gapless phase compatible with c = 1 central charge.
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d(x|L) = (L/π ) sin(πx/L) for various parameters (U = 0,
J/t = −4, and Jz > J ) obtained on L = 72 chains. It is
known [123] that this quantity will saturate in a gapped
phase, and will scale as SvN = (c/6) ln d(x|L) + Cst in a
critical phase with central charge c. As is expected from our
strong-coupling results, our numerical data do confirm the
presence of an extended critical phase compatible with c = 1.

If one uses the expressions from the strong-coupling (47)
for our choice of parameters, we are thus starting from an
SU(2) spin-2 chain with exchange J = 1

18 (using t = 1 as
the unit of energy). As recalled in the previous subsection,
an onsite anisotropy D = Jz − J will induce a critical phase
when 0.04 � D/J � 3, or assuming that J is not changed,
−3.998 � Jz �< −3.83 in good agreement with our numeri-
cal data too.

H. N = 4 p-band model

Lastly, we investigate the N = 4 p-band model (27) which
we believe to be quite relevant experimentally. Its phase
diagram as a function of (U1/t,U2/t) is depicted in Fig. 22.
While the physical realization with an axially symmetric trap
imposes U1 = 3U2, we have already discussed that other
trapping schemes could remove this constraint.

Starting from this special line and using the equivalence to
the generalized Hund model (18) with Jz = 0 (see Sec. V F),
we obtain identical results as in Fig. 18, i.e., when increasing
U1(=3U2), we find, respectively the CDW phase (when U1 <

0), the SP phase (for small U1 > 0, as found in weak coupling),
and our topological SU(4) phase (for large U1 > 0). Since
these are gapped phases, they do have a finite extension in the
phase diagram. Again, the topological SU(4) phase occupies a
rather large portion which makes it a good candidate for being
realized experimentally. As was done for the g-e model in the
above, this topological SU(4) phase can be easily identified
numerically thanks to the existence of characteristic edge states
in the DMRG simulations [see Fig. 15(b) and related comments
in Sec. V C].

-8 -6 -4 -2 0 2 4 6 8
U1

-5

0

5

U2

CDW
ODW
SP
singlet
topological SU(4)

FIG. 22. (Color online) Phase diagram for half-filled N = 4 p-
band model (27) obtained by DMRG on L = 32. Dashed line
corresponds to the condition U1 = 3U2 satisfied for an axially
symmetric trap. U2 = 0 correspond to two decoupled SU(4) Hubbard
chains (see text).

The rest of the phase diagram is dominated by trivial singlet
phases. However, contrary to the N = 2 p-band model (see
Fig. 13) where two trivial phases could be distinguished with
respect to the symmetry px ↔ py , here we do not have a
full picture. For instance, for U1 = 0 and large U2/t � 1,
the ground state is a complicated superposition of different
T z eigenstates (that are neither T x nor T y eigenstates) which
has thus no special features concerning the orbital degrees of
freedom.

Before concluding this section, we have to comment about
the special line U2 = 0 where the model decouples into two
identical (single-band) SU(4) Hubbard chains (one for each
orbital). Such a chain is known to be either in a CDW (for
U1 < 0) or in a SP (for U1 > 0) phase, each of which is twofold
degenerate. As a consequence, for U1 > 0 we have a fourfold-
degenerate SP phase depending on how dimerization patterns
on the two chains are combined; for U1 < 0, the CDW on
each chain can be in phase or out of phase, which in our
terminology translates, respectively, into CDW or ODW for the
whole system (see Fig. 5), again giving fourfold degeneracy.
Any small finite U2 splits these four degenerate states into two
pairs of degenerate states, thereby stabilizing either CDW or
ODW depending on its sign [136].

VI. CONCLUDING REMARKS

The possibility to realize SU(N )-symmetric models in
alkaline-earth cold atom experiments has revived the interest
in determining what kind of electronic phases, possibly
exotic, can be stabilized in these systems and more generally
in establishing their phase diagrams. While this remains a
challenging problem in general, we have presented a fairly
complete study relevant for alkaline-earth fermionic atoms
loaded into a 1D optical lattice at half-filling. The two models
we considered take into account two orbitals as well as
the SU(N ) internal degrees of freedom and we focused on
the N -even case, which seems to harbor various interesting
topological phases.

Working in 1D allows us to use rather powerful analytical
and unbiased numerical tools in order to complete this
program. Moreover, this strategy has often been used in
the past even to gain insight on possible phases in higher
dimensions. Last but not least, 1D optical lattices are easily
created experimentally so that the exotic phases proposed
could be investigated in future experiments.

Our choice of working at half-filling aims at investigating
Mott phases, which are presumably simpler in the sense that
some (charge) degrees of freedom will be frozen, but may
still exhibit a variety of properties as exemplified in our phase
diagrams where several exotic SPT phases have been found
and characterized thanks to their nontrivial edge states, for
instance. Let us remind that precisely in an SPT phase, edge
states are protected (and thus cannot be removed without
closing a gap) as long as some particular (protecting) symmetry
is present.

The addition of the orbital degree of freedom is the key
ingredient in our study. Indeed, without it, there are no SPT
phases for 1D (singe-band) SU(N ) Hubbard models. This
additional degree of freedom may be provided either by
a metastable e state (on top of the ground state g) or by
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populating the two degenerate first-excited px and py states
forming the p bands of the optical lattice. Now, if one considers
contact interactions only, the resulting minimal models are,
respectively, the g-e model [see Eqs. (2) or (18)] and the
p-band Hamiltonian (29). Depending on their parameters,
we have first clarified their symmetries as well as their
strong-coupling limits, which provided a firm ground for the
subsequent analyses and allowed a physical interpretation of
some of their phases.

Combining the strong-coupling approach, low-energy field
theory, and large-scale unbiased numerical (DMRG) simula-
tions, we have obtained a large number of phase diagrams
of the two models depending on the value of N (specifically,
N = 2 and 4) and its parameters. Our main conclusion is that
the interplay between the orbital and the SU(N ) nuclear-spin
degrees of freedom gives rise to several interesting phases:
in particular, we presented microscopic models whose ground
states realize two different kinds of SPT phases (see Secs. II D 1
and II D 3).

One of these SPT phases concerns the orbital pseudospins
T and can be described by an effective (pseudospin) T = N/2
Heisenberg chain, possibly with some single-ion anisotropy.
If the original model we consider possesses the orbital SU(2)o

symmetry (which may require some fine tuning), then there is
no such anisotropy so that the physical properties are identical
to those of the spin-N/2 Heisenberg chain (see Figs. 16
and 17). Recent studies have shown [39] that this gapped
phase, when N/2 is odd, is topologically protected by any
one of the following symmetries: (i) π rotations around two
of the three spin axes; (ii) time reversal; (iii) bond inversion.
Away from the SU(2)o regime, the phase diagram is dominated
by the trivial rung-singlet (RS) phase corresponding to the
so-called large-D phase in the spin-chain language, so that
the observation of the SPT phase remains challenging. Quite
interestingly too, in the case of intermediate values of D, there
is an extended critical phase for the integer N/2 strictly larger
than 1, that we have been able to characterize as the Luttinger
liquid of this orbital-pseudospin degree of freedom.

Our main observation is the appearance in a much wider
region of parameter space of another SU(N ) topological
phase, corresponding in the strong-coupling limit to an SU(N )
Heisenberg chain with a self-conjugate representation (Young
diagram with N/2 rows and 2 columns) at each site. Thanks to
the VBS approach, we have been able to showthe following:
(i) this is a featureless gapped phase in the bulk, (ii) with open
boundary conditions, there exist edge states (corresponding to
self-conjugate representation with N/2 rows and 1 column),
(iii) this is an SPT phase protected by PSU(N ) � SU(N )/ZN

[this is the case in the SU(N ) phase of our systems] or
ZN × ZN symmetry for any N . Therefore, this provides a
microscopic realization of one (among N ) possible SPT phases
for SU(N ) models [73], characterized by the number of boxes
modulo N in the Young diagram describing the edge state
(here N/2). Note also that even if the SU(N ) symmetry is
broken but there remains some bond inversion symmetry, then
this topological phase remains protected iff N/2 is odd as the
Haldane one.

Both our strong-coupling approach and our numerical sim-
ulations have confirmed the existence of this phase in a large
regime of parameters, which make its potential observation

more realistic. Nevertheless, the detection of our topological
phases is still a real challenge given that the edge states
may be substantially suppressed or even absent if one takes
into account a harmonic trap [45,46] and it appears difficult,
though not hopeless [137], at the moment to directly measure
the rather involved nonlocal order parameters. An exciting
possibility would be to use a box trapping scheme [138] where
presumably edge states should be more visible.

Quite remarkably, this topological SU(N ) phase is not
found in the weak-coupling regime, both in the low-energy
approach as well as in the numerical simulations, but instead
is replaced by the spin-Peierls-like ground state with bond-
strength modulations. As discussed in Ref. [40], we expect
that the quantum phase transition between the topological
SU(N ) phase and the dimerized one is described by a SU(N )2

CFT with central charge c = 2(N2 − 1)/(N + 2). Since this
prediction is independent on the microscopic model, we are
looking forward to checking it using simpler Hamiltonians
with less degrees of freedom, which will be easier from the
numerical point of view.

In this paper, we did not consider the case of odd N ,
which can also be realized in the systems of alkaline-earth
fermions by trapping only a subset of N (=even) nuclear
multiplet. In fact, already in the strong-coupling limit, one
can see that the systems with even N considered here and
those with odd N behave quite differently. For instance, as the
orbital-pseudospin can never be quenched even in the Mott
region when N odd, one obtains an SU(N )-orbital-coupled
effective Hamiltonian for the region that was described by the
SU(N ) Heisenberg model (41) or (43) when N even. Mapping
out the phases in the odd-N system would be an interesting
future problem.
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APPENDIX A: DECOMPOSITION OF SU(2N)
IN TERMS OF SU(N)×SU(2)

As we have seen in Sec. II, the largest symmetry of the
system is U(2N ) since we deal with fermions with two different
types of indices: α = 1, . . . ,N for SU(N ) and m = g,e for
orbitals (or px and py for the p-band model). The Mott state
with the fixed number of fermions at each site corresponds
to one of the irreducible representations of SU(2N ). In the
presence of interactions, the symmetry of the system changes
as Eq. (20). Therefore, it is helpful to know how a given
irreducible representation of SU(2N ) decomposes into those
of SU(N ) and SU(2) (orbital).

As a warming up, we begin with the N = 2 case. Then, we
have four species of fermions cg↑, cg↓, ce↑, and ce↓ and the
largest symmetry is SU(4) [U(4), precisely]. Let us consider
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the Mott-insulating state where we have an integer number (n)
of fermions at each site. Then, the fermionic property restricts
the possible representations at each site to the following four:

(n = 1), (n = 2), (n = 3), (n = 4). (A1)

These onsite states correspond, respectively, to SU(4) irre-
ducible representations with dimensions 4, 6, 4, and 1.

It is easy to see that the four states in the n = 1 ( ) case are
grouped into two

{c†g↑|0〉 , c
†
g↓|0〉}, {c†e↑|0〉 , c

†
e↓|0〉}, (A2a)

which span the two independent (g and e) sets of the two-
dimensional (S = 1

2 ) representations of spin SU(2). Note that
the spin operators Sg + Se do not see the orbital indices. For
the orbital SU(2), we see that another grouping

{c†g↑|0〉 , c
†
e↑|0〉}, {c†g↓|0〉 , c

†
e↓|0〉} (A2b)

gives the two (↑ and ↓) basis sets for the two-dimensional (T =
1
2 ) representations of orbital SU(2). We write these results as

SU(4)

∼ (

SU(2)s

,

SU(2)o

) .
(A3)

There are six states with two fermions at each site (n = 2;
half-filled) and these six states can be grouped into{
c
†
g↑c

†
e↑|0〉 ,

1√
2

(c†g↑c
†
e↓|0〉 + c

†
g↓c

†
e↑|0〉) , c

†
g↓c

†
e↓|0〉

}
(A4)

and{
c
†
g↑c

†
g↓|0〉 ,

1√
2

(c†g↑c
†
e↓|0〉 − c

†
g↓c

†
e↑|0〉) , c

†
e↑c

†
e↓|0〉

}
. (A5)

One can easily see that the above two respectively correspond
to

(S = 1)⊗(T = 0) and (S = 0)⊗(T = 1). (A6)

Therefore, the spin SU(2) and the orbital SU(2) are entangled
and when the former is in a triplet (singlet), the latter should
be in a singlet (triplet). Again, in terms of Young diagrams,
this may be written as

∼ (

SU(2)s

,

SU(2)o

)⊕(

SU(2)s

,

SU(2)o

) ⇒ ( , •)⊕(•, ) ,

(A7)

where • denotes the singlet.
For general N , we use the rules described in Refs. [86]

(chapter 15) and [139] (in particular, Table C of Ref. [139] is
quite useful). The decomposition of fermionic states reads, for
various local fermion number n (nc � 2N ), as

SU(N)

,

SU(2)

n = 1
(A8a)

( , , (n = 2) (A8b)

(n = 3) (A8c)

(n = 4)

(A8d)

∼ , ,

, (n = 5) (A8e)

It is easy to check that the dimensions on the both
sides match. Consider the decomposition (A8d) for N = 4.
Apparently, the dimensions of the left-hand side is 8!/(4!4!) =
70. The sum of the dimensions appearing on the right-hand side
is given by

20×1 + 15×3 + 1×5 = 70, (A9)

which coincides with the one on the left-hand side. From these
results, it is obvious that the SU(N ) irreducible representations
contained in the fermionic states of the form

∏
c
†
mα|0〉 are

represented by Young diagrams with at most two columns.
If we denote the lengths of the two columns by p and q

(p + q = n, p � q),

p

q

(A10)

the “spin” T of the orbital SU(2) is given by

p−q

, T =
1
2
(p − q) .

(A11)

APPENDIX B: p-BAND HAMILTONIAN

In this Appendix, we sketch the derivation of the p-band
Hamiltonian (27). The eigenfunctions of the single-particle
part H0 (21) are given by the Bloch function

ψ
(n)
nx,ny ,kz

(x,y,z) = φnx,ny
(x,y)ϕ(n)

kz
(z), (B1)

where φnx,ny
(x,y) and ϕ

(n)
kz

(z) are the eigenfunctions of
H⊥(x,y) and H‖(z), respectively. Since H⊥ is the two-
dimensional harmonic oscillator, we can obtain the explicit
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FIG. 23. (Color online) Contour plots of squared wave functions
|φnx,ny

|2 for three orbitals (nx,ny) = (0,0), (1,0), and (0,1).

form of φnx,ny
(x,y). First, three (normalized) eigenfunctions

are given as (see Fig. 23)

φ0,0(x,y) = 1√
πx0

e
− x2+y2

2x2
0 , (B2a)

φ1,0(x,y) =
√

2√
πx0

(
x

x0

)
e
− x2+y2

2x2
0 , (B2b)

φ0,1(x,y) =
√

2√
πx0

(
y

x0

)
e
− x2+y2

2x2
0 (B2c)

with x0 = √
�/(mωxy). We call the levels with (nx,ny) =

(0,0), (1,0), and (0,1) as s, px , and py , respectively.
To derive an effective Hubbard-type Hamiltonian [47], it is

convenient to move from the Bloch function ψ
(n)
nx,ny ,kz

(x,y,z)
to the Wannier function defined as

W
(n)
nx,ny ;R(x,y,z) ≡ 1√

Ncell
φnx,ny

(x,y)
∑
kz

e−ikzRϕ
(n)
kz

(z) (B3)

(R labels the center of the Wannier function and Ncell is
then number of unit cells) and introduce the corresponding
creation/annihilation operators

caα(r) =
∑
R

∑
n=bands

W
(n)
a;R(x,y,z)c(n)

aα,R,

c†aα(r) =
∑
R

∑
n=bands

W
(n)∗
a;R (x,y,z)c(n)†

aα,R

(a = px,py, α = 1, . . . ,N).

(B4)

As in Sec. II, we have used the shorthand notation a = px,py

meaning px = (nx,ny) = (1,0) and py = (nx,ny) = (0,1).
Following the standard procedure [47], we can derive the

Hubbard-type interactions from the original contact interaction
gδ3(r):

1

2

∑
R

∑
a=px,py

UaaaaV̂aaaa(R)

+1

2

∑
R

∑
a �= b

= px,py

{UaabbV̂aabb(R) + UabbaV̂abba(R)

+UababV̂abab(R)}, (B5)

where the superscript “(0)” for the fermion operators of the
lowest Bloch band has been suppressed and Uabcd is defined

by

Uabcd ≡ g

∫
dr W

(0)∗
a;R (r)W (0)∗

b;R (r)W (0)
c;R(r)W (0)

d;R(r),

V̂abcd (R) ≡ c
†
aα,Rc

†
bβ,Rccβ,Rcdα,R (a,b,c,d = px,py).

(B6)

Since the Wannier functions are real and the two orbitals
W

(0)
px/py ;R(r) are symmetry related (C4), there are only two

independent couplings:

U1 ≡ Upxpxpxpx
= Upypypypy

,

U2 ≡ Upxpxpypy
= Upypypxpx

= Upxpypypx

= Upypxpxpy
= Upxpypxpy

= Upypxpypx
.

(B7)

Using the explicit forms (B2c), one can readily verify that
the above two coupling constants U1 and U2 actually are not
independent and satisfy U1 = 3U2. In fact, this ratio is constant
for any axially symmetric potential V⊥(x,y).

Plugging the above into Eq. (B5), we obtain the Hamilto-
nian of the p-band model (27):

Hp-band = −t
∑

i

(c†aα,icaα,i+1 + H.c.)

+
∑

i

∑
a=px,py

(εa − t0) na,i

+ 1

2
U1

∑
i

na,i(na,i − 1) + U2

∑
i

npx,inpy,i

+U2

∑
i

c
†
pxα,ic

†
pyβ,icpxβ,icpyα,i

+ 1

2
U2

∑
i

∑
a �= b

= px,py

c
†
a,α,ic

†
a,β,icb,β,icb,α,i , (B8)

where εpx
= εpy

= 3�ωxy/2 and the hopping amplitude t is
defined as

t = t (0)(±1)
∫

dr W
(n1)∗
a;R1

(r)H‖(z)W (n2)
b;R2

(r)

≡ −δabδn1n2 t
(n1)(R1 − R2). (B9)

When the last term in Eq. (B8) (pair hopping) is rewritten in
terms of the orbital pseudospin T, Eq. (27) is recovered.

APPENDIX C: CONFORMAL FIELD-THEORY DATA

In this Appendix, we recall some useful formula of SU(N )k
CFT which are useful in the low-energy approach of two-
orbital SU(N ) models (Sec. III).

Let us first consider the SU(2)N CFT which is generated
by the orbital current jL,R in our problem. The left chiral
current satisfies the SU(2)N Kac-Moody algebra which reads
as follows within our conventions:

j i
L(z)j j

L (0) ∼ Nδij

8π2z2
+ iεijk

2πz
jk

L(0), (C1)

with a similar result for the right current. The SU(2)N primary
operators with spin j = 0, . . . ,N/2 are an SU(2) × SU(2)
tensor with (2j + 1)2 components which are denoted by �

j
m,m̄

(|m,m̄| � j ). They transform in the spin-j representation
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of SU(2) and have scaling dimension dj = 2j (j + 1)/(N + 2) [99,112]. They are defined through the operator product expansion
(OPE) [99]

j i
L(z)�j

m,m̄(ω,ω̄) ∼ − 1

z − ω
T i

ms�
j
s,m̄(ω,ω̄),

(C2)

j i
R(z̄)�j

m,m̄(ω,ω̄) ∼ 1

z̄ − ω̄
�

j
m,s̄(ω,ω̄)T i

s̄m̄,

where T i are the usual spin-j matrices. The conjugate of �
j
m,m̄ is defined by

�
j†
m,m̄ = (−1)2j−m−m̄�

j
−m,−m̄. (C3)

We need also the SU(2)N fusion rule which describes the product between two primary operators with spin j1 and j2 [140]:

j1 ⊗ j2 = |j1 − j2|,|j1 − j2| + 1, . . . ,min(j1 + j2,N/2 − j1 − j2). (C4)

Related to this decomposition is the SU(2)N operator algebra [140]

�
j1
m1,m̄1

(z,z̄)�j2
m2,m̄2

(0,0) ∼
N/2∑
j=0

j∑
m,m̄=−j

|z|dj −dj1 −dj2 C

⎛
⎝ j m m̄

j1 m1 m̄1

j2 m2 m̄2

⎞
⎠�

j
m,m̄(0,0), (C5)

where C are the structure constants of the operator algebra which are related to the Wigner 3j symbols as

C

⎛
⎝ j m m̄

j1 m1 m̄1

j2 m2 m̄2

⎞
⎠ = ρj,j1,j2

(
j j1 j2

−m m1 m2

)(
j j1 j2

−m̄ m̄1 m̄2

)
, (C6)

where ρj,j1,j2 is a constant which can be found in Ref. [140] and we have the constraints m = m1 + m2, m̄ = m̄1 + m̄2 which
stem from the properties of 3j symbols. The explicit application of the operator algebra (C5) for j1 = j2 = 1/2 leads to

�
1/2
1/2,1/2(z,z̄)�1/2

1/2,1/2(0,0) ∼ 1
3 |z|1/(N+2)ρ1,1/2,1/2�

1
1,1(0,0),

�
1/2
−1/2,−1/2(z,z̄)�1/2

−1/2,−1/2(0,0) ∼ 1
3 |z|1/(N+2)ρ1,1/2,1/2�

1
−1,−1(0,0),

(C7)
�

1/2
1/2,1/2(z,z̄)�1/2

−1/2,−1/2(0,0) ∼ 1
2 |z|−3/(N+2)ρ0,1/2,1/2 + 1

6 |z|1/(N+2)ρ1,1/2,1/2�
1
0,0(0,0),

�
1/2
1/2,−1/2(z,z̄)�1/2

−1/2,1/2(0,0) ∼ − 1
2 |z|−3/(N+2)ρ0,1/2,1/2 + 1

6 |z|1/(N+2)ρ1,1/2,1/2�
1
0,0(0,0).

At this stage, we introduce another parametrization of the
spin- 1

2 SU(2)N field which will be used in Sec. III: gpl ≡
�

1/2
m,m̄ where p = g,e (or px,py) → m = 1/2,−1/2 and l =

g,e (or px,py) → m̄ = 1/2,−1/2. With this definition and
the OPEs (C7), we deduce that the trace of the SU(2)N primary
field which transforms in the spin-1 representation reads as
follows:

Tr
(
�

SU(2)N
j=1

) ∼ Tr(g)Tr(g†) − 1
2gplg

†
pl. (C8)

The SU(2)N primary operators can also be related to
that of the ZN CFT (f 2j

2m,2m̄) through the coset construction
ZN ∼ SU(2)N /U(1)o [114,115]. In the paper, the U(1)o CFT
is described by a bosonic field which is the orbital field �o

with chiral components �oL,R. Within our conventions, the
relationship between the primary fields is

�
j
m,m̄ = f

2j

−2m,2m̄ exp(−im
√

8π/N �oL − im̄
√

8π/N �oR),

(C9)

where the ZN primary operators have scaling dimension
�

j
m,m̄ = 2j (j + 1)/(N + 2) − (m2 + m̄2)/N . The most im-

portant ones for our purpose are the ZN ordered spin
operators σk ∼ f k

k,k and the disordered ones μk ∼ f k
−k,k

(k = 1, . . . ,N − 1). The relation (C9) gives in particular the

following identifications:

�
1/2
1/2,1/2 � μ1 exp(−i

√
2π/N �o),

�
1/2
−1/2,−1/2 � μ

†
1 exp(i

√
2π/N �o),

�
1/2
−1/2,1/2 � σ1 exp(i

√
2π/N �o), (C10)

�1
1,1 � μ2 exp(−i

√
8π/N �o),

�1
−1,−1 � μ

†
2 exp(i

√
8π/N �o),

where �o is the dual field associated with �o. The last identifi-
cation that we need is the ZN description of �1

0,0 which can be

determined by the SU(2)N fusion rule �
1/2
1/2,1/2�

1/2
−1/2,−1/2 [see

Eq. (C7)]. Using the identification (C10) for �
1/2
±1/2,±1/2 and

the following OPE for the ZN CFT (C being an unimportant
positive constant)

μ1(z,z̄)μ†
1(0,0) ∼ |z|− 2(N−1)

N(N+2) − C|z| 2(N+1)
N(N+2) ε1(0,0), (C11)

we get

�1
0,0 � −ε1, (C12)

where ε1 is the thermal operator of the ZN CFT with scaling
dimension 4/(N + 2). In our convention, 〈ε1〉 > 0 in a phase
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where the ZN is broken so that the disorder parameters cannot
condense.

These results generalize in the SU(N ) case. We will only
need for our purpose the values of scaling dimensions of
SU(N )2 primary fields. The SU(N )k primary field transforms
in some representation R of the SU(N ) group and its scaling
dimension is given by [112]

�R = 2CR

N + k
, (C13)

where CR is the quadratic Casimir in the representation R. Its
expression can be obtained from the general formula where R

is written as a Young diagram

CR = T aT a = 1

2

{
l(N − l/N ) +

nrow∑
i=1

b2
i −

ncol∑
i=1

a2
i

}
(C14)

for Young diagram of l boxes consisting of nrow rows of length
bi each and ncol columns of length ai each. For instance, we get
CR = (N2 − 1)/2N for the fundamental representation, CR =
N for the adjoint representation, CR(k) = k(N + 1)(N −
k)/2N for the kth basic antisymmetric representation made
of a Young diagram with a single column and k boxes, and
CR = N − 2/N + 1 for the symmetric representation with
dimension N (N + 1)/2. In particular, in the SU(N )2 case,
i.e., the CFT which describes the nuclear-spin degrees of
freedom in our paper, the scaling dimensions of various
primary operators needed in Sec. III are

�G = N2 − 1

N (N + 2)
,

�adj = 2N

N + 2
,

(C15)

�S = 2(N − 2/N + 1)

N + 2
,

�A = 2(N + 1)(N − 2)

N (N + 2)
,

which describes, respectively, the scaling dimension of the
SU(N )2 primary field which transforms in the fundamental, ad-
joint, symmetric representation with dimension N (N + 1)/2,
and antisymmetric representation with dimension N (N − 1)/2
of SU(N ).

APPENDIX D: MAJORANA-FERMIONIZATION OF THE
HALF-FILLED N = 2 p-BAND MODEL

In this Appendix, we investigate the zero-temperature phase
diagram of the half-filled N = 2 p-band model in the general
case with two different coupling constants U1,2 by means of the
low-energy approach. As seen in Sec. II, the U(1)o continuous
orbital symmetry is explicitly broken when U1 �= 3U2 and the
low-energy effective Hamiltonian is no longer parametrized
by nine coupling constants as in Eq. (70). In the special N = 2
case, one can use the standard field-theoretical methods based
on bosonization and refermionization techniques as in the
two-leg ladders [96]. In the context of the N = 2 generalized
Hund model at half-filling, we have described extensively this
approach in Ref. [44].

Using the Abelian bosonization, one can define four chiral
bosonic fields �mσR,L (m = px,py ; σ = ↑,↓) from the four
left-right moving Dirac fermions of the continuum limit for
N = 2. The next step of the approach is to introduce a bosonic
basis which singles out the different degrees of freedom for
N = 2, i.e., charge, (nuclear) spin, orbital, and spin-orbital
degrees of freedom:

�px↑L,R = 1
2 (�c + �s + �o + �so)L,R,

�px↓L,R = 1
2 (�c − �s + �o − �so)L,R,

(D1)
�py↑L,R = 1

2 (�c + �s − �o − �so)L,R,

�py↓L,R = 1
2 (�c − �s − �o + �so)L,R.

From these new bosonic fields, one can now consider
a refermionization procedure by introducing eight left- and
right-moving Majorana fermions through

ξ 2
L + iξ 1

L = η1√
πa0

exp(−i
√

4π�sL),

ξ 2
R + iξ 1

R = η1√
πa0

exp(i
√

4π�sR),

ξ 4
L − iξ 5

L = η2√
πa0

exp(−i
√

4π�oL),

ξ 4
R − iξ 5

R = η2√
πa0

exp(i
√

4π�oR),

(D2)
ξ 6

L + iξ 3
L = η3√

πa0
exp(−i

√
4π�soL),

ξ 6
R + iξ 3

R = η3√
πa0

exp(i
√

4π�soR),

ξ 8
L + iξ 7

L = η4√
πa0

exp(−i
√

4π�cL),

ξ 8
R + iξ 7

R = η4√
πa0

exp(i
√

4π�cR),

where the Klein factors η1,2,3,4 ensure the anticommutation
rules for the Majorana fermions.

With these definitions, the continuum Hamiltonian of the
half-filled N = 2 p-band model can then be expressed in terms
of these eight Majorana fermions:

H = − ivF

2

8∑
a=1

(
ξa

R∂xξ
a
R − ξa

L∂xξ
a
L

)

+ g1

2

(
3∑

a=1

ξa
Rξa

L

)2

+ g2

(
3∑

a=1

ξa
Rξa

L

)
ξ 4

Rξ 4
L

+ ξ 6
Rξ 6

L

[
g3

3∑
a=1

ξa
Rξa

L + g4ξ
4
Rξ 4

L

]

+ g5

2

(
ξ 5

Rξ 5
L +

8∑
a=7

ξa
Rξa

L

)2

+
(

ξ 5
Rξ 5

L +
8∑

a=7

ξa
Rξa

L

)

×
(

g6

3∑
a=1

ξa
Rξa

L + g7ξ
4
Rξ 4

L + g8ξ
6
Rξ 6

L

)
, (D3)
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where we have neglected the velocity-anisotropy terms for
the sake of simplicity. The different coupling constants of the
continuum limit are given by

g1 = −g5 = −a0(U1 + U2),

g2 = −g8 = −2a0U2,
(D4)

g3 = −g7 = a0(U2 − U1),

g4 = g6 = 0,

where we have included the operators with coupling constants
g4,6 since they will be generated in the one-loop RG calcula-
tion.

From Eq. (D3), one observes that the three Majorana
fermions ξa

R,L (a = 1,2,3), which accounts for the physical
properties of the (nuclear) spin degrees of freedom, play a
symmetric role as the result of the SU(2)s spin symmetry
of the lattice model. In addition, the two Majorana fermions
ξa

R,L (a = 7,8), associated to the charge degrees of freedom,
are unified with one Majorana fermion ξ 5

R,L of the orbital
sector. This signals the emergence of a new independent SU(2)
symmetry for all U1 and U2 that we have revealed on the lattice
from the charge pseudospin operator (33). The continuous
symmetry of model (D3) is actually SU(2) × SU(2) ∼ SO(4).

The one-loop RG of model (D3) can be easily determined
within the Majorana formalism and we find

ġ1 = 1

2π
g2

1 + 1

2π
g2

2 + 1

2π
g2

3 + 3

2π
g2

6,

ġ2 = 1

π
g1g2 + 1

2π
g3g4 + 3

2π
g6g7,

ġ3 = 1

π
g1g3 + 1

2π
g2g4 + 3

2π
g6g8,

ġ4 = 3

2π
g2g3 + 3

2π
g7g8,

(D5)

ġ5 = 1

2π
g2

5 + 3

2π
g2

6 + 1

2π
g2

7 + 1

2π
g2

8,

ġ6 = 1

π
g1g6 + 1

2π
g2g7 + 1

2π
g3g8 + 1

π
g5g6,

ġ7 = 3

2π
g2g6 + 1

2π
g4g8 + 1

π
g5g7,

ġ8 = 3

2π
g3g6 + 1

2π
g4g7 + 1

π
g5g8.

These RG equations enjoy some hidden symmetries:

�1 : g2,3,6 → −g2,3,6, �2 : g3,4,8 → −g3,4,8,
(D6)

�3 : g6,7,8 → −g6,7,8, �4 : g2,4,7 → −g2,4,7,

which correspond to duality symmetries on the Majorana
fermions

�1 : ξ
1,2,3
L → −ξ

1,2,3
L , �2 : ξ 6

L → −ξ 6
L,

(D7)
�3 : ξ

5,7,8
L → −ξ

5,7,8
L , �4 : ξ 4

L → −ξ 4
L,

while the right-moving Majorana fermions remain invariant.
The four dualities (D7), together with the trivial one �0, give

five possible SO(8)-symmetric rays which attract the one-loop
RG (D5) flows in the far-IR regime. Along these rays, the
interacting part of the effective Hamiltonian (D3) simplifies as
follows:

�0 : H�0
int = g

2

(
8∑

a=1

ξa
Rξa

L

)2

,

�1 : H�1
int = g

2

(
8∑

a=4

ξa
Rξa

L −
3∑

a=1

ξa
Rξa

L

)2

,

�2 : H�2
int = g

2

⎛
⎝∑

a �=6

ξa
Rξa

L − ξ 6
Rξ 6

L

⎞
⎠

2

, (D8)

�3 : H�3
int = g

2

⎛
⎝ ∑

a �=5,7,8

ξa
Rξa

L −
∑

b=5,7,8

ξb
Rξb

L

⎞
⎠

2

,

�4 : H�4
int = g

2

⎛
⎝∑

a �=4

ξa
Rξa

L − ξ 4
Rξ 4

L

⎞
⎠

2

with g > 0. The nature of the underlying electronic phase can
then be inferred by a straightforward semiclassical approach
on the bosonic representation of the different models in
Eqs. (D8) by means of the identification (D2). The following
five different fully gapped Mott-insulating phases are found in
this analysis.

Spin Peierls phase. The trivial duality �0 correspond to
the SO(8) GN model. As seen in Sec. IV B 1 in the general
SO(4N ) case, the underlying Mott-insulating phase is a SP
one with spontaneous dimerization.

Spin Haldane phase. For the first nontrivial duality sym-
metry �1, the semiclassical approach leads to a nondegenerate
phase where the bosonic fields are pinned as follows:

〈�s〉 = 〈�so〉 =
√

π

2
; 〈�c,o〉 = 0 (SH phase), (D9)

where �a = �aL + �aR and �a = �aL − �aR (a = c,s,o,so)
are, respectively, the total bosonic field and the dual field. The
field configurations (D9) correspond to the SH phase [44].

Rung-singlet phase. The duality symmetry �2 leads to a
nondegenerate phase with field configurations

〈�c,s,o〉 = 〈�so〉 = 0 (RS phase). (D10)

The physical picture of the corresponding phase is a singlet
formed between the orbital and nuclear spins:

|RS〉 =
∏

i

1√
2

(
c
†
px↑,ic

†
py↓,i − c

†
px↓,ic

†
py↑,i

)|0〉. (D11)

Such phase is similar to the RS phase of the two-leg spin- 1
2

ladder where a singlet is formed on each rung of the ladder [96].
Since T z

i |RS〉 = 0, the RS phase can also be interpreted as an
orbital large-D (OLD) phase along the z axis.

Charge Haldane phase. For the duality symmetry �3,
we obtain again a nondegenerate phase with the following
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pinning:

〈�c〉 = 〈�o〉 =
√

π

2
; 〈�s,so〉 = 0 (CH phase). (D12)

Such field configurations signal the emergence of a Haldane
phase for the charge degrees of freedom, which has been
dubbed charge Haldane (CH) phase (or, equivalently, Haldane
charge) in Refs. [55,62]. The spin degrees of freedom of this
phase are described by the pseudospin operator (33), which is
a spin singlet that carries charge. This CH phase is deduced
from the usual SH phase by the Shiba transformation (31).

Orbital large-D phase. For the last duality symmetry, i.e.,
�4, the semiclassical approach gives the following vacuum
expectation values:

〈�c,s,so〉 = 〈�o〉 = 0. (D13)

The corresponding Mott-insulating phase is nondegenerate
and featureless. In the strong-coupling regime, a ground state
for that phase is the singlet state

|OLDx〉 =
∏

i

1√
2

(
c
†
px↑,ic

†
px↓,i − c

†
py↑,ic

†
py↓,i

)|0〉, (D14)

which is characterized by T x
i |OLDx〉 = 0. The resulting spin-

singlet phase is an orbital large-D (OLD) phase along the x

axis. We can also think of a similar state along the y axis:

|OLDy〉 =
∏

i

1√
2

(
c
†
px↑,ic

†
px↓,i + c

†
py↑,ic

†
py↓,i

)|0〉 . (D15)

The latter is different from the RS phase (D11) since (D14)
[respectively (D11)] is antisymmetric (respectively symmet-
ric) under the px ↔ py exchange.

Phase diagram in the weak-coupling regime. Following
the same procedure as described in Sec. IV C, we solve
numerically the RG equations (D5) with initial conditions (D4)
to obtain the low-energy phase diagram of the N = 2 p-band
model (29) in the (U1,U2) plane. We identify four out of the five
regions discussed above. Indeed, the SP phase is not realized.
These fours regions are readily identified as SH, RS, CH, and
OLD by the flows of the couplings gi(lmax) = ±gmax that are
in agreement with the symmetries (D6). The phase diagram
in the low-energy limit (Fig. 24) is equivalent with the one
obtained with the DMRG technique in Fig. 13 (see discussion
in Sec. V B).

From the duality symmetries (D7), we can, as well, discuss
the nature of the quantum phase transitions that occur in Fig. 24
by investigating the self-dual manifolds.

CH/RS or SH/OLD transition. The transition between
the CH and RS phases, or between SH and OLD, is
governed by the self-dual manifold of the duality �2�3

where ξ
5,6,7,8
L → −ξ

5,6,7,8
L . The self-dual manifold is then

described by g3 = g4 = g6 = g7 = 0. From the initial con-
ditions (D4), we observed that the line U1 = U2 of the
p-band model belongs to that manifold. The interacting part
of the effective Hamiltonian (D3) simplifies as follows along

FIG. 24. (Color online) Phase diagram for N = 2 p-band
model (29) obtained by solving numerically the one-loop RG
equations (D5) with initial conditions (D4). The line U1 = 3U2

corresponds to the axially symmetric trapping scheme.

that line:

HCH/RS
int = g1

2

(
4∑

a=1

ξa
Rξa

L

)2

− g1

2

(
8∑

a=5

ξa
Rξa

L

)2

, (D16)

which takes the form of two decoupled SO(4) GN models. Due
to the particular structure of model (D16), one of this SO(4)
GN displays a critical behavior while the other is massive.
We thus conclude that the quantum phase transition CH/RS or
SH/OLD belongs to the SO(4)1 universality class with central
charge c = 2.

SH/RS or CH/OLD transition. One can repeat the analysis
for the transition between the SH and RS phases, or between
CH and OLD. In that case, the relevant duality is �1�2

with ξ
1,2,3,6
L → −ξ

1,2,3,6
L . The resulting self-dual manifold

is g2 = g4 = g6 = g8 = 0. From the initial conditions (D4),
we observed that the line U2 = 0 of the p-band model
belongs to that manifold. The interacting part of the effective
Hamiltonian (D3) simplifies as follows along that line:

HSH/RS
int = g1

2

( ∑
a=1,2,3,6

ξa
Rξa

L

)2

− g1

2

⎛
⎝ ∑

a=4,5,7,8

ξa
Rξa

L

⎞
⎠

2

,

(D17)

which takes also the form of two decoupled SO(4) GN models
with an emerging SO(4)1 quantum criticality with c = 2. This
last result can be easily understood since when U2 = 0 the
p-band model (27) is equivalent to two decoupled half-filled
Hubbard chains and therefore a critical behavior with central
charge c = 1 + 1 = 2 occurs.

SH/CH or RS/OLD transition. In this last case, the quantum
phase transition is described by the duality �1�3 with
ξ

1,2,3,5,7,8
L → −ξ

1,2,3,5,7,8
L . The self-dual manifold is g2 =

g3 = g7 = g8 = 0. Using the initial conditions of the p-band
model (D4), the noninteracting point belongs to that manifold
and we expect thus that the SH/CH and RS/OLD transitions
occur for U1 = U2 = 0.
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[88] D. Pérez-Garcı́a, M. M. Wolf, M. Sanz, F. Verstraete, and J. I.
Cirac, Phys. Rev. Lett. 100, 167202 (2008).

[89] We use an argument similar to that in Refs. [78, 88].
[90] K. Duivenvoorden and T. Quella, Phys. Rev. B 88, 125115

(2013).
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[130] H.-H. Tu and R. Orús, Phys. Rev. B 84, 140407 (2011).
[131] Y.-C. Tzeng, Phys. Rev. B 86, 024403 (2012).
[132] J. A. Kjäll, M. P. Zaletel, R. S. K. Mong, J. H. Bardarson, and

F. Pollmann, Phys. Rev. B 87, 235106 (2013).
[133] T. Hikihara and A. Furusaki, Phys. Rev. B 69, 064427 (2004).
[134] M. Cazalilla, J. Phys. B: At., Mol. Opt. Phys. 37, S1 (2004).
[135] G. Roux, S. Capponi, P. Lecheminant, and P. Azaria, Eur. Phys.

J. B 68, 293 (2009).
[136] Near the line U2 = 0, the impact of the deviation from

U2 = 0 is readily estimated. When U2 > 0, the two CDWs on
different orbitals (“chains”) repel each other due to the positive

V = U2 interaction and favor out-of-phase CDW, i.e., ODW.
When U2 < 0, on the other hand, they attract each other and
consequently stabilize usual CDW.

[137] M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P.
Schauß, C. Gross, L. Mazza, M. C. Bañuls, L. Pollet, I. Bloch,
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