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spin-orbit coupling treatment in real space

F. Zirkelbach,1 P.-Y. Prodhomme,1 Peng Han,1 R. Cherian,1 and G. Bester1,2,3,*

1Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
2Institut für Physikalische Chemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, Germany

3The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany
(Received 1 April 2014; revised manuscript received 21 January 2015; published 20 February 2015)

Within the scheme of the large-scale atomic effective pseudopotential program (LATEPP), the Schrödinger
equation of an electronic system is solved within an effective single-particle approach. Although not limited to, it
focuses on the recently introduced atomic effective pseudopotentials derived from screened local effective crystal
potentials as obtained from self-consistent density functional theory calculations. The problem can be solved
in both real (real-space grid) and reciprocal space (plane-wave basis functions). Following the idea of atomic
effective pseudopotentials, the density, and hence a self-consistent cycle, is not required and not implemented.
An iterative solver is implemented to deliver the eigenstates close to a selected reference energy, e.g., around
the band gap of a semiconductor. This approach is particularly well suited for theoretical investigations of the
electronic structure of semiconductor nanostructures and we demonstrate linear scaling with the system size
up to around 100 000 atoms on a single standard compute node. Moreover, an efficient real-space treatment of
spin-orbit coupling within the pseudopotential framework is proposed in this work allowing for a fully relativistic
description.

DOI: 10.1103/PhysRevB.91.075119 PACS number(s): 71.15.Dx, 31.15.A−

I. INTRODUCTION

Semiconductor nanostructures exhibit highly attractive and
technologically relevant electronic and optical properties that
depend on their composition, structure, size, and shape. The
increasing ability to control these parameters, as well as exper-
imental achievements in the characterization of these nanos-
tructures, enable discoveries of increasingly complex behavior.
These include the appearance of different kinds of excitons [1–
3], Auger processes [4], as well as quantum entanglement [5],
which make these semiconductor nanostructures ideal candi-
dates for functionalized solid-state materials in the field of
optoelectronics and quantum information. Moreover, semi-
conductor quantum wells constitute the first structural class of
materials, for which conducting edge states in bulk insulators
were predicted [6] to be protected by time-reversal invariance
and subsequently observed experimentally [7], establishing
the emerging research field of topological insulators [8,9].

While these structures with dimensions of several up to
hundreds of nanometers are considered small, they do consist
of up to 100 000 atoms. Theoretical methods describing the
electronic and optical properties of semiconductor nanostruc-
tures must be capable of addressing this large number of atoms
including the treatment of excitations at a many-body level,
as well as relativistic spin-orbit effects, the latter being, for
instance, responsible for the protected metallic surface states of
topological insulators or the polarization properties of optical
emission.

The currently existing approaches applied for the calcula-
tion of the excited state properties of nanostructures range from
ab initio descriptions to rather empirical methods with limited
predictive capabilities. Historically, continuum approaches
where the atomic fast oscillating potential is replaced by a
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smooth (e.g., parabolic) potential, as in the k · p method, have
been applied to nanostructures revealing interesting trends
and delivering an initial basic understanding of confinement
effects. Recent and ongoing theoretical efforts are aimed at
the development of affordable atomistic descriptions, which
naturally capture the correct atomistic symmetry and include
all the relevant effects at the onset. Eventually, the atomistic
description will make the continuum models obsolete. The
mapping of the quantitative results onto simple effective
Hamiltonians for the purpose of interpretation is a mere
postprocessing of the data.

Existing atomistic methods can be cast into different
groups. (i) First-principles methods such as time-dependent
density functional theory, GW , and Bethe-Salpeter provide
an accurate atomistic description but are limited to up to a
few hundreds of atoms. (ii) Empirical tight-binding methods
can easily address several millions of atoms [10–13] but
lack single-particle wave functions, which are needed in the
subsequent treatment of excitations. Worthwhile theoretical
effects are presently undertaken to address this issue. (iii) The
empirical pseudopotential method [14,15] (EPM) has been
generalized [16–18] to be able to address nanostructures
with millions of atoms using appropriate basis sets [19] and
offered an excellent basis for the calculation of excitonic wave
functions via configuration interaction [18,20]. (iv) Recently,
a new generation of the EPM was introduced [21], which
removes its empirical character by using an analytic con-
nection between results of density functional theory (DFT)
calculations on elongated and slightly deformed supercells
and the derived atomic effective pseudopotentiall (AEP). This
procedure provides access to the long-range interaction, which
was lacking in the original EPM and offers an automatic
pseudopotential generation leading to unique AEPs.

This work introduces the large-scale atomic effective pseu-
dopotential program (LATEPP) developed to efficiently solve
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the electronic eigenvalue problems utilizing AEPs. The for-
malism underlying the AEPs [21] involves nonlocal angular-
momentum-dependent pseudopotentials that are implemented
following the Kleinmann-Byland separable formulation in
reciprocal and in real space. The eigensolver is distinct
from the case of DFT since an inner eigenvalue problem is
solved. For the spin-orbit treatment, an efficient formulation
was developed in this work and implemented and tested
against the implementation used in the established DFT code
ABINIT [22]. The kinetic energy operator is implemented in
reciprocal space, as in standard plane-wave codes, as well as
in real space realized by a finite difference scheme. The latter
implementation leads to a fully real-space treatment of the
problem. The obtained single-particle wave functions can be
used in a subsequent configuration interaction approach [18]
to obtain the many-body effects, which, however, is beyond
the scope of the present method.

In the first part of this paper, a short overview of the
capabilities as well as a summary of the basic concepts of AEPs
is presented. This is followed by a more detailed description
of the underlying code that solves the Schrödinger equation.
Finally, the method is illustrated and the performance is tested
by applying it to a GaAs quantum dot embedded in AlAs for a
total number of 97 336 atoms. Calculations on bulk GaAs are
used to illustrate the capabilities and accuracy of the spin-orbit
treatment.

II. METHODOLOGY

A. Capabilities

The LATEPP code solves the Schrödinger equation of an
electronic system within an effective single-particle approach.
It is aimed at utilizing the recently presented AEPs [21]
derived from ab initio pseudopotential calculations. Within
the AEP scheme, the self-consistent update of the density,
as performed in a DFT calculation, is not required. This
allows us to focus on a restricted selection of relevant
eigenstates close to a reference energy, which must be known
or guessed based on previous findings. In contrast to DFT,
which computes all occupied states, this method does not
provide total energies and forces; equilibrated structures have
to be assumed or computed by efficient valence force-field
models. Likewise, although exhibiting a high transferability,
structures that involve large charge transfer compared to the
structure used for the generation of the AEP are not guaranteed
to be computed accurately. Keeping these limitations in
mind, however, LATEPP is capable of efficiently treating large
structures since the eigenstates of the Hamiltonian need to
be solved only once. Three different solvers are implemented
for this task. The iterative Jacobi-Davidson [23–27] solver
is applied to the folded spectrum [28] Hamiltonian and the
Arnoldi restart algorithm as implemented in ARPACK [29,30]
to deliver eigenstates close to a target reference energy. In
addition, a direct diagonalization solver is integrated, which
requires the explicit construction and storage of the full
Hamiltonian and delivers all the eigenstates, in the case this is
required.

The nonlocal contribution of the potential to reconstruct
the full crystal potential of the self-consistent ab initio pseu-

dopotential is treated in a fully separable form as suggested by
Kleinman and Bylander [31] and can be evaluated in reciprocal
or in real space.

Not a new idea in the field of electronic-structure cal-
culations [32–35], the kinetic energy, which is diagonal in
reciprocal space, can likewise be calculated in real space by
a finite difference approach, which leads to a fully real-space
treatment scaling linearly with the number of atoms. For trans-
formations between reciprocal and real space, the fast Fourier
transformation (FFT) as implemented in FFTW [36,37] or
FFTE [38] can be selected.

Spin-orbit interaction can be included within a real-
or reciprocal-space treatment using the iterative or direct
diagonalization scheme.

B. Atomic effective pseudopotentials

As recently introduced [21], AEPs are constructed by
extracting the local part of the self-consistent effective crystal
potentials V loc,eff(r) from DFT calculations, which include
the local part of the pseudopotential as well as the Hartree
and exchange correlation (XC) contributions. This can be
transformed to reciprocal space according to

V loc,eff(G) = 1

�c

∫
�c

V loc,eff(r)e−iG·rd3r, (1)

with �c being the volume of the supercell. By rewriting
the crystal potential in Eq. (1) as a sum over atom-centered
pseudopotentials

V loc,eff(r) =
Nspecies∑

α

Nα∑
n

vα(r − τ α,n) (2)

and substituting r = r′ + τ α,n, the total reciprocal space
potential can be expressed as a Fourier sum

V loc,eff(G) = 1

�c

Nspecies∑
α

Nα∑
n

e−iG·τα,nvα(G) (3)

of atomic reciprocal space potentials

vα(G) =
∫

∞
vα(r)e−iG·rd3r. (4)

A detailed description of the analytic connection between
the DFT results obtained for elongated and slightly deformed
supercells and the AEPs vα(|G|) is given in Ref. [21], along
with benchmark tests of their accuracy. The AEPs are available
for over 20 binary semiconductors in a tabulated form [39] on a
dense grid in reciprocal space. These files are read by LATEPP.

C. Solving the Schrödinger equation

The LATEPP code solves the Schrödinger equation of the
electronic problem (in atomic units)(

−∇2

2
+ VL(r) + V̂NL + V̂SO

)
ψi,k(r) = εi,kψi,k(r). (5)

Here, VL(r) is the local effective pseudopotential, V̂NL rep-
resents the nonlocal part of the pseudopotential, V̂SO is the
spin-orbit contribution, and the first term corresponds to the
kinetic energy.
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1. Basis sets

The wave functions are represented either in a plane-wave
basis

ψi,k(r) =
∑

G
|k + G| < Gcut

ci,k ei(k+G)·r (6)

truncated at a certain cutoff energy Ecut = 1
2G2

cut, or on a
regular real-space grid.

2. Solvers and representations

The evaluation of the different parts of the Hamiltonian
depends on the selected solver as well as on the representation
chosen for the wave functions. The possibilities provided by
LATEPP are shortly summarized in the following.

The wave functions are represented on a regular grid, either
in real or reciprocal space, both linked via Fourier transforms.
If the full Hamiltonian is diagonalized directly, which is only
possible for small systems, the wave functions as well as the
nonlocal and spin-orbit potentials are exclusively represented
and evaluated in reciprocal space.

For larger systems, the iterative Jacobi-Davidson [23–27]
solver or Arnoldi restart [29,30] algorithm can be used.
These algorithms iteratively approach the solution based on
a repeated operation of the operator on the wave function.
The following discussions will be restricted to the Arnoldi
method since it turned out to be more efficient than the
Jacobi-Davidson solver and has established itself as the
standard solver.

Within the iterative treatment, V̂NL can be implemented
in the fully separable formulation proposed by Kleinman
and Bylander [31] in reciprocal or in real space, whereas
the inclusion of spin-orbit interaction is restricted to the
real-space treatment.

3. Kinetic energy

In reciprocal space, the matrix elements of the kinetic
energy operator T̂ are diagonal and easily obtained by

TG,G′(k) = 〈k + G|T̂ |k + G′〉 = δG,G′ 1
2 (k + G)2. (7)

Within an iterative treatment, the kinetic energy is calculated
by the sum of the product of these diagonal elements and the
coefficients of the wave function.

If the remaining parts of the Hamiltonian are evaluated
in real space, Fourier transforms of the wave function into
reciprocal space and back are needed. The scaling is, thus,
determined by the N log(N ) scaling of the FFT algorithm, if
N is the grid size, which is proportional to the number of atoms
in the system. The kinetic energy can likewise be calculated
directly in real space by a finite difference scheme:

d2

dx2
ψ

∣∣∣∣
(i,j,k)

≈
O/2∑

l=−O/2

cd=2
l,0 ψ(i + l,j,k)/h2

x

+
O/2∑

l=−O/2

cd=2
l,0 ψ(i,j + l,k)/h2

y

+
O/2∑

l=−O/2

cd=2
l,0 ψ(i,j,k + l)/h2

z , (8)

for any even order O with the optimal weights cd
l,m being

determined by an algorithm given by Fornberg [40,41], and
hx,y,z being the grid spacings. This preserves linear scaling
and becomes advantageous for large systems, as will be shown
subsequently.

4. Local potential

The AEPs are tabulated in reciprocal space [39]. The
corresponding matrix elements are given by

VL
G,G′

(k) = 〈k + G|VL|k + G′〉
= 1

�c

∫
VL(r)ei(G−G′)·rd3r

= VL(G − G′) (9)

and computed according to Eq. (3). Thus, for fully converged
results with respect to the chosen plane-wave cutoff energy,
the grid must be chosen large enough (2Gcut in each direction)
to include all possible reciprocal lattice vectors G − G′.
However, in most cases, smaller grid sizes have been found to
give accurate results, which is demonstrated in Sec. III B.

For surfaces, interfaces, or for an alloy, weights are
introduced to account for the difference in the chemical
environment compared to the binary or pure bulk system.
Including the weights wα,n, the sum in Eq. (3) is adjusted
to read as

V loc,eff(G) = 1

�c

Nspecies∑
α

vα(G)
Nα∑
n

e−iG·τα,nwα,n. (10)

Here, Nspecies specifies the number of different types of atoms
that exist in the system in its various occurring environments,
i.e., it corresponds to the number of utilized AEPs. For
instance, As atoms surrounded by Ga atoms constitute a
different species than As atoms surrounded by Al atoms. In
the case of surfaces, interfaces, or alloys, an atom, which has
different types of next neighbors is represented by more than
one such atom species. The respective contributions to the
local potential are modified by weights determined by

wα,n = nα,n

4
(for tetrahedrally coordinated materials), (11)

with nα,n being the number of next neighbors of type α.
For evaluation in real space, the potential is initially

transformed and stored on a real-space grid. This is likewise
done for the iterative methods in reciprocal space. In this way,
the O(N2) complexity due to the matrix-vector multiplication
in reciprocal space is reduced to O[N log(N )] complexity
governed by the Fourier transforms of the wave functions,
which are then multiplied with the local potential operator that
is diagonal in real space.

5. Nonlocal potential

The nonlocal part of the potential is given by

V̂NL =
∑
l,m

|l,m〉δVl(r)〈l,m|, (12)

with the spherical harmonics |l,m〉 and δVl(r) being the
difference of the l-dependent pseudopotential Vl(r) and the
selected local part Vloc(r). The local part of the pseudopotential
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contains the long-ranged part of the potential, which leads to
short-ranged nonlocal operators. In this way, δVl(r) is only
nonzero within a sphere of a certain radius.

LATEPP supports the semilocal form in Eq. (12), which
is nonlocal only in the angular part and requires a radial
integration

〈q|V̂NL|q′〉 = 4π

�c

∑
l

(2l + 1)Pl (̂q · q̂ ′)

×
∫

r2jl(qr)δVl(r)jl(q
′r) dr (13)

with the spherical Bessel functions jl , the Legendre polyno-
mials Pl , q = k + G and q′ = k + G′.

For larger system sizes, the separable formulation of
Kleinman and Bylander [31] (KB)

V̂ KB
NL =

∑
l,m

∣∣χKB
lm

〉
EKB

l

〈
χKB

lm

∣∣ (14)

with the KB eigenvalue

EKB
l = 〈ulδVl|δVlul〉

〈ul|δVl|ul〉 (15)

and the normalized KB projectors∣∣χKB
lm

〉 = |δVlφlm〉
〈ulδVl|δVlul〉1/2

(16)

can be used. Here, φlm is the atomic pseudopotential wave
function and ul its radial part multiplied with the radius.
The radial parts as well as the respective potentials δVl of
the pseudopotential wave functions are stored on a real-space
grid in a file and are constructed according to the procedures
by Hamann, Schlüter, and Chiang [42] or Troullier and
Martins [43].

To calculate EKB
l , the integrals of Eq. (15) are evaluated

on the one-dimensional real-space grid of the pseudopotential.
The same grid is used to obtain the radial part of the KB
projectors

uKB
l (q) =

∫
r

jl(qr)δVl(r)ul(r)r dr (17)

on a likewise one-dimensional, equally spaced auxiliary grid
consisting of 600 points up to the cutoff value in reciprocal
space. Interpolated to the reciprocal space grid of LATEPP and
multiplied by the respective spherical harmonics of the angular
part �q of the reciprocal lattice vector q = k + G, the KB
projector 〈

q
∣∣χKB

lm

〉 = 4π (−i)lY ∗
lm(�q)uKB

l (q) (18)

can be used to either construct the matrix elements

〈q|V̂ KB
NL |q′〉 =

∑
lm

〈
q
∣∣χKB

lm

〉
EKB

l

〈
χKB

lm

∣∣q′〉 (19)

or to get the new components q of the matrix multiplication in
the iterative solver methods

〈q|V̂ KB
NL |ψn〉 =

∑
lm

〈
q
∣∣χKB

lm

〉
EKB

l

∑
q′

〈
χKB

lm

∣∣q′〉〈q′|ψn〉. (20)

Again, including atoms and the concepts of weights as in
Eqs. (3) and (10) results in a structure factor, which can be

stored in memory or recalculated in each iteration. The first
approach is faster but is limited by the available memory,
whereas the recalculation of structure factors in each iteration
is extremely time consuming. The required memory or number
of evaluations scales with the square of the system size since
the number of structure factors is given by the product of the
number of plane waves and the number of atoms.

The real-space representation of the projector is given by

〈r|χKB
lm 〉 =

∑
α,n

δVl(|r − τ α,n|) ul (|r−τα,n|)
|r−τα,n|

〈ulδVl|δVlul〉 1
2

Ylm(�r−τα,n ). (21)

Due to the short-ranged character of the nonlocal projectors,
the integration is restricted to a small sphere around the atoms.
Thus, assuming a constant density of the grid, the evaluation
scales linearly with the number of atoms of the system.

The wave functions in reciprocal space 〈k + G|ψ〉 =
ψk(G) are stored on the reciprocal lattice sites G and the
real-space representation is obtained by Fourier transformation

ψk(r) = 〈r|ψk〉 =
∑

G

〈r|k + G〉〈k + G|ψ〉

= 1√
NG

∑
G

ei(k+G)rψk(G)

= eikr 1√
NG

∑
G

eiGrψk(G). (22)

Thus, in real-space treatments for nonzero k points, the phase
appearing in the last line of Eq. (22) must be taken into account.

6. Spin-orbit coupling

The relativistic effect of the coupling of the orbital
angular momentum of the electron and its spin [44] can
be incorporated within the formulation of norm-conserving
pseudopotentials [45,46]

V̂ ion
ps =

∑
l,M

∣∣∣∣l + 1

2
,M

〉
Vl,l+ 1

2
(r)

〈
l + 1

2
,M

∣∣∣∣
+

∑
l,M ′

∣∣∣∣l − 1

2
,M ′

〉
Vl,l− 1

2
(r)

〈
l − 1

2
,M ′

∣∣∣∣, (23)

with M ranging from −(l + 1
2 ) to l + 1

2 , M ′ ranging from
−(l − 1

2 ) to l − 1
2 , and

∣∣l ± 1
2 ,M

〉 = 1√
2l + 1

⎛⎝±
√

l ± M + 1
2

∣∣l,M − 1
2

〉√
l ∓ M + 1

2

∣∣l,M + 1
2

〉
⎞⎠

(24)

being the spin angular functions in the two-component spinor
formalism. These pseudopotentials now depend on the joint
orbital and spin angular momentum j = l ± s. By defining
an averaged l-dependent potential weighted by the different j

degeneracies of the |l ± 1
2 〉 states

V l(r) = 1

2l + 1

(
lVl,l− 1

2
(r) + (l + 1)Vl,l+ 1

2
(r)

)
(25)
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and a potential describing the difference in the potential with
respect to the spin

V SO
l (r) = 2

2l + 1

(
Vl,l+ 1

2
(r) − Vl,l− 1

2
(r)

)
, (26)

the total pseudopotential operator reads as

V̂ ion
ps = V̂NL + V̂SO =

∑
l,m

|l,m〉[V l(r) + V SO
l (r)L̂ · Ŝ]〈l,m|,

(27)

with m ranging from −l to l. The first term corresponds to the
scalar relativistic mass velocity and Darwin corrections, which
are most often included in the available pseudopotentials. The
latter term is associated with the spin-orbit coupling, which
remains to be evaluated for a fully relativistic description.

In real space, a simple yet efficient treatment is imple-
mented, which takes advantage of an expression encountered
along the lines of the derivation of Eq. (27) from Eq. (23),
which is demonstrated in the following. Reversing Eqs. (25)
and (26),

Vl,l+ 1
2
(r) = V l(r) + l

2
V SO

l (r), (28)

Vl,l− 1
2
(r) = V l(r) − l + 1

2
V SO

l (r), (29)

the ionic pseudopotential can be rewritten to read as

V̂ ion
ps =

∑
l,M

(
V l(r) + l

2
V SO

l (r)

)∣∣∣∣l + 1

2
,M

〉〈
l + 1

2
,M

∣∣∣∣
+

∑
l,M ′

(
V l(r) − l + 1

2
V SO

l (r)

)∣∣∣∣l − 1

2
,M ′

〉

×
〈
l − 1

2
,M ′

∣∣∣∣
=

∑
l

V l(r)

(∑
M

∣∣∣∣l + 1

2
,M

〉〈
l + 1

2
,M

∣∣∣∣
+

∑
M ′

∣∣∣∣l − 1

2
,M

〉〈
l − 1

2
,M

∣∣∣∣)

+
∑
l,M

l

2
V SO

l (r)

∣∣∣∣l + 1

2
,M

〉〈
l + 1

2
,M

∣∣∣∣
−

∑
l,M ′

l + 1

2
V SO

l (r)

∣∣∣∣l − 1

2
,M ′

〉〈
l − 1

2
,M ′

∣∣∣∣. (30)

As outlined in more detail in the Appendix, the relation of the
operator in the basis of the |l ± 1

2 ,M〉 in Eq. (30) and in the
basis of the |l,m〉 ⊗ |± 1

2 〉 is given by∑
M

∣∣∣∣l + 1

2
,M

〉〈
l + 1

2
,M

∣∣∣∣ +
∑
M ′

∣∣∣∣l − 1

2
,M ′

〉〈
l − 1

2
,M ′

∣∣∣∣
=

∑
m

(∣∣∣∣l,m,
1

2

〉〈
l,m,

1

2

∣∣∣∣ +
∣∣∣∣l,m,−1

2

〉〈
l,m,−1

2

∣∣∣∣) (31)

with

∣∣l,m, 1
2

〉 .=
(|l,m〉

0

)
, (32)

∣∣l,m,− 1
2

〉 .=
(

0
|l,m〉

)
. (33)

Here, the |± 1
2 〉 are the eigenstates of the Ŝz operator. Using the

relation in Eq. (31) and the fact that∑
m

(∣∣∣∣l,m,
1

2

〉〈
l,m,

1

2

∣∣∣∣ +
∣∣∣∣l,m,−1

2

〉〈
l,m,−1

2

∣∣∣∣)

=
∑
m

|l,m〉〈l,m|
(∣∣∣∣1

2

〉〈
1

2

∣∣∣∣ +
∣∣∣∣−1

2

〉〈
−1

2

∣∣∣∣) (34)

=
∑
m

|l,m〉〈l,m| · 1 ≡
∑
m

|l,m〉〈l,m| (35)

as well as the eigenvalue relation of the L̂ · Ŝ = 1/2(Ĵ2 − L̂2 −
Ŝ2) operator applied on the spin angular functions

L̂ · Ŝ|j,M〉 =
{

l
2

∣∣l + 1
2 ,M

〉
for j = l + 1

2 ,

− l+1
2

∣∣l − 1
2 ,M

〉
for j = l − 1

2 ,
(36)

the potential can be further evaluated to read as

V̂ ion
ps =

∑
l

V l(r)
∑
m

(∣∣∣∣l,m,
1

2

〉〈
l,m,

1

2

∣∣∣∣ +
∣∣∣∣l,m,−1

2

〉〈
l,m,−1

2

∣∣∣∣)

+
∑
l,M

l

2
V SO

l (r)

∣∣∣∣l + 1

2
,M

〉〈
l + 1

2
,M

∣∣∣∣ −
∑
l,M ′

l + 1

2
V SO

l (r)

∣∣∣∣l − 1

2
,M ′

〉〈
l − 1

2
,M ′

∣∣∣∣ (37)

=
∑
l,m

V l(r)|l,m〉〈l,m| +
∑

l

V SO
l (r)L̂ · Ŝ

( ∑
M

∣∣∣∣l + 1

2
,M

〉〈
l + 1

2
,M

∣∣∣∣ +
∑
M ′

∣∣∣∣l − 1

2
,M ′

〉〈
l − 1

2
,M ′

∣∣∣∣) (38)

=
∑
l,m

(
V l(r) + V SO

l (r)L̂ · Ŝ
)|l,m〉〈l,m|. (39)

The summation indices m, M , and M ′ cover the values as
before.

However, within the formalism suggested here and as
implemented in LATEPP, the L̂ · Ŝ operator is never evaluated.
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Instead, Eq. (37) is used. Moreover, the expression is extended
to the fully nonlocal formulation of Kleinman and Bylander.
As stated above, the scalar relativistic contributions are already
contained in the nonlocal treatment and only the two remaining
spin-orbit parts need to be considered, which are reformulated
to read as

V̂SO =
∑

l

⎛⎝ l

2
El

l+1/2∑
M=−(l+1/2)

∣∣χSO
l+1/2,M

〉〈
χSO

l+1/2,M

∣∣
− l + 1

2
El

l−1/2∑
M=−(l−1/2)

∣∣χSO
l−1/2,M

〉〈
χSO

l−1/2,M

∣∣⎞⎠ (40)

with

∣∣χSO
l± 1

2 ,M

〉 =
∣∣Rl± 1

2
V SO

l l ± 1
2 ,M

〉
〈
ul± 1

2
V SO

l

∣∣u± 1
2
lV SO

l

〉 1
2

, (41)

El± 1
2

=
〈
ul± 1

2
V SO

l

∣∣ul± 1
2
V SO

l

〉〈
ul± 1

2

∣∣V SO
l

∣∣ul± 1
2

〉 , (42)

ul± 1
2
(r) = Rl± 1

2
(r)r . (43)

The present approach is different than the one used
in other codes [47,48] that are based on a formulation
of Hemstreet et al. [49], who apply the transformation
according to Kleinman and Bylander already to Eq. (23)
(after subtracting a local potential) followed by expressing
the δVl±1/2(r)Rl±1/2(r) in terms of a scalar relativistic and
spin-orbit difference part. This results in an intricate expression
for the pseudopotential consisting of projectors constructed
by all possible combinations of the scalar relativistic and
spin-orbit difference parts appearing in the ket and bra states
of the operator. The slim spin-orbit operator in the present
approach comes at the small additional expense of a one-time
initial evaluation of the angular functions of the second spinor
component for the grid points within the atomic spheres
[similar to Eq. (21)] for both the |χSO

l+1/2,M〉 and |χSO
l−1/2,M〉

states used in the projector. The big advantage, instead, is the
circumvention of evaluating the angular and spin momentum
operator. In the case of the implementation in Parsec [47],
expressing L̂ · Ŝ = L̂zŜz + 1

2 (L̂+Ŝ− + L̂−Ŝ+), three of the
six stencils describing the spin-orbit coupling become more
complicated off-diagonal (in terms of the |l,m〉 basis) stencils
due to the creation and annihilation operators. In ABINIT [50],
evaluating L̂ = r̂ × p̂ on the Legendre polynomial introduced
by the vector addition theorem of the spherical harmonics, the
formalism is no longer separable resulting in an inner loop
over all grid points nested within an outer loop over all grid
points of an atomic sphere.

Moreover, it is worth to note that the wrong normalization
constants

Cl±1/2 = 〈Rl±1/2|δVl±1/2|Rl±1/2〉1/2 (44)

are used in some of the previously stated formalisms [47–49],
which instead should read as

Cl±1/2 = 〈ul±1/2|δVl±1/2|ul±1/2〉1/2 (45)

due to an additional factor of r2 originating from the integration
in spherical coordinates. As later illustrated in Fig. 17 in
Sec. III F, the introduced error is in the range of a few to
30 meV for the spin splitting in GaAs.

The V SO
l (r) and Rl± 1

2
of fully relativistic pseudopotentials

are used. These are imported from files other than the files
containing the scalar relativistic nonlocal pseudopotentials,
which allows for a more flexible spin-orbit treatment.

Moreover, the size of the wave-function vector has to
be doubled. Next to the spin-orbit treatment, the additional
subspace is likewise considered in the kinetic energy as well
as the local and nonlocal potential evaluation.

III. APPLICATIONS AND TESTS

To present the features of LATEPP and point out its ability
to deal with nanoclusters, it is applied to GaAs quantum dots
(QDs) embedded in AlAs. Next to some basic illustrative re-
sults on the electronic properties of these QDs, the calculations
are meant to test the scaling and performance behavior of the
code, which are supplemented by calculations of supercells of
bulk GaAs of varying size. The capability of describing spin-
orbit interactions is demonstrated in calculations of primitive
cells of bulk GaAs.

For a comparison of AEPs with results from DFT, the reader
is referred to the work introducing the AEPs [21], in which
bulk structures as well as different types of quantum wells are
studied in detail, demonstrating good accuracy and a high level
of transferability of the potentials.

A. Eigensolver

The eigensolver, enabling access to a specific fraction of
the eigenspectrum of the Hamiltonian, is one of the most
important components of the machinery. As a first test, the
number of iterations of the solver requesting 4 complete blocks
of degenerate eigenvalues that consist of 14 eigenstates in total
with respect to the specified reference energy is investigated
on a bulk GaAs structure of 512 atoms. The number of basis
vectors of the operating Krylov subspace is chosen to be four
times larger than the number of requested states. The results
are shown in Fig 1. Data points enclosed by a circle correspond
to calculations yielding the requested blocks of solutions. They
are all located in the shaded region marking the energy range
for which the same solutions are expected. This is only true
if the tolerance of the ARPACK solver is set close to machine
precision. For larger tolerances, some of the solutions fail to
appear, which is attributed to the high degree of degeneracy
in the eigenspectrum of the large supercell of bulk GaAs.
If the reference energy is shifted outside of this region, new
states appear while others disappear from the solved spectrum,
resulting in incomplete blocks of degenerate states, which are
obviously harder to converge for ARPACK. This supports the
finding [30] of optimal performance if complete clusters of
eigenvalues are requested.

In a second test, the behavior of the solver with respect
to the number of requested states is analyzed. To reduce the
influence of clusters of degenerate eigenvalues, a large GaAs
bulk structure consisting of 1728 atoms with a single distorted
Ga atom is used as a test configuration. A second distortion
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FIG. 1. (Color online) Number of iterations of the ARPACK solver
requesting 14 states with respect to the utilized reference energy.
The shaded region marks the range of reference energies for which
the same solutions are expected. Data points supplied with a circle
identify calculations that indeed contain these solutions. The blue
lines correspond to the four blocks of eigenvalues of the requested
states. The red line corresponds to the middle of the band gap.

different from the first one is investigated to exclude a possibly
remaining high-symmetry configuration in the first case. For
the second distortion, the behavior is shown for two different
reference energies. The reference energies, in both cases, are
chosen to be below the lowest eigenvalue of the spectrum to
be solved. Figure 2 shows the number of iterations and total
time of the ARPACK computation with respect to the number
of requested states. No obvious dependency of the number
of requested states can be identified. For the first distortion,
there is a maximum at 19 states and no solution is found
if 16 states are requested. Using a different distortion does
not significantly improve the behavior. In fact, ARPACK still
does not converge if 16 states are requested and again the
maximum appears at 19 states with an almost identical number
of required iterations. However, a variation of the reference
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FIG. 2. (Color online) Number of iterations required to achieve
convergence with respect to the number of requested states for a
GaAs bulk structure consisting of 1728 atoms, for which two different
distortions are applied to a single Ga atom of the structure.

energy changes this behavior. A solution is found if 16 states
are requested and the former maximum number of iterations
at 19 states is drastically reduced. This suggests the effective
matrix H − Eref1 to be ill conditioned for the first reference
energy Eref of −0.40 eV in the respective subspace determined
by the number of requested states. In the second case, for a
reference energy of −0.45 eV, the effective matrix seems to be
well behaved for all the respective subspaces. Unfortunately, a
numerically cheap a priori test of the condition number of the
matrix is not available. A pragmatic solution is a slight shift
of the reference energy in cases where convergence cannot be
achieved.

B. Numerical accuracy tests and optimization
of computational parameters

Before moving on to the applications, the influence of the
plane-wave energy cutoff, grid size, and polynomial order of
the finite difference approximation are investigated.

1. Size of the FFT grid

In the reciprocal-space basis, the minimum grid needs to
include all possible plane waves up to the cutoff energy.
However, to include all possible reciprocal lattice vectors
G − G′ as they occur in the expression of the local potential
in Eq. (9), the size of the full grid must be chosen to range
from −2Gcut to 2Gcut in each dimension. Next to the local
potential, the grid size affects the sampling of the projectors
and the wave function of the nonlocal potential if evaluated
in real space. More accurate sampling is naturally expected
for higher grid densities. Both effects are illustrated in Fig. 3,
which shows the convergence of the band gap of a bulk GaAs
supercell containing eight atoms for two plane-wave energy
cutoffs with respect to the utilized grid size in each dimension

FIG. 3. (Color online) Convergence of the band-gap energy of
a bulk GaAs supercell containing eight atoms for two plane-wave
energy cutoffs (green: 22 Ha, blue: 30 Ha) with respect to the grid
size in one dimension in terms of the minimum grid (M); the full
grid is indicated by (F). Results are shown for calculations in the
reciprocal-space basis with the nonlocal potential being evaluated in
real space (dashed line) and reciprocal space (solid line).
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for calculations in a reciprocal-space basis with the nonlocal
potential being evaluated in real as well as in reciprocal space.
Already the results of the 22 Ha calculations are considered
converged employing a convergence tolerance of ±5 meV. In
the case of the nonlocal potential evaluation in reciprocal space
(solid line), the observed convergence is entirely governed by
the local potential contribution. As can be seen from the insets,
the contribution turns out to be small and already the minimum
grid yields converged results. If evaluated in real space, a more
distinct convergence characteristic represented by the dashed
lines is observed. This is due to the real-space sampling of the
nonlocal projectors and the wave function, which are refined
and become more accurate with an increasing number of grid
points. Still, the deviations from the respectively converged
band gap are always below 2 meV, which suggests a minimum
grid ranging from −Gcut to +Gcut to be sufficient for proper
sampling.

2. Comparison of the real and reciprocal space implementations

To compare calculations that are entirely carried out in
real space with calculations performed in the reciprocal-space
basis, the previous finding of a sufficient minimum grid is used
to relate the number of grid points per dimension Nd with the
plane-wave energy cutoff Ecut, i.e.,

Ecut = 1

2

(
Ndπ

a

)2

. (46)

A comparison using the respective mapping is displayed
in Fig. 4, which shows the convergence of the band gap
with respect to the actual and equivalent plane-wave cutoff
energy. As mentioned before, converged band-gap energies are
obtained beyond 22 Ha in the plane-wave basis (red and green
lines). The full real-space treatment (blue) converges slightly
later at equivalent 25 Ha due to the additional approximation
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wave cutoff energy. For the full real-space calculations, the equi-
valent cutoff energy is calculated according to Eq. (46). The kinetic
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FIG. 5. (Color online) Convergence of the band-gap energy of
a bulk GaAs supercell containing eight atoms with respect to the
polynomial order of the finite difference scheme in the fully real-space
calculations. Results for different grid sizes are shown.

in the kinetic energy evaluation, which depends on the grid
density, as discussed in the following.

3. Polynomial order of the finite difference approximation

The band gap with respect to the polynomial order
according to Eq. (8) is shown in Fig. 5. As expected, the
error introduced by the finite difference scheme decreases
with increasing polynomial order. Moreover, the error for a
fixed value of the polynomial order likewise decreases with
increasing grid size. The remainder of the finite difference
expansion obviously depends directly on the grid spacing,
which becomes smaller for denser grids. Because the number
of operations to calculate the kinetic energy per real-space
grid point depends linearly on the polynomial order O, but
the number of real-space grid points N itself scales cubic
with the number of grid points in each direction Nd , it is
advised to use big enough polynomial orders in favor of
smaller grid sizes and, equivalently, vector sizes. For instance,
similar accuracy is obtained for grid sizes Nd = 40, O = 4
and Nd = 30, O = 6, which involve 3 × 4 × 403 = 768 000
and 3 × 6 × 303 = 486 000 operations, respectively. Next to
the smaller number of required operations, the vector size of
303 = 27 000 in contrast to 403 = 64 000 grid points is much
smaller in the latter approach.

C. Eigenstates and wave functions of GaAs
quantum dots in AlAs

Spherical GaAs QDs are embedded in a cubic supercell
of AlAs. The AEPs for Ga are derived from an ab initio
pseudopotential for Ga not considering the 3d electrons as
valence electrons. The lattice constant of the GaAs QD as well
as the AlAs bulk is set to an averaged experimental value
of 10.68 a0. The equilibrium local density approximation
(LDA) lattice constants for GaAs and AlAs are 10.13 a0

and 10.72 a0, respectively. Different sizes of the QD ranging
from 1 up to 12 nm corresponding to 2 up to 21 lattice
constants in diameter are investigated. A minimum distance

075119-8



LARGE-SCALE ATOMIC EFFECTIVE PSEUDOPOTENTIAL . . . PHYSICAL REVIEW B 91, 075119 (2015)

TABLE I. QD diameter and size of the cubic supercells including
the number of atoms for three different GaAs QDs embedded in AlAs
with a = 10.68 a0 being the averaged experimental lattice constant.
The last rows show the utilized LATEPP grid size and the full grid size
(in brackets) to contain all possible reciprocal lattice vectors G − G′

with respect to the cutoff energy as well as the number of plane waves.

Supercell size (a3) 123 203 233

Dot diameter (a) 10 18 21

Number of Al atoms 4800 19 768 29 156
Number of Ga atoms 2112 12 232 19 512
Number of As atoms 6912 32 000 48 668
Total number of atoms 13 824 64 000 97 336

LATEPP grid size 2003 (3653) 2403 (4693) 2883 (5413)
Plane wave cut-off (Ha) 10 6 6
Number of plane waves 9 545 913 6 847 715 31 243 629

of two lattice constants between the periodically repeated
QDs is sufficient to isolate them electronically. The respective
dimensions and parameters of interest of the three largest
structures are summarized in Table I. The reciprocal-space
basis is chosen for all calculations with the nonlocal potential
being evaluated in real space. The calculations are performed
at the 
 point, utilizing a plane-wave cutoff energy of 10 Ha.
For the larger supercell calculations, consisting of more than
10 000 atoms, a reduced cutoff energy of 6 Ha has been used.

In Fig. 6, the band structures of bulk GaAs and AlAs at the
averaged experimental lattice constant are shown. The direct
band gap of GaAs is 0.90 eV, which is lower than the indirect
gap of 1.33 eV for AlAs, which involves a transition from
the X point in the conduction to the 
 point in the valence
band.

Solutions in the vicinity of the valence band maximum
(VBM) and conduction band minimum (CBM) are obtained
separately by two independent calculations with a different
reference energy. Considering the band gaps and band offsets
obtained from the bulk calculations, the wave functions of
the highest occupied and lowest unoccupied states in the QD
structure are, in a first quick thought, expected to be localized
within the GaAs QD. In fact, this is true for the VBM as can
be seen in Fig. 7, which displays the wave functions of the
largest of the investigated QD structures consisting of 23 ×
23 × 23 lattice constants corresponding to 97 336 atoms. The
red wave function corresponds to the highest occupied state,
which is localized in the GaAs QD. In contrast, the lowest
unoccupied state turns out to be localized within the AlAs

FIG. 6. (Color online) Excerpt of the electronic band structure of
the highest occupied p and the lowest unoccupied s state of GaAs
(left) and AlAs (right) bulk structures.

FIG. 7. (Color online) Squared wave function in real space of
the highest occupied (top, red) and lowest unoccupied (bottom, blue)
states of a GaAs QD embedded in AlAs. Green, tan, and silver spheres
correspond to Ga, Al, and As atoms. The structure consists of 97 336
atoms.

barrier as indicated by the blue isosurface. Using an empirical
pseudopotential method [51], a direct-to-indirect transition in
real space was observed for this material system if the radius
of the GaAs QD decreases below 5 nm. Due to confinement,
the lowest unoccupied molecular orbital state of the QD shifts
above the CBM of the barrier, with the latter originating from
the X point in the Brillouin zone. Thus, the band gap is indirect
in reciprocal as well as in real space, which is in agreement
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with the present band-structure calculation of bulk AlAs in
Fig. 6 determining the CBM at the X point.

Although these results are in qualitative agreement to the
EPM calculations, they remain quantitatively inaccurate due
to the deficiencies of the local density approximation, which
severely underestimates band gaps and effective masses. A
correction to the band gap is therefore required to compare to
experiment. Although possible in LATEPP, this is not the scope
of this paper.

D. Parallelization

Parts of the LATEPP algorithms are parallelized using the
shared memory OpenMP standard [52]. To test its performance
and scalability, QD as well as bulk structures of different sizes
are solved on one compute node containing two quad-core
CPUs [Intel(R) Xeon(R) E5540 2.53 GHz] equipped with
24-GB of memory up to a maximum number of eight threads.
Furthermore, different versions of the numerical libraries,
i.e., ARPACK [29,30] for the iterative solver and the Intel
Math Kernel Library providing optimized LAPACK [53] and
BLAS [54] routines, were tested.

Figure 8 shows the total calculation time of the smallest
QD structure consisting of 512 atoms for all possible com-
binations of employed libraries with respect to the number
of threads used in the calculation. The solid line corresponds
to calculations using ARPACK routines utilizing multithreaded
BLAS routines provided by the Intel MKL, whereas the dashed
lines utilize the serial BLAS routines. Circles and triangles
represent calculations of LATEPP executables linked against
the sequential and multithreaded MKL library, respectively.
A linear relation of the calculation time with respect to the
inverse of the number of threads with almost identical slope can
be identified for all combinations. Clearly, the multithreaded
ARPACK setups outperform its sequential variants for runs on
more than one thread. The combination of the preferential
multithreaded ARPACK linked against the sequential version
of the MKL yields shorter calculation times on less or equal
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FIG. 9. Speedup of LATEPP gained by parallelization with re-
spect to the number of threads. Here, FFTE [38] is used for the
transformations.

than four threads. However, the continuous linear decrease in
calculation time for runs on more than four threads suggests
to use the multithreaded versions of both libraries.

In Fig. 9, the speedup gained by parallelization with respect
to the number of threads is plotted for calculations of the
smallest QD structure using FFTE [38] for transformations
between real and reciprocal space. Speedups are additionally
shown for the two parts of the iterative procedure, i.e., the
evaluation of Hψ and the ARPACK algorithms realizing the
implicitly restarted Arnoldi method. Although the gain in
speed of the ARPACK routines increases up to a number of
four threads, the external solver library seems to behave
badly and even slows down if a higher number of threads
is used. In contrast, the implemented evaluation of Hψ shows
continuously increasing speedups. Since the ARPACK part only
occupies a relatively small fraction of the iteration time, the
total speedup likewise shows an upward trend.

Although these are modest speedups, they are not unusual
for an OpenMP parallelization on symmetric multiprocessing
systems due to limitations introduced by the memory architec-
ture. The advantage, on the other hand, is the simplicity of de-
veloping applications and adding new functionalities. The ad-
vantage of LATEPP is the possibility to address large structures
on a single node or even on inexpensive desktop hardware.

E. Scaling

The capability of solving large-scale problems is illustrated
and supported by the scaling behavior with respect to the
system size. The time for one iteration step in the iterative
eigensolver as a function of the number of atoms for bulk GaAs
structures is displayed in Fig. 10. The times are averaged over
20 iterations and 20 eigenstates are requested. Calculations in
reciprocal space with the nonlocal potential being evaluated
in real space (solid lines) are compared to fully real-space
calculations (dashed lines). A plane-wave cutoff energy of
22 Ha is used for the reciprocal-space basis. The corresponding
size of the minimum grid in the real-space basis is determined
by Eq. (46). The total time (black lines) is composed of
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HΨ

FIG. 10. (Color online) Time for one iteration (black lines) for
bulk GaAs structures with respect to the number of atoms. Results
are shown for fully real-space calculations (dashed lines) as well as for
calculations in the reciprocal-space basis with the nonlocal potential
being evaluated in real space (solid lines). The total time is composed
of the time of the Hψ evaluation (blue lines) and the ARPACK

routine (orange lines). The treatment in reciprocal space requires
FFTs (red line) while a more computationally intensive kinetic energy
evaluation (green line) is used in the real-space treatment. A minimum
grid (see Fig. 3) and 22 Ha cutoff energy for the plane waves are used.

the H� (blue lines) and ARPACK (orange lines) operations.
Contributions to the H� routine in turn are the FFTs (red
line) and the kinetic energy evaluation (green line) as well
as the local and nonlocal potentials that are evaluated in real
space in both methods, which take the same amount of time
and, therefore, need not be compared with each other.

The FFTs are only required in calculations in the reciprocal-
space basis to transform the wave functions into real space for
evaluating the local and nonlocal potential. The kinetic energy
evaluated in reciprocal space is negligible and not shown.

In contrast, the fully real-space treatment does not require
any FFT but needs a more computationally intensive kinetic
energy evaluation and, in addition, exhibits a larger vector size
by a factor of 6/π .

As suggested from the graph, the fully real-space treatment
is always faster, although more time is spent for the ARPACK

routine due to the larger vector size. This can be traced back
to the FFTs, that are slower than the real-space kinetic energy
evaluation.

In both, the reciprocal space as well as the fully real-space
case, the total computational costs as well as the respective
contributions scale linearly with the number of atoms N of the
system. Unexpectedly, this is likewise true for the FFT, which
is expected to obey a complexity of O[N log(N )]. Obviously,
within the investigated size regime, the FFT operation is
likewise proportional to the number of atoms. In fact, minimum
FFT grids according to Eq. (46) corresponding to 4803 grid
points for the structure containing 64 000 atoms are used,
which result in an overall linear scaling behavior.

In contrast, Fig. 11 shows the time per iteration for a cutoff
energy of 10 Ha but using the full FFT grid, i.e., 6253 grid
points for the structure consisting of 64 000 atoms. Due to the

HΨ

FIG. 11. (Color online) Time for the first iteration of fully real-
space calculations (dashed line) and calculations in the reciprocal-
space basis with the nonlocal potential being evaluated in real space
(solid line) for different sizes of bulk GaAs structures. The insets
show magnified regions of the plot. The contribution of the Hψ

evaluation and the ARPACK routine is shown by the blue and orange
lines, respectively. The contributions of the FFT and kinetic energy
calculation within the Hψ evaluation are highlighted by red and green
colors.

increased grid size, the expected O[N log(N )] behavior of the
FFTs is noticeable.

Linear scaling is preserved in the fully real-space treatment.
However, using a full grid, the vector size of the real-space
basis is now 48/π times larger than the reciprocal-space basis,
which is penalized by a significantly slower ARPACK routine
(compare dashed and solid orange lines). In fact, the fully real-
space approach is less favorable for the eight-atom case as can
be seen in the left inset of Fig. 11. This is due to slower ARPACK

routines that operate on a much longer vector and to slightly
slower kinetic energy evaluations in real space (compare green
and red FFT times). However, for a critical number of atoms
between 64 and 216, the kinetic energy calculation in real
space becomes faster than the FFTs. Finally, the overall H�

multiplication in the real-space basis becomes advantageous
for system sizes exceeding 512 atoms.

However, these findings must be taken with care. The
increased vector size typically requires a much larger number
of iterations to reach convergence and the reciprocal-space
basis remains a competitive approach in LATEPP.

To summarize, although the code does not show demon-
strative speedups gained by parallelization, the linear scaling
behavior is promising and a proper MPI implementation could
take full advantage of this fact. As shown, LATEPP is able to
describe structures consisting of 100 000 atoms at a level of
accuracy very comparable to DFT on a single node, possibly
a modern desktop computer.

F. Spin-orbit splitting in GaAs

The new implementation of the spin-orbit interaction is
demonstrated on bulk GaAs. The investigations are restricted
to the real-space spin-orbit treatment, which does not introduce
any empirical character and provides a computational advan-
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tage, thus, constituting the preferred method. For the scalar rel-
ativistic contribution, the AEPs and nonlocal pseudopotentials
for Ga considering 4s, 4p, and 3d states are used. Likewise,
for the spin-orbit coupling, the difference potentials of Eq. (26)
of the 4p and 3d states are employed. For As, an AEP derived
from a pseudopotential considering only 4s and 4p states is
used. For the spin-orbit potentials, the unbound 4d state must
be considered in addition to the 4p state. The APE [55] package
is used for the derivation of the ab initio difference potentials.
The radial cutoff in the psuedopotential generation for the 4d

state was set to 2.3 a0 to avoid overlapping of the atomic
spheres.

For comparison, the ABINIT code is used, which, in its
present version, is restricted to the usage of the HGH
pseudopotentials [56] if spin-orbit interaction is considered us-
ing norm-conserving pseudpotentials. The equilibrium lattice
constant of the HGH pseudopotential for GaAs is 10.576 a0,
in rather good agreement with experiment. The determined
lattice constant of 10.599 a0 for the AEP to match the HGH
band gap is slightly increased with respect to the equilibrium
lattice constant of 10.596 a0 used in the DFT calculations to
generate the GaAs AEP [21].

The band structures generated with ABINIT and LATEPP

are shown in Fig. 12. The band structures are aligned with
respect to the VBM. Due to the difference of the utilized
pseudopotentials, an exact agreement, even of the band struc-
tures not considering spin-orbit effects, cannot be expected.
However, an excellent agreement of the band structure over the
whole path calculated by DFT using HGH pseudopotentials
and by LATEPP employing the AEPs and spin-orbit difference
potentials obtained from APE is found. Next to the lifting
of the degeneracy of the split-off and the light-/heavy-hole
bands at the 
 point, the characteristic splitting of the heavy-

FIG. 12. (Color online) Electronic band structure of GaAs illus-
trating the lifting of the degeneracy of the split-off and heavy-/light-
hole band at the 
 point as well as the characteristic splitting of the
heavy- and light-hole bands approaching the L and X points due to
spin-orbit interaction. In addition, the spin splitting of the two spin
components (dashed and solid lines) between the X and 
 points
along the [1 1 0] can be seen. The results of LATEPP (blue lines)
are compared to DFT results using ABINIT employing the HGH [56]
pseudopotentials (black lines).
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FIG. 13. Lifting of the light-/heavy-hole degeneracy in GaAs
due to spin-orbit interaction. The results of LATEPP (solid line) are
compared to a DFT result using ABINIT employing the HGH [56]
pseudopotentials (dashed line).

and light-hole bands approaching the L and X points is very
well described. Moreover, the spin splitting of the two spin
components represented by dashed and solid lines along the �

direction between the X and 
 points is excellently captured
within the utilized spin-orbit treatment.

The lifting of the light-/heavy-hole degeneracy is shown
once more on a larger scale in Fig. 13. The LATEPP and DFT
results are in good agreement. The whole path from L to 
 is
very accurately reproduced. The character of the splitting, i.e.,
the maxima as well as the curvature of the splitting of the two
bands is very well reproduced.

Spin splitting is pronounced along the � direction starting
from the 
 point. To a lesser extent, it also also occurs between
L and 
 along the  ([1 1 1]) direction. The difference
in energy of the two spin components between 
 and X is
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FIG. 14. Spin splitting in the valence and conduction bands of
GaAs between the 
 and X points along the [1 1 0] direction due to
spin-orbit interaction. Results of LATEPP (solid lines) are compared to
DFT results using ABINIT employing the HGH [56] potentials (dashed
lines).
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FIG. 15. Spin splitting in the heavy-hole band of GaAs between
the L and 
 points along the  direction due to spin-orbit interaction.
The result of LATEPP (solid line) is compared to the DFT result using
ABINIT employing the HGH [56] potentials (dashed line).

displayed in Fig. 14 for the conduction and the three highest
valence bands. Figure 15 shows the respective splitting of
the heavy-hole band between 
 and L. The spin splitting is
very well reproduced by the spin-orbit treatment of LATEPP,
although two different pseudopotentials were used in the
calculations.

In Fig. 16, the spin splitting of the heavy-hole band from 


to X along the � direction is displayed separately including
a magnified region near the 
 point illustrating the capability
of describing very accurately the characteristic bump and its
respective linear and cubic dependence on the distance from
the band extremum [57,58].

Finally, the importance of the correct normalization of
the spin-orbit projectors is illustrated. As shown in Fig. 17,
the error introduced by the wrong normalization constant as
reported in Refs. [47–49] is in the range of a few to 30 meV
for the spin splitting in GaAs.

In summary, these results show that the treatment of spin-
orbit interaction as implemented in LATEPP can be considered
suitable to properly account for spin-orbit coupling.
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FIG. 16. Spin splitting of the GaAs heavy-hole band from 
 to
X along � direction. The inset shows a magnified region near the 


point. Results of LATEPP (solid line) are compared to results of ABINIT

employing the HGH [56] potentials (dashed line).

FIG. 17. (Color online) Spin splitting in the valence bands of
GaAs between the 
 and X points along the [1 1 0] direction due to
spin-orbit interaction. Results of LATEPP (solid lines) are compared to
DFT results using ABINIT employing the HGH [56] potentials (dashed
lines). In addition, results with the wrong normalization as given in
Refs. [47–49] are shown (blue lines).

IV. CONCLUSION AND SUMMARY

The LATEPP code solving the Schrödinger equation of an
electronic system has been introduced. It uses atomic effective
pseudopotentials derived from self-consistent ab initio DFT
calculations. A self-consistent cycle is not required, which
reduces computational costs and allows for the calculation of
only a few eigenstates of interest. Thus, LATEPP is specifically
suited for the investigation of the electronic structure in the
vicinity of the band gap of semiconductor nanostructures.
These are intended to be used in a subsequent calculation of
many-body effects using configuration interaction [18]. As has
been shown, structures containing up to 100 000 atoms can be
treated at an atomistic ab initio level comparable to DFT, with
the respective approximation for exchange and correlation on
a single node.

The possibility to represent the wave function and to
evaluate parts of the Hamiltonian either in a plane wave or
real-space basis allowed for a coherent analysis and direct
comparison of different approaches. Among the different
possible combinations, the reciprocal space method with the
local and nonlocal pseudopotential being evaluated in real
space as well as the fully real-space method constitute the
most competitive procedures.

Linear scaling with the system size is achieved in the fully
real-space treatment for all investigated system sizes.

The minimum FFT grid, which is just large enough to con-
tain the plane-wave sphere while truncating high-frequency
components of the local potential, is shown to be sufficient to
reach an accuracy below ±2 meV in the eigenvalues. Using
this minimum grid we obtain for calculations up to 64 000
atoms using the reciprocal space basis a nearly linear scaling,
despite the O[N log(N )] scaling of the FFTs.

We showed that results converged to the same accuracy
(below ±2 meV) can be obtained in the fully real-space method
using a grid that is equivalent to the minimum FFT grid.
Moreover, the convergence with respect to the polynomial
order of the finite difference approximation for the kinetic
energy in real space is discussed and a polynomial order of six
is found to be ideal.
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Finally, an efficient real-space implementation of spin-orbit
interaction based on the formulation within the basis of spin
angular functions is presented. This implementation, which
does not require the evaluation of the product of angular
momentum and spin operator, is different from other codes.
Direct comparison with standard DFT codes show that spin-
orbit interaction in our formalism is accurately accounted for.
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APPENDIX: CHANGE OF BASIS

To prove the equivalence of Eqs. (23) and (27), the basis
transformation

∣∣l ± 1
2 ,M

〉 → |l,m〉 ⊗ ∣∣± 1
2

〉
(A1)

to obtain Eq. (31) has yet to be shown. The Clebsch-Gordon
coefficients

C+
l+ 1

2 ,M
=

√
l + M + 1

2√
2l + 1

, C−
l+ 1

2 ,M
=

√
l − M + 1

2√
2l + 1

,

C+
l− 1

2 ,M
=

−
√

l − M + 1
2√

2l + 1
, C−

l− 1
2 ,M

=
√

l + M + 1
2√

2l + 1

connecting the spin angular functions as defined in
Eq. (24) with the spherical harmonics have the following
properties:

C+
l+ 1

2 ,M
C−

l+ 1
2 ,M

= −C+
l− 1

2 ,M
C−

l− 1
2 ,M

, (A2)

C±
l+ 1

2 ,M

2 + C±
l− 1

2 ,M

2 = 1. (A3)

Writing short |±〉 = |± 1
2 〉 and assuming spinor notation

|α〉 = |+〉〈+|α〉 + |−〉〈−|α〉 = α+|+〉 + α−|−〉
.=

(〈+|α〉
〈−|α〉

)
=

(
α+
α−

)
, (A4)

the projectors constructed out of the spin angular functions for
a specific quantum number M are

∣∣l + 1
2 ,M

〉〈
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(
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Due to the properties of the coefficients [Eqs. (A2) and (A3)], the sum of both parts becomes∣∣l + 1
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The off-diagonal contributions | . . .〉|±〉〈∓|〈. . . | with respect to spin vanish due to Eq. (A2) and the prefactors of the diagonal
contributions | . . .〉|±〉〈±|〈. . . | sum up to one [Eq. (A3)]. Finally, taking the sum over all M populates both spinor components with
all possible magnetic quantum numbers m of the spherical harmonic of angular momentum l. Then, writing |l,m〉|±〉 = |l,m,±〉
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proves the basis transformation as outlined in Eq. (31). The closure relation

1 = |+〉〈+| + |−〉〈−| (A8)

is used to obtain Eq. (35):

|l,m,+〉〈l,m, + | + |l,m,−〉〈l,m,−| = (|l,m〉 ⊗ |+〉)(〈l,m| ⊗ 〈+|) + (|l,m〉 ⊗ |−〉)(〈l,m| ⊗ 〈−|)
= |l,m〉〈l,m| ⊗ |+〉〈+| + |l,m〉〈l,m| ⊗ |−〉〈−|
= |l,m〉〈l,m| ⊗ (|+〉〈+| + |−〉〈−|)
= |l,m〉〈l,m| ⊗ 1 ≡ |l,m〉〈l,m| (A9)

and illustrates how Eq. (27) of the original literature [45,46] is to be understood.
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