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Recently we conjectured that a certain set of universal topological quantities characterize topological order in
any dimension. Those quantities can be extracted from the universal overlap of the ground-state wave functions.
For systems with gapped boundaries, these quantities are representations of the mapping class group MCG(M) of
the space manifold M on which the systems live. We will here consider simple examples in three dimensions and
give physical interpretation of these quantities, related to the fusion algebra and statistics of particles and string
excitations. In particular, we will consider dimensional reduction from 3+1D to 2+1D, and show how the induced
2+1D topological data contain information on the fusion and the braiding of non-Abelian string excitations in
3D. These universal quantities generalize the well-known modular S and T matrices to any dimension.
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I. INTRODUCTION

For more than two decades exotic quantum states [1–12]
have attracted a lot attention from the condensed matter
community. In particular, gapped systems with nontrivial
topological order [13–15], which is a reflection of long-range
entanglement [16] of the ground state, have been studied
intensely in 2 + 1 dimensions. Recently, people started to work
on a general theory of topological order in higher than 2 + 1
dimensions [17–21].

In a recent work [19], we conjectured that for a gapped
system on a d-dimensional manifold M of volume V with the
set of degenerate ground states {|ψα〉}Nα=1 on M, we have the
following overlaps:

〈ψα|ÔA|ψβ〉 = e−αV +o(1/V )MA
α,β, (1)

where ÔA are transformations on the wave functions induced
by the automorphisms A : M → M, α is a nonuniversal
constant, and MA is a universal matrix up to an overall
U (1) phase. Here, MA form a projective representation of
the automorphism group AMG(M), which is robust against any
local perturbations that do not close the bulk gap [15,22]. In
Ref. [19], we conjectured that such projective representations
for different space manifold topologies fully characterize
topological orders with finite ground-state degeneracy in
any dimension. Furthermore, we conjectured that projective
representations of the mapping class groups MCG(M) =
π0[AMG(M)] classify topological order with gapped bound-
aries [15,22]. These quantities can be used as order parameters
for topological order and detect transitions between different
phases [23].

In this paper, we will study these universal quantities further
in three-dimensions for one of the most simple manifolds, the
3-torus M = T 3. The mapping class group of the 3-torus is
MCG(T 3) = SL(3,Z). This group is generated by two elements
of the form [24]

ˆ̃S =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠, ˆ̃T =

⎛
⎝1 0 0

1 1 0
0 0 1

⎞
⎠. (2)

These matrices act on the unit vectors by ˆ̃S : (x̂, ŷ,ẑ) �→
( ẑ,x̂, ŷ) and similarly ˆ̃T : (x̂, ŷ,ẑ) �→ (x̂ + ŷ, ŷ,ẑ). Thus S̃

corresponds to a rotation, while T̃ is shear transformation in
the xy plane.

In this paper, we will study the SL(3,Z) representations
generated by a very simple class of ZN models in detail and
then consider models for any finite group G, which are three-
dimensional versions of Kitaev’s quantum double models [25].
One can also generalize into twisted versions of these based on
the group cohomology H 4(G,U(1)) by direct generalization of
Ref. [26] into 3+1D, which has been done for some simple
groups in Refs. [21,27].

We will consider dimensional reduction of a 3D topological
order C3D to 2D by making one direction of the 3D space
into a small circle. In this limit, the 3D topologically ordered
states C3D can be viewed as several 2D topological orders C2D

i ,
i = 1,2, . . . , which happen to have degenerate ground-state
energy. We denote such a dimensional reduction process as

C3D =
⊕

i

C2D
i . (3)

We can compute such a dimensional reduction using the
representation of SL(3,Z) that we have calculated.

We consider SL(2,Z) ⊂ SL(3,Z) subgroup and the re-
duction of the SL(3,Z) representation R3D to the SL(2,Z)
representations R2D

i :

R3D =
⊕

i

R2D
i . (4)

We will refer to this as branching rules for the SL(2,Z)
subgroup. The SL(3,Z) representation R3D describes the 3D
topological order C3D and the SL(2,Z) representations R2D

i

describe the 2D topological orders C2D
i . The decomposition 4

gives us the dimensional reduction 3.
Let us use CG to denote the topological order described

by the gauge theory with the finite gauge group G. Using the
above result, we find that

C3D
G =

|G|⊕
n=1

C2D
G (5)
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for Abelian G where |G| is the number of the group elements.
For non-Abelian group G

C3D
G =

⊕
C

C2D
GC

, (6)

where
⊕

C sums over all different conjugacy classes C of G,
and GC is a subgroup of G, which commutes with an element
in C. The results for G = ZN were mentioned in our previous
paper [19].

We also found that the reduction of SL(3,Z) representation,
Eq. (4), encodes all the information about the three-string
statistics discussed in Ref. [20] for Abelian groups. For non-
Abelian groups, we will have a “non-Abelian” string braiding
statistics and a nontrivial string fusion algebra. We also have a
“non-Abelian” three-string braiding statistics and a nontrivial
three-string fusion algebra. Within the dimension reduction
picture, the 3D strings reduces to particles in 2D, and the (non-
Abelian) statistics of the particles encode the (non-Abelian)
statistics of the strings.

II. ZN MODEL IN THREE DIMENSIONS

In this section, we will define and study the excitations of
a ZN model in detail [28] and compute the 3-torus universal
matrices, Eq. (1). Consider a simple cubic lattice with a local
Hilbert space on each link isomorphic to the group algebra
of ZN , Hi ≈ C[ZN ] ≈ CN ≈ spanC{|σ 〉|σ ∈ ZN }. Give the
links on the lattice an orientation as in Fig. 1 and let there be a
natural isomorphism Hi

∼→ Hi� for link i and its reversed
orientation i� as |σi〉 �→ |σi�〉 = | − σi〉. Let this basis be
orthonormal. Define two local operators

Zi |σi〉 = ωσi |σi〉, Xi |σi〉 = |σi − 1〉,
where ω = e

2πi
N . These operators have the important commu-

tation relation XiZi = ωZiXi . Note that these operators are
unitary and satisfy XN

i = ZN
i = 1. For each lattice site s and

plaquette p, we define

As =
∏
i∈s+

Zi

∏
j∈s−

Z
†
j , Bp =

∏
i∈∂p+

X
†
i

∏
j∈∂p−

Xj .

Here, s+ is the set of links pointing into s, while s− is the
set of links pointing away from s. Bp creates a string around
plaquette p with orientation given by the normal direction
using the right hand thumb rule. Then ∂p± are the set of links

(a) (b)

FIG. 1. (Color online) (a) Lattice site of 3D cubic lattice. As act
on spins connected to site s. (b) 2D plaquettes. Bp acts on the four
spins surrounding p. Choose a righthanded (x,y,z) frame, and let all
links be oriented with respect to to these directions. This associates a
natural orientation to 2D plaquettes on the dual lattice.

surrounding plaquette p with the same or opposite orientation
as the lattice. One can directly check that all these operators
commute for all sites and plaquettes.

We can now define the ZN model by the Hamiltonian

H3D,ZN
= −Je

2

∑
s

(As + A†
s) − Jm

2

∑
p

(Bp + B†
p),

where we will assume Je,Jm � 0 throughout. Since
eigen(As + A

†
s) = {2 cos( 2π

N
q)}N−1

0 , and the similar for Bp +
B

†
p, the ground state is the state satisfying

As |GS〉 = |GS〉, Bp|GS〉 = |GS〉, (7)

for all s and p. We can easily construct Hermitian projectors
to the state with eigenvalue 1 for all vertices and plaquettes:

ρs = 1

N

N−1∑
k=0

Ak
s , ρp = 1

N

N−1∑
k=0

Bk
p.

The ground state is thus |GS〉 = ∏
s ρs

∏
p ρp|ψ〉, for any

reference state |ψ〉 such that |GS〉 is nonzero. For the choice
|ψ〉 = |00 . . . 0〉 ≡ |0〉, the ρs is trivial and the ground state is
thus

|GS〉 =
∏

p

(
1

N

N−1∑
k=0

Bk
p

)
|0〉 = N

∑
ZN string nets

|loops〉.

The first condition in Eq. (7) requires that the ground state
consists of ZN string-nets, while the second requires that these
appear with equal superpositions. Note that if we had used
eigenstates of Xi instead, we would find that the ground state
is a membrane condensate on the dual lattice.

1. String and membrane operators

Now, let lab denote a curve on the lattice from site a to
b, with the orientation that it points from a to b. And let �C
denote an oriented surface on the dual lattice with ∂�C = C.
Using these, define string and membrane operators

W [lab] =
∏
i∈l−ab

Xi

∏
j∈l+ab

X
†
j , �[�C] =

∏
i∈�−

C

Z
†
i

∏
j∈�+

C

Zj .

Again l±ab and �±
C are defined with respect to the orientation

of the lattice. Note that Bp = W [∂p], where ∂p denotes a
closed loop around plaquette p with right-hand thumb rule
orientation with respect to the normal direction. Similarly,
As = �[star(s)], where star(s) is the closed surface on the
dual lattice surrounding site s with inward orientation.

It is clear that the following operators commute:

[W [lab],Bp] = 0, ∀p, and [�[�C],As] = 0, ∀s.

Furthermore, it is easy to show that

[W [lab],As] = 0, s �= a,b, [�[�C],Bp] = 0, p �∈ C,

while

AaW [lab] = ω−1 W [lab]Aa, AbW [lab] = ω W [lab]Ab,

and

Bp�[�C] = ω±1 �[�C]Bp, p ∈ C,

where ± depends on orientation of �C .
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FIG. 2. (Color online) The cube represents the 3-torus T 3, where
the sides are appropriately identified. The red string represents lx , a
closed noncontractable loop wrapping around the x cycle of the torus
(orientation along the x axis). Similarly, two other noncontractable
strings, ly and lz can be defined. The blue surface �x (orientation of
normal along x axis) is a noncontractable surface with topology of
T 2. Similarly, �y and �z surfaces can be defined.

2. Ground states on 3-torus

The ground-state degeneracy depends on the topology
of the manifold on which the theory is defined, take, for
example, the 3-torus T 3. Let lx , ly , and lz be noncontractible
loops along the three cycles on the lattice, with the orientation
of the lattice. Similarly, let �x , �y , and �z be noncontractible
surfaces along the three directions, with the orientation of the
dual lattice (see Fig. 2). We can define the operators

Wi ≡ W [li] =
∏
j∈li

X
†
j , �i ≡ �[�i] =

∏
j∈�i

Zi, i = x,y,z.

These operators have the commutation relations

Wi�i = ω−1 �iWi, i = x,y,z. (8)

We can thus find three commuting (independent) noncon-
tractible operators to get N3 fold ground-state degeneracy. For
example, |α,β,γ 〉 = (Wx)α(Wy)β(Wz)γ |GS〉, where α,β,γ =
0, . . . ,N − 1. This basis correspond to eigenstates of the
surface operators �i |α1,α2,α3〉 = ωαi |α1,α2,α3〉. Note that
on the torus, we get the extra set of constraints

∏
s As =

1,
∏

p Bp = 1. Let G be the group generated by Bp for
all p, modulo BpBp′ = Bp′Bp, BN

p = 1 and
∏

p Bp = 1.
Furthermore, define the groups Gαβγ ≡ (Wx)α(Wy)β(Wz)γ G,
then we can write the ground states as

|α,β,γ 〉 = 1√|Gαβγ |
∑

g∈Gαβγ

|g〉,

where |g〉 ≡ g|0〉.
In 2D, the quasiparticle basis corresponds to the basis in

which there is well-defined magnetic and electric flux along
one cycle of the torus. We can try to do the same in three-
dimensions. �x , Wy , Wz all commute with each other and we
can consider the basis which diagonalizes all of them. This

basis is given by

|ψabc〉 = 1

N

∑
βγ

ω−βb−γ c|a,β,γ 〉, (9)

where a,b,c = 0, . . . ,N − 1. These are clearly eigenstates of
�x , and furthermore we have that Wy |ψabc〉 = ωb|ψabc〉 and
Wz|ψabc〉 = ωc|ψabc〉. This basis is a 3D version of minimum
entropy states (MES) [29].

3. Excitations

Now, let us go back to, say, this theory on S3 and look at
elementary excitations of our model. An excitation correspond
to a state in which the conditions (7) are violated in a small
region. Using the string operators, we can create a pair
of particles by | − qe,qe〉 = W [lab]qe |GS〉 with the electric
charges

Aa| − qe,qe〉 = ω−qe | − qe,qe〉,
Ab| − qe,qe〉 = ωqe | − qe,qe〉.

This excitation has an energy cost of �Eparticles = 2Je[1 −
cos( 2π

N
qe)]. Furthermore, we have oriented string excitations

by using the membrane operators |C,qm〉 = �[�C]qm |GS〉,
with the magnetic flux

Bp|C,qm〉 = ω±qm |C,qm〉, p ∈ C,

where the ± depend on the orientation of C. This excitation
comes with the energy penalty �Estring = Lenght(C)Jm[1 −
cos( 2π

N
qm)].

One can easily show that all the particles have trivial
self and mutual statistics, and the same with the strings.
Mutual statistics between particles and strings can be nontrivial
however, taking a charge qe particle through a flux qm string
gives the anyonic phase ω±qeqm , where the ± depend on the
orientations (see Fig. 3).

III. REPRESENTATIONS OF MCG(T 3) = SL(3,Z)

Let us now go back to T 3 and consider the universal quan-
tities as defined in (1). In the |α,β,γ 〉 basis, the representation
of the SL(3,Z) generators (2) is given by

S̃αβγ,α′β ′γ ′ = δα,β ′δβ,γ ′δγ,α′ , (10)

and

T̃αβγ,α′β ′γ ′ = δα,α′δβ,α′+β ′δγ,γ ′ . (11)

In the 3D quasiparticle basis (9), these are given by

S̃abc,āb̄c̄ = 1

N
δb,c̄e

2πi
N

(āc−ab̄), T̃abc,āb̄c̄ = δa,āδb,b̄δc,c̄e
2πi
N

ab.

For example, in the simplest case N = 2, which is the 3D Toric
code, we have

T̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
−1

1
1

1
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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FIG. 3. (Color online) String and particle excitations. The red
curve is the boundary of a membrane on the dual lattice and
correspond to a string excitation. The blue links are the ones affected
by the membrane operator and the green plaquettes are the ones on
which Bp can measure the presence of the string excitation. The green
line correspond to a string operator on the lattice, in which the end
point are particles. Mutual statistics between strings and particles can
be calculated by creating a particle-antiparticle pair from the vacuum,
moving one particle around the string excitation and annihilating the
particles.

and

S̃ = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 1 1 0 0
1 1 0 0 −1 −1 0 0
1 −1 0 0 1 −1 0 0
1 −1 0 0 −1 1 0 0
0 0 1 1 0 0 1 1
0 0 1 1 0 0 −1 −1
0 0 1 −1 0 0 1 −1
0 0 1 −1 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

1. Interpretation of T̃

These matrix elements in this particular ground-state basis,
actually contain some physical information about statistics of
excitations. In order to see this, we can associate a collection
of excitations to each ground state on the 3-torus.

First, we cut the 3-torus along the x axis such that it now has
two boundaries. We can measure the presence of excitations
on the boundary using the operators �x , Wy , and Wz. Then,
we take the state with no particle, |1〉 = 1

N

∑
βγ |β,γ 〉, in

which all operators have eigenvalue 1. Here, |β,γ 〉 are states
with β and γ noncontractible electric loops along the y

and z axes, respectively. Now, we add excitations on the
boundary using open string and membrane operators (see
Fig. 4) |ea〉 = (W [l12])a|1〉, |my,c〉 = (�[�Cy

])c|1〉, |mz,b〉 =
(�[�Cz

])b|1〉, |eamy,c〉 = (W [l12])a(�[�Cy
])c|1〉, |eamz,b〉 =

(W [l12])a(�[�Cz
])b|1〉, |my,cmz,b〉 = (�[�Cy

])c(�[�Cz
])b|1〉,

and |eamy,cmz,b〉 = (W [l12])a(�[�Cy
])c(�[�Cz

])b|1〉, where
a,b,c = 1, . . . ,N − 1, or more compactly, |eamy,cmz,b〉,
where a,b,c = 0, . . . ,N − 1. Here, l12 is a curve from one
edge to the other, �Cy

is a membrane between edges

FIG. 4. (Color online) The result of cutting open the 3-torus
along the x axis can be represented by a hollow solid cylinder where
the inner and outer surfaces are identified, but there are two boundaries
along x. In the above, the compactified direction is y and the radial
direction is z, while the open direction is x. We can see the N3 possible
excitations on the boundaries, which give rise to 3-torus ground states
upon gluing. The four first states correspond to |1〉, |ea〉, |my,c〉, and
|mz,b〉.

wrapping along the y cycle and �Cz
is a membrane be-

tween edges wrapping along z cycle. All these have the
same orientation as the (dual) lattice. These states have
well-defined electric and magnetic flux with respect to �x ,
Wy , and Wz. Here, my and mz correspond to the strings
on the boundaries, wrapping around the y and z cycles,
respectively.

If we now glue the two boundaries together, we see that for
each of these excitations, we have a 3-torus ground state:

|1〉 = |ψ000〉, |eam1,c〉 = |ψa0c〉,
|ea〉 = |ψa00〉, |eam2,b〉 = |ψab0〉,

|m1,c〉 = |ψ00c〉, |m1,cm2,b〉 = |ψ0bc〉,
|m2,b〉 = |ψ0b0〉, |eam1,cm2,b〉 = |ψabc〉.

We can add other string excitations on the boundary, however,
they will not give rise to new 3-torus ground states after gluing.
We thus see a generalization of the situation in 2D, where there
is a direct relation between number of excitation types and
GSD on the torus.

Now, let us to back to the open boundaries, and consider
making a 2π twist of one of the boundaries, which will
give some kind of 3D analog of topological spin. It can
be seen that most states will be invariant under such an
operation by appropriately deforming and reconnecting the
string and membrane operators. For example, |ea〉 → |ea〉,
which implies that the particles ea are bosons. However,
we pick up a factor of ωab for |eam2,b〉 and |eam1,cm2,b〉,
since the string corresponding to particle ea has to cross
the membrane corresponding to m2,b. Physically, this is a
consequence of mutual statistics of the particle and string
excitation. We can consider these as 3D analog of topological
spin.
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FIG. 5. (Color online) The Dehn twist T̃ is along the x-y plane,
thus it is natural to think of T 3 as a solid hollow 2-torus where the
inner and outer boundaries are identified, here the thickened direction
is z. In this picture, we can think of T̃ just as a usual Dehn twist of a
2-torus.

Now notice that this operation precisely corresponds to
the T̃ Dehn twist on the 3-torus by gluing the boundaries
(see Fig. 5). Thus T̃ , as calculated from the ground state,
should contain information about statistics of excitations.
Writing T̃abc,āb̄c̄ = δa,āδb,b̄δc,c̄e

2πi
N

ab ≡ δa,āδb,b̄δc,c̄T̃abc, we get
the following 3D topological spins:

T̃1 = T̃000 = 1, T̃ea
= T̃a00 = 1,

T̃m1,c
= T̃00c = 1, T̃m2,b

= T̃0b0 = 1,

T̃eam1,c
= T̃a0c = 1, T̃eam2,b

= T̃ab0 = e
2πi
N

ab,

T̃m1,cm2,b
= T̃0bc = 1, T̃eam1,cm2,b

= T̃abc = e
2πi
N

ab.

This exactly match the properties of the excitations. Thus
the universal quantity T̃ calculated from the ground state
alone, contain direct physical information about statistics of
excitations in the system. Note that elements like T̃m1,cm2,b

can be nontrivial in theories with nontrivial string-string
statistics.

2. 3D → 2D dimensional reduction

We can actually relate these universal quantities to the well-
known S and T matrices in two dimensions. Consider now the
SL(2,Z) subgroup of SL(3,Z) generated by

T̂ yx ≡
⎛
⎝1 0 0

1 1 0
0 0 1

⎞
⎠ and Ŝyx ≡

⎛
⎝ 0 1 0

−1 0 0
0 0 1

⎞
⎠. (12)

One can directly compute the representation of this subgroup
for the above ZN model, which is given by

S
yx

abc,āb̄c̄
= 1

N
δc,c̄e

− 2πi
N

(ab̄+āb), T
yx

abc,āb̄c̄
= δa,āδb,b̄δc,c̄e

2πi
N

ab.

Note that S3D
ZN

= ⊕N
n=1 S2D

ZN
and T 3D

ZN
= ⊕N

n=1 T 2D
ZN

. In partic-
ular, for the toric code N = 2, we have

Syx = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

T yx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
−1

1
1

1
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

These N blocks are distinguished by eigenvalues of Wz.
Consider the 2D limit of the three-dimensional ZN model
where the x and y directions are taken to be very large
compared to the z direction. In this limit, a noncontractible
loop along the z cycle becomes very small and the following
perturbation is essentially local:

H = H3D,ZN
− Jz

2
(Wz + W †

z ), (13)

where Wz creates a loop along z. Since this perturbation com-
mutes with the original Hamiltonian, besides the conditions (7)
the ground state must also satisfy Wz|GS〉 = |GS〉. Thus the
N3-fold degeneracy is not stable in the 2D limit and the N2

remaining ground states are now |2D,a,b〉 ≡ |ψab0〉. The gap
to the state |ψabc〉 is �Ec = Jc[1 − cos( 2π

N
c)].

It is easy to see that Syx and Tyx on this set of ground states
exactly correspond the two dimensional ZN modular matrices
and can be used to construct the corresponding UMTC. Thus
the 3DZN model and our universal quantities exactly reduce to
the 2D versions in this limit. Furthermore, the 3D quasiparticle
basis also directly reduce to the 2D quasiparticle basis.

IV. QUANTUM DOUBLE MODELS IN THREE
DIMENSIONS

In this section, we will construct exactly soluble models in
three-dimensions for any finite group G. These are nothing
but a natural generalization of Kitaev’s quantum double
models [25] to three dimensions and are closely related to
discrete gauge theories with gauge group G. These models will
have the above ZN models as a special case, but formulated in
a slightly different way.

Consider a simple cubic lattice [30] with the orientation
used above. Let there be a Hilbert space Hl ≈ C[G] on
each link l, where G is a finite group, and let there be
an isomorphism Hl

∼→ Hl� for the link l and its reverse
orientation l� as |gl〉 �→ |gl�〉 = |g−1

l 〉. Furthermore, let the
natural basis of the group algebra be orthonormal. The
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following local operators will be useful:

L
g
+|z〉 = |gz〉, T h

+|z〉 = δh,z|z〉,
L

g
−|z〉 = |zg−1〉, T h

−|z〉 = δh−1,z|z〉.
To each two-dimensional plaquette p, associate an orientation
with respect to to the lattice orientation using the right-hand
rule. For such a plaquette, define the following operator:

Bh(p)

zD

zL

zU

zRp = δzU z−1
R z−1

D zL,h

zD

zL

zU

zRp ,

and similar for other orientations of plaquettes. Note that the
order of the product is important for non-Abelian groups. To
each lattice site s, define the operator

Ag(s) =
∏
l−

L
g
−(l−)

∏
l+

L
g
+(l+),

where l− are the set of links pointing into s while l+ are the
links pointing away from s. In particular, we have that

Ag(s)

z1

z2

x1 x2

y2

y1

s =

z1g
−1

gz2

x1g
−1 gx2

gy2

y1g
−1

s
.

From these, we have two important operators:

A(s) = 1

|G|
∑
g∈G

Ag(s),

and B(p) ≡ B1(p), where 1 ∈ G is the identity element. One
can show that both these operators are hermitian projectors.
Furthermore, one can check that they all commute together:

[A(s),B(p)] = 0, ∀s,p,

[B(p),B(p′)] = 0, ∀p,p′,

[A(s),A(s ′)] = 0, ∀s,s ′.

We can now define the Hamiltonian of the three-dimensional
quantum double model as

H = −Je

∑
s

A(s) − Jm

∑
p

B(p). (14)

Since the Hamiltonian is just a sum of commuting projectors,
the ground states of the system must satisfy

A(s)|GS〉 = B(p)|GS〉 = |GS〉,
for all s and p. The ground state can be constructed using the
following hermitian projector ρGS = ∏

s A(s)
∏

p B(p). If we
take as reference state |1〉 = |1l1 1l2 . . . 〉, we can write

|GS〉 = ρGS|1〉 =
∏

s

A(s)|1〉.

A. Ground states on T 3

The easiest way to construct the ground states on the three-
torus is to consider the minimal torus, which is just a single

cube where the boundaries are identified. The minimal torus
has one site s

a

a

b b

c

c

s

and three plaquettes p1, p2, p3

b

a

b

ap1

c

a

c

ap2

c

c

b

ap3

One can readily show that the subspace HB=1 satisfying

B(p)|GS〉 != |GS〉 for p = p1,p2,p3, is spanned by the vectors
|a,b,c〉 such that ab = ba, bc = cb, and ac = ca. The last
condition is A(s)|GS〉 = |GS〉, where on the basis vectors,

A(s)|a,b,c〉 = 1

|G|
∑
g∈G

|gag−1,gbg−1,gcg−1〉.

In the case of Abelian groups G, this condition is clearly trivial
and then we have GSD = |G|3. In general, we can find the
ground-state degeneracy by taking the trace of the projector
A(s) in HB=1. This is given by

GSD =
∑

{a,b,c}
〈a,b,c|A(s)|a,b,c〉

= 1

|G|
∑
g∈G

∑
{a,b,c}

δag,gaδbg,gbδcg,gc,

where {a,b,c} is triplets of commuting group elements. One
can actually easily check that the following vectors span the
ground-state subspace:

|ψ[a,b,c]〉 = 1

|G|
∑
g∈G

|gag−1,gbg−1,gcg−1〉, (15)

where [a,b,c] = {(ã,b̃,c̃) ∈ G × G × G | (ã,b̃,c̃) = (gag−1,

gbg−1,gcg−1),g ∈ G} is the three-element conjugacy class
and a,b,c are representatives of the class.

B. 3D S̃ and T̃ matrices and the SL(2,Z) subgroup

We can now readily compute the overlaps (1) for the above
model for any group G. We find the following representations
of MCG(T 3) = SL(3,Z):

S̃[a,b,c],[ā,b̄,c̄] = 〈ψ[a,b,c]| S̃ |ψ[ā,b̄,c̄]〉 = δ[a,b,c],[b̄,c̄,ā]

and

T̃[a,b,c],[ā,b̄,c̄] = 〈ψ[a,b,c]| T̃ |ψ[ā,b̄,c̄]〉 = δ[a,b,c],[ā,āb̄,c̄],

since S̃|ψ[a,b,c]〉 = |ψ[b,c,a]〉 and T̃ |ψ[a,b,c]〉 = |ψ[a,ab,c]〉.
Once again we can consider the subgroup SL(2,Z) ⊂

SL(3,Z) generated by (12). The representation of this sub-
group can be directly computed and is given by

S
yx

[a,b,c],[ā,b̄,c̄] = 〈ψ[a,b,c]| Syx |ψ[ā,b̄,c̄]〉 = δ[a,b,c],[b̄,ā−1,c̄]
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and

T
yx

[a,b,c],[ā,b̄,c̄] = 〈ψ[a,b,c]| T yx |ψ[ā,b̄,c̄]〉 = δ[a,b,c],[ā,āb̄,c̄].

Note that since c is not independent of a and b, in general we
do not have the decomposition S3D

G = ⊕|G|
n=1 S2D

G and T 3D
G =⊕|G|

n=1 T 2D
G , unless the group is Abelian.

C. Branching rules and dimensional reduction

With the above formulas, we can directly compute the S̃ and
T̃ generators for any group G. In the limit where one direction
of the 3-torus is taken to be very small, we can view the 3D
topological order as several 2D topological orders.

The branching rules 3 for the dimensional reduction can
be directly computed by studying how a representation of
SL(3,Z) decomposes into representations of the subgroup
SL(2,Z) ⊂ SL(3,Z). For example, for some of the simplest
non-Abelian finite groups, we find the branching rules

C3D
S3

= C2D
S3

⊕ C2D
Z3

⊕ C2D
Z2

,

C3D
D4

= 2 C2D
D4

⊕ 2 C2D
D2

⊕ C2D
Z4

,

C3D
D5

= C2D
D5

⊕ 2 C2D
Z5

⊕ C2D
Z2

,

C3D
S4

= C2D
S4

⊕ C2D
D4

⊕ C2D
D2

⊕ C2D
Z4

⊕ C2D
Z3

.

In general, we find the following branching in the dimensional
reduction C3D

G = ⊕
C C2D

GC
, where

⊕
C sums over all different

conjugacy classes C of G, and GC is the centralizer subgroup
of G for some representative gC ∈ C. Similar to the G = ZN

case above (13), the degeneracy between the different sectors
can be lifted by a perturbation creating Wilson loops along the
small noncontractible cycle of T 3, which is essentially a local
perturbation in the 2D limit.

We like to remark that the above branching result for dimen-
sional reduction can be understood from a “gauge symmetry
breaking” point of view. In the dimensional reduction, we can
choose to insert gauge flux through the small compactified
circle. The different choices of the gauge flux is given by the
conjugacy classes C of G. Such gauge flux break the “gauge
symmetry” from G to GC . So, such a compactification leads
to a 2D gauge theory with gauge group GC and reduces the
3D topological order C3D

G to a 2D topological order C2D
GC

. The
different choices of gauge flux lead to different degenerate 2D
topological ordered states, each described by C2D

GC
for a certain

GC . This gives us the result (6). It is quite interesting to see

that the branching 4 of the representation of the mapping class
group SL(3,Z) → SL(2,Z) is closely related to the “gauge
symmetry breaking” in our examples. In order to gain a better
understanding of the information contained in these branching
rules, we will consider a simple example.

V. EXAMPLE: G = S3

A. Two-dimensional D(S3)

Let us consider the simplest non-Abelian group G = S3. Let
us first recall the 2D quantum double models. The excitations
of these models are given by irreducible representations of
the Drinfeld quantum double D(G). The states can be labeled
by |C,ρ〉, where C denote a conjugacy class of G, while ρ

is a representation of the centralizer subgroup GC ≡ Z(a) =
{g ∈ G|ag = ga} of some element in a ∈ C [note that Z(a) ≈
Z(gag−1)].

The symmetric group G = S3 consists of the elements
{(),(23),(12),(123),(132),(13)}, where (. . . ) is the standard
notation for cycles (cyclic permutations). There are three
conjugacy classes A = {()}, B = {(12),(13),(23)}, and C =
{(123),(132)}, with the corresponding centralizer subgroups
GA = S3, GB = Z2, GC = Z3. The number of irreducible
representations for each group is equal to the number of
conjugacy classes, 3 for GA and GC while 2 for GB . For
simplicity, we will label the particles corresponding to the
three different conjugacy classes by (1,A1,A2), (B,B1), and
(C,C1,C2). Here, the particles without a superscript, B and
C, are pure fluxes (trivial representation), A1 and A2 are
pure charges (trivial conjugacy class), while B1, C1 and
C2 are charge-flux composites. The fusion rules for the
two-dimensional D(S3) model is given in Table I.

B. Three-dimensional G = S3 model

In three dimensions, the S3 model has two pointlike
topological excitations, which are pure charge excitations
that can be labeled by A1

3D and A2
3D. Here, A1 is the

one-dimensional irreducible representation of S3 and A2 the
two-dimensional irreducible representation of S3. Under the
dimensional reduction to 2D, they become the 2D charge
particles labeled by A1 and A2. The S3 model also has two
string-like topological excitations, labeled by the nontrivial
conjugacy classes B3D and C3D. Under the dimensional
reduction to 2D, they become the 2D particles with pure

TABLE I. Fusion rules of two-dimensional D(S3) model. Here, B and C correspond to pure flux excitations, A1 and A2 pure charge
excitations, 1 the vacuum sector while B1, C1, and C2 are charge-flux composites. If we add the subscript 3D, the table becomes a list of the
3D particle/string excitations, and their fusion rules.

⊗ 1 A1 A2 B B1 C C1 C2

1 1 A1 A2 B B1 C C1 C2

A1 A1 1 A2 B1 B C C1 C2

A2 A2 A2 1 ⊕ A1 ⊕ A2 B ⊕ B1 B ⊕ B1 C1 ⊕ C2 C ⊕ C2 C ⊕ C1

B B B1 B ⊕ B1 1 ⊕ A2 ⊕ C ⊕ C1 ⊕ C2 A1 ⊕ A2 ⊕ C ⊕ C1 ⊕ C2 B ⊕ B1 B ⊕ B1 B ⊕ B1

B1 B1 B B ⊕ B1 A1 ⊕ A2 ⊕ C ⊕ C1 ⊕ C2 1 ⊕ A2 ⊕ C ⊕ C1 ⊕ C2 B ⊕ B1 B ⊕ B1 B ⊕ B1

C C C C1 ⊕ C2 B ⊕ B1 B ⊕ B1 1 ⊕ A1 ⊕ C C2 ⊕ A2 C1 ⊕ A2

C1 C1 C1 C ⊕ C2 B ⊕ B1 B ⊕ B1 C2 ⊕ A2 1 ⊕ A1 ⊕ C1 C ⊕ A2

C2 C2 C2 C ⊕ C1 B ⊕ B1 B ⊕ B1 C1 ⊕ A2 C ⊕ A2 1 ⊕ A1 ⊕ C2
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TABLE II. The situation of Fig. 6, where strings are wrapped
around another string of type a = A,B,C. Depending on a, fusion
algebra and braiding statistics of each string will be related to
a particle of some 2D topological order, as computed from the
branching rules (6). See the text for more details.

a A B C

Symmetry breaking S3 → S3 S3 → Z2 S3 → Z3

13D → 1 1 1

A1
3D → A1 e 1

A2
3D → A2 1 ⊕ e e1 ⊕ e2

B3D → B m -

B1
3D → B1 em -

C3D → C - m1 ⊕ m2

C1
3D → C1 - e1m1 ⊕ e1m2

C2
3D → C2 - e2m1 ⊕ e2m2

fluxes described by B and C. (For details, see the discussion
below.) We can also add a 3D charged particle to a 3D string
and obtain a so called mixed string-charge excitation. Those
mixed string-charge excitations are labeled by B1

3D, C2
3D, and

C3
3D, and, under the dimensional reduction, become the 2D

particles B1, C2, and C3 (see Table I). We like to remark that,
since a 3D string carries gauge flux described by a conjugacy
class B or C, the S3 “gauge symmetry” is broken down to
GB = Z2 on the B3D string, and down to GC = Z3 on the C3D

string.
Under the symmetry breaking S3 → Z2, the two irreducible

representations A1 and A2 of S3 reduce to the irreducible
representations 1 and e of Z2: A1 → e and A2 → 1 ⊕ e.
Thus fusing the S3 charge A1

3D to a B3D string give us
the mixed string-charge excitation B1

3D, but fusing the S3

charge A2
3D to a B3D string gives us a composite mixed

string-charge excitation B3D ⊕ B1
3D. (The physical meaning of

the composite topological excitations B3D ⊕ B1
3D is explained

in Ref. [31].) So fusing the two nontrivial S3 charges to a B3D

string only give us one mixed string-charge excitation B1
3D.

Under the symmetry breaking S3 → Z3, the two irreducible
representations A1 and A2 of S3 reduce to the irreducible
representations 1, e1 and e2 of Z3: A1 → 1 and A2 → e1 ⊕ e2.
Thus fusing the S3 charge A1 to a C3D string still gives us the
string excitation C3D. However, fusing the S3 charge A2

3D to a
C3D string gives us a composite mixed string-charge excitation
C1

3D ⊕ C2
3D. So fusing the two nontrivial S3 charges to a C

string give us two mixed string-charge excitations C1
3D and

C2
3D. We see that the fusion between point S3 charges and

the strings is consistent with fusion of the corresponding 2D
particles. See Table II for an overview of the above discussion.

Fusion and braiding of strings

Now, we would like to understand the fusion and braiding
properties of the 3D strings B3D and C3D. To do that, let us con-
sider the dimension reduction C3D

S3
= C2D

S3
⊕ C2D

Z3
⊕ C2D

Z2
. Let us

choose the gauge flux through the small compactified circle to
be B. In this case, C3D

S3
→ C2D

Z2
. C2D

Z2
is a Z2 topological order

in 2D and contains four particle-like topological excitations 1,
e, m,f , where 1 is the trivial excitations. e is the Z2 charge

FIG. 6. Three string configuration where two loops of type b and
c are threaded by a string of type a.

and m the Z2 vortex, which are both bosons. f is the bound
state of e and m which is a fermion. The trivial 2D excitation
1 comes from the trivial 3D excitation 13D, and the Z2 charge
e comes from the 3D charge excitation A1. The 3D string
excitations B and B1, wrapping around the small compactified
circle, give rise to two particlelike excitations in 2D—the Z2

vortex m and the fermion f . In the dimensional reduction,
the gauge flux B through the small compactified circle forbids
the 3D string excitations C3D, C1

3D, and C2
3D to wrap around the

small compactified circle. So there is no 2D excitations that
correspond to the 3D string excitations C3D, C1

3D, and C2
3D.

Because of the symmetry breaking S3 → Z2 caused by the
gauge flux B, the 3D particle A2

3D reduces to 1 ⊕ e in 2D.
The above results have a 3D understanding. Let us consider

the situation where two loops, b and c, are threaded by string
a (see Fig. 6). If the a string is the type-B3D string, then the b

and c strings must also be the type-B3D string. So the type B3D

string in the center forbids the 3D strings C3D, C1
3D, and C2

3D
to loop around it. This is just like the gauge flux B through
the small compactified circle forbids the 3D string excitations
C3D, C1

3D, and C2
3D to wrap around the small compactified

circle. So the type-B3D string in the center corresponds to the
gauge flux B through the small compactified circle.

The fusion and braiding of the 2D particle e is very simple:
it is a boson with fusion e ⊗ e = 1. This is consistent with the
fact that the corresponding 3D particle A1

3D is a boson with
fusion A1

3D ⊗ A1
3D = 13D. The fusion and braiding of the 2D

particle m is also very simple, since it is also a boson m ⊗ m =
1. This suggests that the 3D type-B3D string excitations has a
simple fusion and braiding property, provided that those 3D
string excitations are threaded by a type-B3D string going
through their center (see Fig. 6). For example, from the 2D
fusion rule m ⊗ m = 1, we find that the fusion of two type-B3D

loops give rise to a trivial string:

B3D ⊗ B3D = 13D. (16)

As suggested by the 2D braiding of two m particles, when
a type-B3D string going around another type-B3D string, the
induced phase is zero (i.e., the mutual braiding “statistics” is
trivial).

Similarly, we can choose the gauge flux through the small
compactified circle to be C. In this case, C3D

S3
→ C2D

Z3
, and C2D

Z3

is a Z3 topological order in 2D, which has nine particle types:
1, e1, e2, m1, m2, eimj |i,j=1,2. In this case, the gauge flux
C through the small compactified circle forbids the 3D string
excitations B3D and B1

3D to wrap around the small compactified
circle. So there is no 2D excitations that correspond to the 3D
string excitations B3D and B1

3D. The 3D string excitation C3D

wrapping around the small compactified circle gives rise to a
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compositeZ3 vortex m1 ⊕ m2 in 2D. (This is because there are
two nontrivial group elements in S3 that commute with a group
element in the conjugacy class C). Also, from the S3 → Z3

symmetry breaking: A1 → 1 and A2 → e1 ⊕ e2, we see that
the 3D A1

3D charge reduces to type-1 particle in 2D, and the
3D A2

3D charge reduce to a composite particle e1 ⊕ e2 in 2D.
The fusion of the composite 2D particle c = m1 ⊕ m2 is

given by

c ⊗ c = 21 ⊕ c. (17)

This leads to the corresponding fusion rule for the 3D type-C3D

loops

C3D ⊗ C3D = 213D ⊕ C3D or 13D ⊕ A1
3D ⊕ C3D, (18)

provided that those 3D loops are threaded by a type-C3D string
going through their center (see Fig. 6). (The ambiguity arises
because the 3D charge A1

3D reduces to 1 in 2D.)
Now, let us choose the gauge flux through the small

compactified circle to be trivial. In this case C3D
S3

→ C2D
S3

, which
has eight particle types: 1, A1, A2, B, B1, C, C1, C2. The
3D string excitation B3D and C3D wrapping around the small
compactified circle gives rise to the 2D excitation B and C.
The fusion of the 2D particle C is given by

C ⊗ C = 1 ⊕ A1 ⊕ C. (19)

This leads to the corresponding fusion rule for the 3D type-C3D

loops:

C3D ⊗ C3D = 13D ⊕ A1
3D ⊕ C3D, (20)

provided that those 3D loops are not threaded by any nontrivial
string. The above fusion rule implies that when we fusion two
C3D loops, we obtain three accidentally degenerate states: the
first one is a nontopological excitation, the second one is a S3

charge A1
3D, and the third one is a S3 string C3D.

Similarly, the fusion of the 2D particle B is given by

B ⊗ B = 1 ⊕ A2 ⊕ C ⊕ C1 ⊕ C2. (21)

This leads to the corresponding fusion rule for the 3D type-B3D

loops

B3D ⊗ B3D = 13D ⊕ A2
3D ⊕ C3D ⊕ C1

3D ⊕ C2
3D. (22)

This way, we can obtain the fusion algebra between all the 3D
excitations A1

3D, A2
3D, B3D, B1

3D, C3D, C1
3D, C2

3D (see Table I).
On the other hand, since the above 3D string loops are not

threaded by any nontrivial string, we can shrink a single loop
into a point. So we should be able to compute the fusion of 3D
loops by shrinking them into points. Mathematically, we will
define the shrinking operation S that describes the shrinking
process of loops.

Let E denote the set of 3D particles and string excitations.
We would like to make sure that the shrinking operation is
consistent with the fusion rules, i.e., S(a ⊗ b) = S(a) ⊗ S(b)
for a,b ∈ E . One can indeed check that this is the case for the
following shrinking operations:

S(C3D) = 13D ⊕ A1
3D, S

(
C1

3D

) = A2
3D, S

(
C2

3D

) = A2
3D,

S(B3D) = 13D ⊕ A2
3D, S

(
B1

3D

) = A1
3D ⊕ A2

3D.

So indeed, we can compute the fusion of 3D loops by
shrinking them into points. In particular, we find that the

topological degeneracy for N type-C3D loops is 2N/2. The
topological degeneracy for two type-B3D loops is 2.
The topological degeneracy for N type-B3D loops is of order
3N in large N limit.

The above example suggests the following. Given a topo-
logical order in 3D, C3D, one may want to consider the situation
illustrated in Fig. 6 where two loops b and c are threaded with a
string a, and ask about the three-string braiding statistics. One
way to compute this is to put the system on a 3-torus and com-
pute the quantities (1), which give rise to a SL(3,Z) representa-
tion. Then by finding the branching rules of this representation
with respect to to the subgroup SL(2,Z) ⊂ SL(3Z), one finds
how the systems decompose in the 2D limit C3D = ⊕

i C2D
i ,

where there will be a sector i for each string type. The
three-string statistics with string a in the middle, will be
related to the 2D topological order C2D

a . To summarize, (1) the
representation branching rule 4 for SL(3,Z) → SL(2,Z) leads
to the dimension reduction branching rule 3. (2) The number
of the SL(2,Z) representations (or the number of induced 2D
topological orders) is equal to the number of 3D string types in
the 3D topological order C3D. (3) The SL(2,Z) representations
also contains information about two-string/three-string fusion,
as described by Eqs. (16), (18), (20), and (22). The two-
string/three-string braiding can be obtained directly from the
correspond 2D braiding of the corresponding particles.

VI. SOME GENERAL CONSIDERATIONS

To calculate the braiding statistics of strings and particles,
we first need to know the topological degeneracy D in the
presence of strings and particles before they braid. This is
because the unitary matrix that describe the braiding is D by
D matrix. To compute the topological degeneracy D, we need
to know the topological types of strings and the particles since
the topological degeneracy D depends on those types.

We have seen that, from the branching rules of SL(3,Z)
representation under SL(3,Z) → SL(2,Z) [see Eq. (4)], we
can obtain the number of the string types. How to obtain the
number of the particle types?

To compute the number of the particle types, we start with
a 3D sphere S3, and then remove two small balls from it.
The remaining 3D sphere will have two S2 surfaces. This
two surfaces may surround a particle and antiparticle. So the
number of the particle types can be obtained by calculating the
ground-state degeneracy. However, there is one problem with
this approach, the two surfaces may carry gapless boundary
excitations or some irrelevant symmetry breaking states.

To fix this problem, we note that the 3D space S2 × I

also have have two S2 surfaces, where I is the 1D segment:
I = [0,1]. We can glue the space S2 × I onto the 3D sphere
S3 with two balls removed, along the two 2D spheres S2.
The resulting space is S2 × S1. This way, we show that the
topological degeneracy on S2 × S1 is equal to the number of
the particle types.

For the gauge theory of finite gauge group G, the topo-
logically degenerate ground states on S2 × S1 are labeled by
the group elements g ∈ G (which describe the monodromy
along the noncontractible loop in S2 × S1), but not in an
one-to-one fashion. Two elements g and g′ = h−1gh label
the same ground state since g and g′ are related by a gauge

075114-9



HEIDAR MORADI AND XIAO-GANG WEN PHYSICAL REVIEW B 91, 075114 (2015)

transformation. So the topological degeneracy on S2 × S1 is
equal to the number of conjugacy classes of G. The number
of conjugacy classes is equal to the number of irreducible
representations of G, which is also the number of the particle
types, a well-known result for gauge theory. Once we know the
types of particles and strings, the simple fusion and braiding
of those excitations can be obtained from the dimensional
reduction as described in this paper.

VII. CONCLUSION

In a recent work Ref. [19], we proposed that for a gapped
d-dimensional theory on a manifold M, the overlaps (1) give
rise to a representation of MCG(M) and that these are robust
against any local perturbation that do not close the energy
gap. In this paper, we studied a simple class of ZN models
on M = T 3 and computed the corresponding representations
of MCG(T 3) = SL(3,Z). We argued that, similar to in 2D, the
T̃ generator contains information about particle and string
excitations above the ground state, although computed from
the ground states. In an independent work Ref. [21], the authors
studied the matrices (1) using some Abelian models on T 3.
They argued that the generator S̃ contains information about
braiding processes involving three loops.

Furthermore, we studied a dimensional reduction process
in which the 3D topological order can be viewed as several
2D topological orders C3D = ⊕

i C2D
i . This decomposition can

be computed from branching rules of a SL(3,Z) representa-
tion into representations of a SL(2,Z) ⊂ SL(3,Z) subgroup.
Interestingly, this reduction encodes all the information about
three-string statistics discussed in Ref. [20] for Abelian groups.
This approach, however, also provide information about fusion
and braiding statistics of non-Abelian string excitations in
3D.

We also discussed how to obtain information about particles
by putting the theory on S2 × S1. All this lends support for our
conjecture [19], that the overlaps (1) for different manifold
topologies M, completely characterize topological order with
finite ground-state degeneracy in any dimension.
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