
PHYSICAL REVIEW B 91, 075110 (2015)

Large-amplitude spin oscillations triggered by nonequilibrium strongly correlated t2g electrons
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Laser-induced ultrafast (fs) magnetization experiments in antiferromagnets have recently attracted large
attention, paving the road for inherently fast spin dynamics in the THz regime without invoking stray fields.
The technical importance is emphasized by the rising new research field of antiferromagnetic (AFM) spintronics,
where superexchange-dominated strongly correlated compounds provide an interesting materials playground. An
intriguing question is whether the Coulomb interaction may be a key to control AFM order on ultrafast time scales.
Therefore, we study (de)magnetization processes in a time-dependent multiorbital Hubbard model, focusing on
t2g electrons in a wider doping range. Depending on filling, we reveal large-amplitude spin oscillations via
interaction quenches from the antiferromagnetic or paramagnetic state. Nonequilibrium ultrafast spin-orientation
effects in prominent correlated transition-metal oxides are therefrom predicted.
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I. INTRODUCTION

Since the discovery of ultrafast demagnetization of ferro-
magnetic (FM) Ni by a 60-fs laser pulse [1], multiple experi-
mental studies have studied similar magnetization dynamics in
ferromagnets [2–5]. A focus lies on switching spin orientations
in a deterministic way on shortest (femtosecond) time scales.
This is critical for data storage as it sets the bit-recording
time limit in magnetic memory devices [6]. Many theoretical
mechanisms have been proposed to explain the ultrafast
demagnetization and a way to control FM order. These include
the Elliot-Yafet mechanism [7,8], superdiffusive spin transport
[9], and processes driven by the Coulomb interaction [10].

The latter plays the dominant role in equilibrium strongly
correlated materials, often leading to antiferromagnetic (AFM)
order via superexchange. Notably for compounds harboring
transition-metal ions with 3d shells close to half-filling. In
this context, the spintronics of AFM systems is a rising
focus in the research on nonequilibrium systems [11–14]. It
offers inherently faster processes with spin dynamics in the
THz regime [15–17]. Such has been investigated in the fully
compensated (S(tot) = 0), strongly correlated antiferromagnets
NiO [16,18,19] and MnO [17] as well as the rare-earth
orthoferrites [2–4,20]. Finally, the exchange-bias effect [21]
can in principle be used to employ ultrafast control of FM
order by manipulating the magnetic state of an adjacent
antiferromagnet [22]. It is important to know whether the AFM
ordering especially in correlated materials can be controlled
via general mechanisms, not readily accessible by weak-
coupling approaches.

Here, we indeed show that Coulomb interactions in a mul-
tiorbital system lead upon laser excitation to large-amplitude
oscillations of the AFM order parameter. This behavior is
evoked by tuning the initial magnetic ground state as well
as the excitation strength. With the generic model study
we aim at a broad materials class of correlated transition-
metal oxides with dominant t2g physics from N electrons.
For instance, high-Néel-temperature SrTcO3 [23] (half-filled
N = 3), nearly AFM SrCrO3 [24] (N = 2), and paramagnetic
(PM) Sr2MoO4 [25] (N = 2). These t2g materials are subject
to peculiar effects of strong correlations, driven not only by
an Hubbard U but notably a relevant Hund’s exchange JH

[23,26–28]. Using a generic multiband Hubbard model, we
show that those Coulomb interactions are also the key players
concerning nonequilibrium magnetism on the few-hundred fs
time scale. As we are aiming here for general implications
with materials-realistic fillings, an orbital-degenerate study
is performed. Note that experiments in fact put SrCrO3 and
Sr2MoO4 in this category of vanishing crystal field within the
t2g manifold [24,29]. Our results reveal an inherent connection
between (transient) oscillatory behavior and the proximity of
the excited state to an equilibrium AFM-PM phase boundary.

II. THEORETICAL FRAMEWORK

This study focuses on interacting t2g electrons within a
model context. Our three-band Hubbard Hamiltonian on the
simple-cubic lattice uses a nearest-neighbor (NN) hopping th
and full rotational-invariant Coulomb interactions in Slater-
Kanamori parametrization, i.e., utilizing Hubbard U and
Hund’s exchange JH. In the following, the half-bandwidth D

sets the energy scale. The complete Hamiltonian H reads as

H = −th
∑

〈i,j〉pσ

(c†ipσ cjpσ + H.c.) +
∑

i

Hloc
i , (1)

with the interaction term on each site written as

Hloc
i = U

∑

p

np↑np↓

+ 1

2

∑

p �=p′,σ

{(U − 2JH) npσ np′σ̄ + (U − 3JH) npσ np′σ

+ JH(c†pσ c
†
p′σ̄ cpσ̄ cp′σ + c†pσ c

†
pσ̄ cp′σ̄ cp′σ )}

= (U−3JH)
N̂(N̂ − 1)

2
+5

2
JHN̂ − 2JH �S2 − 1

2
JH �L2. (2)

Here, the indices p,p′ = 1,2,3 are labeling t2g orbitals and
σ =↑, ↓ is the spin projection. The quantities N̂ , �S, and �L
mark the particle, spin, and angular-momentum operator. This
renders the local symmetries L2, S2, and Sz obvious in the
given model representation.

The equilibrium interacting problem is solved within
rotational-invariant slave-boson mean-field theory (SBMFT)
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[30,31], with the same level of approximation as a corre-
sponding Gutzwiller formulation [32]. Out of equilibrium,
the time-dependent (TD) extension to SBMFT is applied
[33,34], which is tailored to the short-time dynamics with
and without magnetic order [33,35,36]. It may address the
correlated metallic as well as the Mott-insulating state in
the nonequilibrium regime. Qualitatively, the same physics
as more advanced full Keldysh-contour schemes [37,38] is
reproduced, aside from general aspects of thermalization.

For the dynamic regime, an SBMFT determined equilib-
rium solution from free-energy considerations sets the stage.
Afterwards, we propagate the equilibrium solution with a
TD Hamiltonian. The condensed slave bosons φ become
time dependent and the following set of nonlinear differential
equations (site index i suppressed) is numerically solved:

ı
∂νk

aα

∂t
=

∑

β

H̃ k
αβνk

aβ, H̃ k
αβ =

∑

α′β ′
R

†
αα′ε

k
α′β ′Rβ ′β, (3)

ı
∂φAB

∂t
=

∑

C

Hloc
ACφCB +

occ∑

kb

∑

αβ

ν∗k
bα

∂H̃ k
αβ

∂φ
†
AB

νk
bβ . (4)

In these equations, a,b label eigenvalues, νk eigenstates of
H̃ [φ] in momentum (k) space, A,B,C denote the local basis
states, and α,β the orbital-spin combination. The dispersion εk

results from the Fourier transform of the NN-hopping kinetic
term of Eq. (1). A numerical solution of Eqs. (3) and (4) is
achieved by using an adaptive Runge-Kutta scheme of order
6(5) [39].

The laser excitation (sufficiently short regarding pulse
width) is modeled by an interaction quench. This is realized
by choosing an initial Ui (t = 0) and a final Uf (t > 0).
The ratio q ≡ JH/U is kept fixed, i.e., q = qi = qf . Surely,
an interaction quench does not cover all the details of a
realistic laser-excitation process, and other approximative
TD Hamiltonians are conceivable. But, the present choice is
suitable to reveal the key effects occurring in the short-time
regime of correlated multiorbital magnetization dynamics. Our
filling N is defined as t2g electrons per site in a two-site
unit cell, i.e., N = 3 marks half-filling. Due to the absence
of crystal-field splitting, the magnetic moment m is orbitally
degenerate and here given per orbital and per site in units of
2μB . Note that recent work by Sandri et al. [35] showed that
the present formalism addresses the AFM-to-PM transition
in an interaction quench of the one-band Hubbard model
qualitatively correct compared to more elaborate schemes [38].
This provides strong confidence that the method performs also
well for the more challenging multiorbital problem at hand.

III. RESULTS

A. Equilibrium case

Before entering the nonequilibrium regime, we recap rele-
vant characteristics of the equilibrium problem. The magnetic
phase diagram with hole doping from SBMFT for q = 0.2
shown in Fig. 1 displays a PM phase for small U and an
AFM/FM phase at lower/higher doping for larger U . Within
dynamical mean-field theory (DMFT) using a continuous-time
quantum Monte Carlo (CT-QMC) solver, Chan et al. [43]
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FIG. 1. (Color online) Equilibrium SBMFT magnetic phase di-
agram for the hole-doped three-band Hubbard model on the cubic
lattice with q = 0.2. Black crosses mark for comparison stable AFM
solutions within DMFT using a CT-QMC impurity solver [40–42] at
βth = 50 and q = 0.167 (see text).

found no AFM order away from half-filling on the Bethe lattice
for q = 0.167 at βth = 50 (β is inverse temperature). But, our
comparative DMFT computations with same parameter setting
on the cubic lattice reveals indeed stable antiferromagnetism
for moderate doping (see Appendix).

It is known that the impact of the Hund’s exchange is a key
feature for PM ground states in the doped three-band Hubbard
model [26]. In Fig. 2, this so-called Janus-faced influence is
clearly seen for the filling N = 2. There, for larger JH the
correlation strength is increased at smaller U , but the Mott
transition is shifted to much larger U . However, note that in this
work the nonequilibrium study is restricted to Uf � 2.0, as this
is the equilibrium interaction region where the AFM ground
state is stable over a broad region of filling N (2.2 � N �
3.0). Thus, there is no strong Janus-faced influence of JH onto
the nonequilibrium magnetic responses expected. The detailed
impact of the Janus-faced physics on itinerant magnetically
ordered states is still an open question.

B. Nonequilibrium case

Before considering the doping-dependent scenario, we
provide a connection to earlier single-band studies [35,38]
by exploring the dynamic magnetic response at half-filling
from an initial AFM state towards a nonequilibrium PM state
at smaller interaction values. This allows us to investigate the
influence of different JH = qU onto the magnetization dynam-
ics. Figure 3 shows the time evolution of the magnetic moment

(a) N = 1
q = 0
q = 0.2
q = 0.3

(b) N = 2 (c) N = 3

FIG. 2. (Color online) Equilibrium quasiparticle weight Z =
(1 − ∂	

∂ω
|ω→0)−1 for different U , q, and fillings N = 1,2,3. Gray

shaded areas mark the interaction regime covered by the nonequi-
librium study in the subsequent quench scenarios.
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Ui − Uf =0.1
Ui − Uf =0.3
Ui − Uf =0.5

(a) q = 0

Ui − Uf =0.7
Ui − Uf =0.9
Ui − Uf =1.1

(b) q = 0.2

Ui − Uf =1.3
Ui − Uf =1.5
Ui − Uf =1.7
Ui − Uf =1.9

(c) q = 0.3

FIG. 3. (Color online) TD magnetization for different q at half-
filling after the quench. The chosen Ui ensure equal initial magneti-
zation: (a) Ui = 3, (b) Ui = 2, (c) Ui = 1.6.

for a single site with equal initial m and different JH values.
The quantity UPM

f c marks the critical final interaction value
needed to observe PM behavior. A vanishing Hund’s exchange
massively decreases the interaction difference Ui − UPM

f c . As
the AFM correlations weaken with doping, Ui − UPM

f c is
largest at half-filling. In the following, we choose q = 0.2, but
qualitative changes induced by increasing q are also discussed.

Initial AFM state. The first hole-doped scenario considers
the dynamic demagnetization from an initial metallic AFM
state (at Ui = 2) to a final metallic PM state at small Uf ,
keeping q = 0.2. As exemplified for N = 2.4 (see Fig. 4),
small quench strengths lead to a dynamic AFM state with
small variation of the staggered magnetic moment. Reducing
Uf further triggers a new kind of magnetic response. A spin
oscillation with large amplitude around the zero staggered

Z̄

FIG. 4. (Color online) Top left: Nonequilibrium demagnetization
response diagram for q = 0.2. Full lines separate the equilibrium
phases at U = Uf . Initial AFM state is established for Ui = 2 and
all N . Squares indicate Uf and the corresponding nonequilibrium
magnetic response. Top right: Time-averaged (Z̄) and equilibrium
QP weight at N = 2.4. Bottom: TD magnetization m(t) for selected
Uf at N = 2.4.

moment sets in, leading to a periodic sign change of the
magnetic moment on each site. This spin oscillation exhibits
still an antiferromagnetic order concerning neighboring sites
in the unit cell (site 1, site 2, see Fig. 4). Note that the
time-averaged quasiparticle (QP) weight Z̄ is lower than the
corresponding equilibrium Z. For even smaller Uf , the PM
state is finally reached and the QP weight becomes nearly
Uf independent with a significantly lower value than the
equilibrium one. Taking into account the variation of the
filling N in Fig. 4 renders it clear that the nonequilibrium
AFM-PM response boundary is indeed rather close to the
corresponding equilibrium phase boundary. With doping away
from half-filling, the intriguing AFM spin oscillations start
to appear at N ∼ 2.6. The susceptible Uf range for these
oscillations broadens towards N ∼ 2.2, where the equilibrium
AFM phase eventually breaks down. It seems likely that
the occurrence of these large-amplitude spin oscillations is
connected to enhanced magnetic fluctuations close to the phase
boundary. Some features are reminiscent of behavior close to
a nonthermal critical point, which has been previously found
in time-dependent single-orbital studies [35,38]. There, the
frequency of the TD magnetic moment is known to tend to
zero from above. From the bottom graphs in Fig. 4, the main
frequency of the changing local magnetic moment shows a
similar characteristic. It decreases from Uf = 1.5–1.1 and
then increases again at Uf = 0.9. Note that thermalization
is delayed near such a (nonthermal) critical point in the
single-orbital case [38].

To better understand the origin of the large-amplitude spin
oscillations, examining the occupations of the dominant local
multiplets is insightful. Those are here given by the (L = S =
1) spin triplet (φLz,1,Sz

) and the (L = 0, S = 3
2 ) spin quartet

(φ 3
2 ,Sz

) (see Table I). Both are expressed through the eigenval-
ues of the squared angular momentum and spin operator, i.e.,
L̂2 and Ŝ2 (see also Ref. [26]). One thus can define a threshold
parameter η via ratios between the maximal amplitude of the
TD magnetic fluctuations for the spin triplet/quartet and the
initial (equilibrium) spin polarization, i.e.,

η = w1
(
A1

1 − A1
0

)
∣∣φ(t=0)

1,1

∣∣2 − ∣∣φ(t=0)
1,0

∣∣2 +
w 3

2

(
A

3
2
3
2
+ A

3
2

− 3
2

)/
2

∣∣φ(t=0)
3
2 , 3

2

∣∣2 − ∣∣φ(t=0)
3
2 ,− 3

2

∣∣2 ,

(5)
wS =

∑

Sz=±S,±S−1

∣∣φ(t=0)
S,Sz

∣∣2
, AS

Sz
= Max

(∣∣φ(t)
S,Sz

∣∣2)
.

As the spin triplet is Lz degenerate, we understand φ1,Sz
=∑

Lz=±1,0 φLz,1,Sz
. The maximum amplitudes A are computed

from the maximum value (Max) of the slave bosons in the
time interval (10,250). The first term in Eq. (5) arises from
the difference in A between Sz = 1 and Sz = 0 of the triplet.

TABLE I. Initial occupation at t = 0 of selected single-site
multiplets for different fillings N and U = 2, q = 0.2.

{L,S} (Sz) N = 2.3 N = 2.5 N = 2.8 N = 3.0

{1,1} (1) 0.50 (0.32) 0.41 (0.35) 0.22 (0.21) 0.05 (0.05){
0, 3

2

} (
3
2

)
0.31 (0.17) 0.44 (0.35) 0.69 (0.66) 0.88 (0.88)
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N =
AFM→PM

t = 0 t > 0 t = 0 t > 0

PM→AFM

t = 0 t > 0

FIG. 5. (Color online) (a) Spin oscillation threshold η for various
Uf and fillings N = 3.0, . . . ,2.3 (from blue to green) for the
quenched AFM state. (b), (c) Sketched time evolution of three-particle
quartet state (three arrows) and two-particle triplet state (two arrows).
Green and purple colors mark spin oscillations for a quenched AFM
and PM state, respectively.

As the quartet has no Sz = 0 state, the second term originates
from the average amplitude of states with largest Sz difference,
since those are most susceptible to magnetic fluctuations. In
order to normalize the different filling scenarios, both con-
tributions are weighted with the initial multiplet occupation.
Note that the inspected time interval starts beyond the initial
drop in m from dephasing. The TD magnetic fluctuations
overcome the initial spin polarization for η > 0.5 and thus
can invert the magnetization (see Fig. 5) (for a consideration
of the energetics, see Appendix). Close to half-filling, the
increased initial spin polarization of the spin quartet (see
Table I) dominates the dynamic magnetic amplitude and the
large-amplitude spin oscillations disappear. Small shifts of
the latter region of appearance in Uf occur by an increased
q = 0.3. But, the filling dependence remains qualitatively
identical. Thus, the Hund’s JH coupled three-particle quartet
and two-particle triplet rule the doped t2g dynamics. A breakup
of these multiplets in lower-S excitations is not detectable on
a substantial level.

Initial PM state. Second, we deal with an initial metallic
PM state close to the equilibrium AFM-PM phase boundary,
quenched to larger Uf , keeping q = 0.2. Only initial states
close to the equilibrium PM-AFM phase boundary allow for
a finite TD local spin expectation value 〈S〉 upon quenching.
As observable in Fig. 6, small quench strengths readily lead
to modulated dynamic AFM order with nonequilibrium QP
weight Z̄ close to the equilibrium value. For rather large Uf ∼
1.75–2, the system remains in a strongly correlated metallic
PM state with Z̄ < 0.2 much smaller than the corresponding
equilibrium Z. The robust PM magnetic order for strong
quenches is easily understood from the large energy transfer
that raises the effective temperature above reasonable Néel
scales. Interestingly, however, at intermediate quench-strength
transient AFM spin oscillations appear with a length of 20 to
100 fs (see Appendix). They show a short-time decay into a
dynamic itinerant AFM state and are substantially different
to those encountered in the PM-to-AFM scenario. This new

Z̄

FIG. 6. (Color online) Top left: Nonequilibrium magnetization
response diagram for q = 0.2 with equilibrium phases separated by
full lines (calculated at U = Uf ). Crosses denote initial PM state and
squares indicate Uf and the corresponding nonequilibrium magnetic
response. Top right: Time-averaged (Z̄) and equilibrium QP weight at
N = 2.8. Bottom: TD magnetization m(t) for selected Uf at N = 2.8.

nonequilibrium feature is appearing already at low hole doping
and remains vital for nearly all fillings up to the vanishing
point of the static AFM phase. Moreover, there appears to be
no obvious pinning to the static AFM-PM phase boundary.
However, the noninteracting ground state as initial state with
small hole doping (N = 2.6–2.9) shifts the Uf region (Uf ∼
0.5) for transient spin oscillations right at the static AFM-PM
phase boundary. The influence of thermalization onto these
transient spin oscillations can be estimated from a param-
agnetic single-orbital TD-DMFT study [37]. There, weak
interaction quenches from a noninteracting initial state lead to
no thermalization on intermediate time scales. This indicates
that the present transient spin oscillations should be observable
shortly after the quench, before thermalization sets in.

The derived threshold parameter η of the first scenario is
here not applicable, as there is no initial spin polarization.
To still shed light onto the complicated doping behavior,
we consider again the same two maximally occupied sets of
local states as in the demagnetization quenches. Namely, from
the filling-dependent occupation hierarchy between spin quar-
tet/triplet, one may discriminate three different transient spin-
oscillation types (see Fig. 7). Let us focus on the states with
extremal Sz to make it obvious. For N = 2.4, the spin quartet
has a higher maximal TD occupation as the spin triplet. As the
former has only finite Sz projections, it is more susceptible to
net spin polarization since the triplet has one nonmagnetic state
(Sz = 0). So, the dynamic change in occupation amplitude trig-
gered by magnetic fluctuations has to be higher for a dominant
spin quartet than for the spin triplet. Thus, a quench strength
Uf − Ui = 0.4 is sufficient for N = 2.4, instead for N = 2.8
an amount Uf − Ui = 0.7 is necessary to render the system
susceptible to these transient states. The near-degenerate case
at N = 2.6 demands an even higher quench strength.

Summary. The connection between spin orientation on the
local-correlation time scale and electron-electron interactions
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|φ
|2

FIG. 7. (Color online) Top: Distinction between three types of
transient spin oscillations when quenching the PM phase. Bottom:
TD occupation numbers from squared slave-boson amplitudes for
local spin quartet and triplet within these types: (1) |φt |2 > |φq |2, (2)
|φt |2 ∼ |φq |2, and (3) |φq |2 < |φt |2, with t : triplet and q: quartet.
All other markers/labels as in Fig. 6.

for systems with half-filled or hole-doped t2g shell has been
investigated. Utilized interaction parameters, magnetic ground
states, and excited states (AFM-to-PM, PM-to-AFM) may be
directly related to concrete materials cases. Exciting an AFM
ground state leads to a nonequilibrium AFM-PM transition
for all considered fillings. Furthermore, a broad region of
longitudinal large-amplitude spin oscillations emerges at high
hole doping. It narrows towards moderate hole doping near the
equilibrium AFM-PM phase boundary. These spin oscillations
display here a rather robust behavior in time and future
developments of more general thermalization schemes beyond
TD-SBMFT have to be invoked to investigate their stability.
Note that such schemes are at presence still inapplicable to
demanding multiorbital Hubbard models.

Transient versions of those spin oscillations appear when
exciting a PM state near the equilibrium PM-AFM phase
boundary, without a simplistic filling dependence. In the
noninteracting ground-state limit for small hole doping, the
connection between transient spin oscillation and the equi-
librium AFM-PM phase boundary is obvious. The doping-
dependent occupation hierarchy of a local spin quartet and
triplet within the correlated metal decides between the dif-
ferent nonequilibrium magnetic responses. Note that relevant
transversal spin dynamics is expected at lower energy transfers
than generally studied in here. Albeit fully accessible within
TD-SBMFT, additional symmetry-breaking mechanisms have
to be permitted.
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TABLE II. Total Sz (summed over orbitals) for appropriate filling
N in a 3D simple cubic lattice with βth = 50, q = 0.167, and U =
2.5D derived by DMFT using a CT-QMC impurity solver [40–42].

N 3.0 2.9 2.8 2.7
Sz −1.45 −1.24 −0.94 −0.12

APPENDIX A: RESULTS FROM DYNAMICAL
MEAN-FIELD THEORY

The dynamical mean-field theory (DMFT) calculations
with a continuous-time quantum Monte Carlo (CT-QMC)
impurity solver [40–42] are performed at βth = 50 and q =
0.167. This allows for a comparison with similar earlier
equilibrium phase investigations [43]. Note that there is a Bethe
lattice (infinite coordination number and nonloop topology) is
used in contrast to our three-dimensional (3D) simple cubic
dispersion. Within our setup we are able to stabilize AFM order
in the hole-doped regime (see Table II). We use U = 15th,
which equals 2.5D as the band width is 12th.

APPENDIX B: TOTAL ENERGY CONSIDERATIONS

In this section, we want to take a closer look at the interplay
between the initial total energy Etot

i := 〈i|H (Ui)|i〉 and the
final total energy one time step after the quench Etot

f in view
of the obtained physics. The time-evolved parameters (slave
bosons φ and eigenvectors νk

a ) have only acquired changes
way below accuracy in the first time step. So, Etot

f is a good
approximation to 〈i|H (Uf )|i〉, namely, the total energy of the
Hamiltonian after the quench in the initial state.

Note that when we quench the Coulomb interaction Hloc
i �=

Hloc
f , the potential energy changes abruptly E

pot
f �= E

pot
i .

In contrast, the kinetic energy is time dependent via the
renormalization matrices R, which are a functional of the
time-dependent slave bosons, and evolves from the initial value
Ekin

i [31]. This means that one time step after the quench Ekin
f

has acquired only changes way below accuracy leading to
Ekin

f = Ekin
i . Note that these considerations are only valid one

time step after the quench and that the total energy remains
conserved during time evolution after the quench.

1. AFM → PM

First, let us inspect the evolution of both total energies
with Uf and filling for the quench scenario AFM → PM
[Fig. 8(a)]. Etot

f exhibits a linear dependence on Uf , where the
slope of the curve decreases with lower fillings N . Note that
Etot

i = Etot
f (Uf = 2.0) holds. Due to the setup of the quench

(Uf < Ui), the final total energy is always lower than the
initial. A peculiarity is arising as spin oscillations occur, when
Etot

f < −Etot
i is reached and an AFM magnetic response is

still present (beside the case N = 2.6). This is not surprising
as the kinetic energy remains unchanged Ekin

i = Ekin
f but

the potential energy is lowered by decreasing Uf leading
to phase instability. This behavior appears reminiscent of
physics contained in the virial theorem, which is, however,
not strictly applicable to Hubbard models [44]. Nonetheless, it
is intuitive to assume that a strongly lowered potential energy
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(a) AFM → PM

(b) PM → AFM

FIG. 8. (Color online) Etot
i (N ) and Etot

f (N ) dependent on filling
N and final interaction value Uf with q = 0.2. For Etot

f (N ) <

−Etot
i (N ) spin oscillations set in as long as AFM fluctuations are

present in AFM → PM case and for Etot
f (N ) ≈ −Etot

i (N ) transient
spin oscillations for N = 2.7–2.9 in the PM → AFM case.

with unchanged kinetic energy eventually drives the system
towards instabilities.

We investigate a straightforward correspondence between
spin-oscillation frequencies and total energies (see Table III).
This could prove a simple picture describing these spin
oscillations in terms of energy scales introduced by both
of the total energies. We extract the frequencies using a
nonuniform Fourier-transform scheme [45,46], where the
frequency resolution is limited by our maximum time of
250/D. All spin oscillations lie between 0.10 ± 0.03 and

TABLE III. Spin oscillation frequencies and their period com-
pared to initial and final total energy in the AFM → PM quench
scenario. Frequencies calculated by nonuniform Fourier trans-
form [45,46].

(N,Ui) =
(2.3,2.0) ωosc [D] Tosc [fs] Etot

i [D] Etot
f [D]

Uf = 1.3 0.10 ± 0.03 41 ± 10 0.39 −0.67
Uf = 1.1 0.15 ± 0.03 27 ± 5 0.39 −0.97
Uf = 0.9 0.20 ± 0.03 21 ± 3 0.39 −1.27

(2.4,2.0)
Uf = 1.1 0.13 ± 0.03 33 ± 7 0.69 −0.80
Uf = 0.9 0.20 ± 0.03 21 ± 3 0.69 −1.13

(2.5,2.0)
Uf = 0.9 0.18 ± 0.03 24 ± 3 1.00 −0.98

(2.6,2.0)
Uf = 0.9 0.13 ± 0.03 33 ± 7 1.32 −0.83

0.20 ± 0.03, which equals 18 to 51 fs (as we are using
natural units). This corresponds to frequencies in the THz
regime. The frequency decreases linearly with increasing Etot

f

at N = 2.3 with ωosc/E
tot
f ∼ −0.15. But, already at N = 2.4

no linear behavior can be derived. Furthermore, the frequency
decreases with increasing filling (Etot

i ) at constant Uf . Here
again, ωosc/E

tot
f or ωosc/(Etot

f − Etot
i ) behave nonlinearly. To

conclude, the spin oscillations cannot be explained solely by
linear behavior upon Etot

f or Etot
f − Etot

i .

2. PM → AFM

Let us now turn to the case of quenches from the PM phases.
Looking at Fig. 8(b), Etot

f exhibits again a linear dependence
on Uf , where the slope of the curve decreases with lower
fillings. As Uf is higher than Ui , Etot

f > Etot
i holds in this case.

For fillings close to half-filling (N ∈ [2.7,2.9]) transient spin
oscillations near Etot

f = −Etot
i are observed, indicating like

in the other quench case a phase instability upon increasing
the potential energy above a critical value. Again, linking the
occurring frequencies (transient and oscillatory) as well as the
transient length to Etot

i and Etot
f provides additional insight

into the importance of these energy scales. Transient spin
oscillations are evolving into stable AFM oscillations (see
Fig. 6 main text). The number of periods of both oscillations
is in most cases not sufficient to get an accurate Fourier
transform, so we cannot employ a Fourier transform here.
Instead, the frequencies will be derived by inspecting the
raw time-dependent magnetization data m(t) and counting
the number of periods (Tables IV–VI). Error estimation is
done here by considering the largest deviation of m(t) from a
sine function {A sin[ω(x − B)]} with the stated frequency.

The transient spin oscillations have in most cases much
lower frequencies than the following stable counterpart (com-
pare Tables IV and V). The transient length is varying between
18 and 102 fs (if one does not respect the defined transient
oscillation types of Fig. 7 main text). However, there seems to
be a link to these different types as it is easier to spin polarize
a dominant spin triplet (N ∈ [2.7,2.9]) as a roughly equal

TABLE IV. Transient AFM spin oscillation frequencies and
transient length compared to initial and final total energy in the
PM → AFM quench scenario. Frequency derived by inspecting raw
data m(t).

(N,Ui) =
(2.4,0.7) ωtr[D ] Ltr [fs] Etot

i [D] Etot
f [D]

Uf = 1.1 0.05 ± 0.00 77 ± 3 −0.81 0.12

(2.6,0.5)
Uf = 1.5 0.04 ± 0.00 98 ± 4 −0.97 1.97
Uf = 1.7 0.02 ± 0.00 92 ± 7 −0.97 2.56

(2.7,0.4)
Uf = 1.0 0.08 ± 0.00 25 ± 1 −1.08 0.88

(2.8,0.3)
Uf = 1.0 0.10 ± 0.01 60 ± 8 −1.24 1.30
Uf = 1.2 0.07 ± 0.00 64 ± 3 −1.24 2.02

(2.9,0.2)
Uf = 1.0 0.11 ± 0.00 19 ± 1 −1.46 1.74
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TABLE V. Stable AFM spin oscillation frequencies and period
compared to initial and final total energy in the PM → AFM quench
scenario. Frequency derived by inspecting raw data m(t). “- -”
indicates that frequency could not be measured due to too long
transient length.

(N,Ui) =
(2.4,0.7) ωosc [D] Tosc [fs] Etot

i [D] Etot
f [D]

Uf = 1.1 0.11 ± 0.02 36 ± 8 −0.81 0.12

(2.6,0.5)
Uf = 1.5 - - - - −0.97 1.97
Uf = 1.7 - - - - −0.97 2.56

(2.7,0.4)
Uf = 1.0 0.22 ± 0.09 19 ± 7 −1.08 0.88

(2.8,0.3)
Uf = 1.0 0.23 ± 0.07 18 ± 5 −1.24 1.30
Uf = 1.2 0.13 ± 0.03 32 ± 7 −1.24 2.02

(2.9,0.2)
Uf = 1.0 0.27 ± 0.08 15 ± 5 −1.46 1.74

populated spin triplet and quartet (N = 2.6) leading to much
lower transient lengths in the former case. For the same initial
conditions, the transient lengths depend differently on Etot

f

according to the spin oscillation type. For type 3 (N = 2.7
to 2.9) there is a proportional behavior and for type 2 an
antiproportional behavior. The stable oscillations are given
by periods between 12 and 44 fs, so the spin oscillation
period region is shifted to lower values compared to the
AFM → PM case. Furthermore, the qualitative behavior of
the stable oscillations with filling is different. Increasing the
filling (increasing Etot

f ) at constant Uf = 1.0 increases ωosc

TABLE VI. Transient and stable AFM spin oscillation frequen-
cies and transient length compared to initial and final total energy
in the PM → AFM quench scenario. Initial state is not interacting
(Ui = 0). Frequency derived by inspecting raw data m(t). Unit is D if
not mentioned. “- -” indicates that frequency could not be measured
due to too long transient length.

(N,Ui) =
(2.6,0.0) ωtr Ltr [fs] ωosc Etot

i Etot
f

Uf = 0.8 0.04 ± 0.00 52 ± 5 0.12 ± 0.02 −1.90 0.80

(2.8,0.0)
Uf = 0.6 0.07 ± 0.01 140 ± 23 - - −1.95 0.40

(2.9,0.0)
Uf = 0.6 0.05 ± 0.01 181 ± 20 - - −1.98 0.54

instead of decreasing it. To clarify the influence of different
initial states onto transient and oscillatory behavior, let us look
at Table VI.

Starting from an initial noninteracting state, the transient
behavior moves to quenched interaction values right on top
of the equilibrium AFM-PM phase boundary. This reveals
an intricate connection between this phase boundary and the
transient fluctuations. It is not possible to estimate ωosc in two
of the three cases here, as the number of periods is too low.
The transient length lies between 50 and 181 fs. Comparing
these to Table IV, there are drastic changes for N = 2.6 and
2.9 leading to an increased transient length moving towards
half-filling. This is the opposite behavior for N = 2.8 to 2.9
and the case Ui �= 0, which shows that initial correlations and
generally speaking the initial state have a high influence onto
the transient length.
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Phys. Rev. B 75, 014433 (2007).

[14] P. M. Haney, D. Waldron, R. A. Duine, A. S. Núñez,
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