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Nickel-titanium double perovskite: A three-dimensional spin-1 Heisenberg antiferromagnet
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The double perovskite La2NiTiO6 is identified as a three-dimensional S = 1 quantum magnet. By means of
density functional theory we demonstrate that this material is a high-spin d-electron system deep within the
Heisenberg limit and establish that its paramagnetic Mott phase persists down to low temperatures (experimental
Néel temperature TN ∼ 25 K) not because of frustration effects but rather for strong local fluctuations of the
magnetic order parameter. Our many-body calculations on an ab initio–derived multiorbital basis predict indeed
a kinetic energy gain when entering the magnetically ordered phase. La2NiTiO6 emerges thus as a paradigmatic
realization of a Hund’s-coupling-driven Mott insulator. Its peculiar properties may turn out to be instrumental in
the ongoing search for correlated topological states of matter.

DOI: 10.1103/PhysRevB.91.075108 PACS number(s): 71.27.+a, 71.10.Fd, 71.15.Mb, 75.10.Dg

I. INTRODUCTION

Nickel (Ni) in d8 configuration has been attracting growing
attention for the possibility of realizing the “Haldane” S = 1
spin chain [1–6]. In compounds like CsNiCl3 or NiTa2O6 the
Ni atoms are connected via small hopping integrals t along
specific one-dimensional paths and charge fluctuations are
strongly suppressed by the large on-site Hubbard repulsion U .
This allows for a theoretical description in terms of the one-
dimensional (1D) Heisenberg model with an antiferromagnetic
superexchange coupling J ∝ t2/U . In two dimensions the
interest in S = 1 quantum antiferromagnets has been some-
what hidden by the widely investigated spin-1/2 t − J model,
related to the physics of underdoped high-Tc cuprates. Ni
is again present in some of the S = 1 bulk materials with
strong 2D character, such as La2NiO4 or K2NiF4 [7–11]. In an
interesting recent proposal Chen et al. suggested the artificial
design of a 2D spin-1 Mott insulator by heterostructuring Ni
and Ti single perovskites [12].

In 3D spin-1 quantum magnets are found in pyrochlore
compounds, such as ZnV2O4 or MgV2O4 [13–15], where
the absence of magnetic ordering down to very low tem-
peratures is, however, due to frustration rather than to the
strong-coupling regime in U . Some face-centered cubic (fcc)
transition-metal oxides with S = 1 are described in terms
of spin-only models with nearest- (90◦) and next-nearest-
neighbor (180◦) exchange couplings J1 and J2, respectively.
While this is fully justified for NiS2 [16,17], which belongs to
the family of frustrated magnets (J2/J1 ≈ 0.5), NiO [18] and
KNiF3 [19], together with d2 vanadates [20,21], are actually
quite far from the strong-coupling Heisenberg limit, due to
the significant hybridization between the transition-metal ions
and the “bridging” ligand atoms. Charge fluctuations indeed
still play a role, as is also reflected by the relevant d-electron
bandwidth, which in these compounds hardly gets smaller
than ∼1.5−2.0 eV. As a matter of fact, the majority of the
spin-1 three-dimensional transition-metal compounds that we
know of fall into one or both of the following categories:
materials with relatively high magnetic ordering temperatures
and pretty far from a true strong-coupling Heisenberg limit,
or quantum magnets where long-range order is suppressed by
sizable geometrical frustration. The examples that are lacking
for S = 1 in 3D are those of nearly unfrustrated cases with
small values of the ratio t/U , i.e., the repulsive counterpart

of phase-fluctuation-driven Bose-Einstein physics. In such
materials, the strong-coupling regime would determine the
low magnetic ordering temperatures TN ∝ J .

Here we demonstrate that the nickel double perovskite
La2NiTiO6 is a perfect realization of the latter class of systems.
As we show in our calculation, the reason why this S = 1
quantum antiferromagnet is deep within the Heisenberg limit
comes from its distinctive hierarchy of magnetic exchange
couplings: J2 � J1. La2NiTiO6 can therefore be very well
described by S = 1 spins existing on a weakly frustrated three-
dimensional fcc lattice [23–25]. In order to fully describe the
residual charge fluctuations, which in spin-1 systems may be
relevant due to the importance of biquadratic effects as well as
three-body interactions [26–29], we also go beyond the bilinear
spin-only description and investigate the antiferromagnetic
(AFM) phase in the “full” Hubbard model. This allows us
to make a thermodynamic analysis of La2NiTiO6, revealing a
kinetic-energy-driven ordering mechanism.

The low value of the Néel temperature TN ∼ 25K [30] in
La2NiTiO 6 has the interesting consequence that its param-
agnetic Mott insulating state can be observed in an unusually
extended range of temperatures. Even though its properties as a
Mott insulator have not been discussed hitherto, it is important
to stress that La2NiTiO 6 can actually be synthesized, as
described in Refs. [30–34]. Here we connect its features as
a high-spin paramagnet with the peculiar electronic structure:
a half-filled eg manifold at the Fermi level which is extremely
narrow and uncommonly well separated from any other band.
The origin of this lies in the isotropic reduction of the
hoppings in all three spatial directions, something hardly
possible to achieve artificially but that nature does very
effectively, replacing the Ni-O-Ni bonds characteristic of other
S = 1 materials with longer Ni-O-Ti-O-Ni ones. This class of
d8 − d0 double perovskites can open additional directions in
oxide engineering: by considering also heavier elements of the
Ni group and upon splitting the eg bands by heterostructuring
or strain a correlation-driven band inversion can be realized,
as in recent theoretical proposals for interacting topological
insulators [35–39].

II. ELECTRONIC STRUCTURE

La2NiTiO6 crystallizes in a double perovskite structure
with a small monoclinic distortion (P 21/n space group),
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FIG. 1. (Color online) (a) Crystal structure of La2NiTiO6. (b)
Isosurfaces of Wannier functions obtained by projection of only the
Ni eg bands. The upper left one is mainly of x2 − y2 character and
the lower right mainly of 3z2 − r2 character. The coordinate system
gives the directions used in Table I and also applies to (a).

as determined from neutron powder diffraction experi-
ments [30,33,34]. Structural relaxation within density func-
tional theory (DFT) using the generalized gradient approxima-
tion (GGA) [Perdew-Burke-Ernzerhof (PBE)] [40] functional
results only in minor changes to the experimentally measured
structure. The Ni-Ni distances along the a and b axes are
7.85 Å, while along c the distance is 7.83 Å. The Ni/TiO6

octahedra display a very small Jahn-Teller distortion (the
lengths of the Ni/Ti-O bonds differ by at most 0.4%) and
show an alternating tilting [see Fig. 1(a)].

For the paramagnetic calculations we consider a unit
cell containing two formula units whereas the magnetic cell

contains four. The locally equivalent Ni atoms form an fcc
lattice comprised of intertwined simple tetragonal sublattices
[denoted as “1” and “2” in Fig. 1(a)]. One “face” of the fcc
lattice formed by the darker green (darker gray) Ni atoms is
shown in Fig. 1(a). A face with Ni1 corners has a Ni2 in the
center and vice versa.

The electronic structure was calculated with the GGA using
the VASP code [41]. Nominally Ni is in a 3d8 configuration and
Ti in 3d0. In DFT La2NiTiO6 is a metal, with two degenerate
Ni eg bands crossing the Fermi level, as shown in Figs. 2(a)
and 2(b). Due to the presence of the inactive Ti “spacers” the
Ni eg bands are remarkably narrow. The corresponding value
of the bandwidth Weg

∼ 0.8 eV is indeed substantially smaller
than that of NiS2 [17,42,43], of NiO [44], and of other S = 1
three-dimensional compounds. The t2g manifold of Ni lies
1 eV below the Fermi level and, approximately 1 eV further
below, one finds the upper edge of the O 2p bands. The states
close to the Fermi level are predominantly of Ni eg character
and are furthermore well separated from the other bands.

Subsequently we extracted maximally localized Wannier
functions (MLWFs) [45] from the O 2p, the Ni 3d as well
as the Ti t2g bands using the WANNIER90 package [46]. Due
to the tilting and rotation of the octahedra the straightforward
MLWF construction produces a basis that retains considerable
on-site mixing between the Ni t2g and eg orbitals [see inset of
Fig. 2(a)]. This local t2g-eg hybridization is just a consequence
of this specific choice of orbital representation, therefore we
have performed a unitary transformation after the MLWF
procedure [47]. The usual choices here are a rotation into the
so-called “crystal field basis” or into a basis that renders the
DFT occupancy matrix ρij = 〈c†i cj 〉 diagonal on each atom;
see, e.g., Refs. [47,48]. In light of subsequent dynamical
mean field theory (DMFT) calculations using a quantum
Monte Carlo solver, we have decided to block-diagonalize
the occupancy matrix, since this treatment yields in our case
smaller off-diagonal elements in the frequency-dependent
noninteracting Green’s function G0(iωn) as the crystal-field
basis. We quantify the off-diagonal elements in G0(iωn) by
the average of the absolute values of the off-diagonal elements,
i.e.,

|G0
od(iωn)| = 1

Nod

∑
m>m′

∣∣G0
mm′ (iωn)

∣∣, (1)

where Nod is the number of off-diagonal elements in the
upper triangle of the matrix. We find the largest values at
the first Matsubara frequency; for the crystal-field basis and

inverse temperature of β = 40 eV−1 the value is |G0
od(iω0)| =

0.06 eV−1, while for the diagonal occupancy matrix the same
is more than a factor of 5 smaller at 0.01 eV−1. The orbital
character shown in the density of states in Fig. 2(a) and the
band structure in Fig. 2(b) were computed using this basis.

Because of the separation of the states close to the Fermi
level from the other bands and their predominantly Ni eg

character, we construct a low-energy model using only these
bands, projecting onto MLWFs spanning this subspace. This
results in two orbitals on Ni that are warped from the atomic
shape by hybridization with O and Ti, an x2 − y2-like and a
3z2 − r2-like Wannier function, whose isosurfaces are shown
in Fig. 1(b). In this case no additional basis transformation was
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FIG. 2. (Color online) (a) Orbitally resolved density of states
(Fermi level at E=0). (b) Fat band electronic structure for a cell
containing two formula units. The thickness of the bands denotes the
corresponding orbital character. In both panels the Wannier functions
that have been used are those that diagonalize the occupancy matrix
spanning Ni d , Ti t2g , and O p states (see text). In this basis the
character mixture between the t2g and eg states of Ni is almost absent,
in contrast to the MLWF basis, an example of which is shown, for the
density of states (DOS), in the inset to (a).

necessary, since the MLWFs are already locally orthogonal.
This two-band model is used for most of the DFT + DMFT
calculations presented here. A larger basis containing the
full Ni d and the O p shell was also considered within
DFT + DMFT for assessing the validity of the two-band
description; see Sec. IV.

The calculated Ni-Ni hopping amplitudes in this eg-only
model for the 3z2 − r2- and x2 − y2-like orbitals, effectively
containing the hybridization to O and Ti, are shown in Table I.
We label the orbitals as |1〉 ∼ 3z2 − r2 and |2〉 ∼ x2 − y2

on Ni1 and analogously |3〉 and |4〉 on Ni2. The hopping
amplitude between orbitals |i〉 and |j 〉 in a given direction is
given by ti,j . The overall Ni-Ni hopping is small, the element
t1,1 along the c axis being the largest (−97 meV). Along the
same direction the x2 − y2 orbital hardly contributes. In the ab
plane the situation is more evenly distributed between the two
orbitals but the sum of the squares of all hoppings is similar

TABLE I. Hopping parameters between two Ni atoms within the
crystal as obtained via Wannier projection. The first column indicates
the direction of the Ni-Ni bond via v ∝ aa + bb + cc. The numbers
in parentheses refer to the indices i,j by |1〉 ∼ 3z2 − r2 and |2〉 ∼
x2 − y2 on Ni1 and analogously |3〉 and |4〉 on Ni2. Only hopping
amplitudes between nearest and next-nearest Ni atoms are given here.

Hopping amplitude tij (meV)

abc (1 1) (1 2) (2 1) (2 2)
∑

i,j t2
ij (meV2)

0 0 1 −97 −3 −3 0 9427
0 1 0 −27 44 44 −70 9501
1 0 0 −22 −42 −42 −77 9941

(3 3) (3 4) (4 3) (4 4)
0 0 1 −97 −3 −3 0 9427
0 1 0 −22 −42 −42 −77 9941
1 0 0 −27 44 44 −70 9501

(1 3) (1 4) (2 3) (2 4)
0 1 1 −27 25 −19 −4 1731
1 0 1 −27 25 −19 −4 1731
0 1̄ 1 −24 26 −18 0 1576
1 0 1̄ −24 26 −18 0 1576

(1 1)/(3 3) (1 2)/(3 4) (2 1)/(4 3) (2 2)/(4 4)
1 1 0 11 2 2 −46 2245
1 1̄ 0 12 3 3 −26 838

to the same quantity along c [as shown in Eq. (3)
∑

mm′ |tmm′ |2
determines the superexchange coupling]. For Ni-Ni 90◦ bonds
there are two possible paths, either inter- or intrasublattice
hoppings, i.e., either Ni1-Ni2 or Ni1-Ni1, respectively. The
most important outcome of the Wannier projection is that the
next-nearest-neighbor Ni-Ni 180◦ hoppings are a factor of 4
to 10 larger than the nearest-neighbor 90◦ hoppings.

III. SPIN-ONLY MODEL

The Wannier projection allows us to derive a bilinear
Heisenberg Hamiltonian HHeis., with which we can give
a first description of the physics of La2NiTiO6. With this
aim, we downfold [48,49] our ab initio eg model with two
electrons onto the subspace of singly occupied orbitals. The
intermediate configurations generated by one Ni-Ni hopping
process contain only one intraorbital double occupation, as
sketched in Fig. 3. The local interaction considered in the
direct exchange model is of Kanamori type [50,51], the fully
SU(2)-symmetric interaction Hamiltonian reads

HKan. = U
∑
m

nm,↑nm,↓ +
∑

m > m′
σ

[U ′nm,σ nm′,−σ

+ (U ′ − JH)nm,σ nm′,σ ]

+ 1

2
JH

∑
m �= m′

σ

(c†m,σ c
†
m′,−σ cm,−σ cm′,σ

− c†m,σ c
†
m,−σ cm′,σ cm′,−σ ) (2)

with the number operator nm,σ = c
†
m,σ cm,σ , where c

†
m,σ (cm,σ )

creates (annihilates) an electron with spin σ in orbital m.
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FIG. 3. (Color online) Sketch of a spin-spin off-diagonal term of
HHeis. between neighboring sites i and j . Even though the two eg

orbitals are shown on two different levels for the sake of clarity, we
stress that they are in fact degenerate. The final state is actually the
triplet combination which, for simplicity, is represented as just one
state.

Furthermore, we used U ′ = U − 2JH, where U represents the
Hubbard repulsion and JH the Hund’s coupling.

The two electrons on each Ni give rise to S = 1 as well
as S = 0 configurations which, in the low-energy subspace,
are mutually coupled. However, as we will see later in our
dynamical mean-field theory calculation, the two electrons
are strongly affected by the Hund’s coupling JH and yield an
effective local moment close to the maximum possible value.
Hence, the singlet can be discarded from our analysis. The
resulting S = 1 Heisenberg Hamiltonian reads

HHeis. = 1

U + JH

(∑
mm′

|tmm′ |2
) ∑

ij

(Si · Sj − 1). (3)

One of the processes responsible for the spin off-diagonal
terms is shown in Fig. 3, where also the energies of the
initial/final and intermediate states are given. The initial and
intermediate configurations are eigenstates of the Kanamori
Hamiltonian. The final state is actually the triplet combination
which, for simplicity, is represented as just one state in our
sketch.

Using typical interaction values for Ni (U = 5 eV and
JH = 0.8 eV [52]) we get J2  1.6 meV and J1  0.3 meV
(or smaller, depending on which 90◦ bond is considered).
This value of U is moderate, since, for example, in NiO
U = 8 eV [53]. This small value of the ratio J1/J2 ∼ 0.2—a
direct consequence of the small nearest-neighbor hoppings—
corresponds to a very weak degree of frustration. The 180◦

Ni-Ni bonds are not strongly disturbed by the nearest-neighbor
ones and form four interpenetrating antiferromagnetic simple
cubic sublattices. The magnetic ordering vector of this so-
called AF-II phase, which in the mean field is stable for
J1 < 2J2, is [ 1

2 , 1
2 , 1

2 ] [23–25]. We have performed GGA + U

calculations and found that the AF-II (type A) order has indeed
the lowest energy, in agreement with experiments [30,54].

IV. DFT + DMFT CALCULATION

In order to go beyond the spin-only bilinear Heisenberg
model above, we solve the full multiorbital Hubbard model in
the Wannier basis using dynamical mean-field theory [55–57].
In the following we present calculations for the eg-only basis
with the SU(2)-symmetric Kanamori interaction. The result

is that La2NiTiO6 is a Mott insulator in DFT + DMFT. We
have also tried larger basis sets, in particular a dp model
containing Ni eg , Ni t2g , and O p bands. The DFT + DMFT
result turns out to be robust against the choice of the low-energy
model, in contrast to many other transition-metal oxides for
which DFT + DMFT gives qualitatively different outcomes
depending on the basis set [58]. In selected cases we performed
calculations for an enlarged model containing the full Ni d and
the O p shells, using density-density [only the first two lines of
Eq. (2)] as well as Kanamori interactions. As a result we find
that the system is still a Mott insulator with a Ni d occupation
of about 8.5 electrons, i.e., 2.4 electrons in the eg states.
We note in passing that this robustness of La2NiTiO6 against
the choice of basis set makes it an ideal testbed material for
the derivation of low-energy models for eg orbitals, in the same
way as SrVO3 is very often used for t2g bands. La2NiTiO6 has
the additional interesting property of a much stronger effect
of the Hund coupling JH because of the half-filled, narrow eg

bands.
The DFT + DMFT solution of La2NiTiO6 for the eg-only

model demonstrates that, in a wide range of interaction param-
eters relevant for Ni (U = 4−7 eV and JH = 0.6−1.0 eV), the
local moment is very close to the maximum value of Seff = 1.
By calculating 〈S2

z 〉 we indeed find its maximum value of
2/3, because the interorbital “Hund” double occupancies dH =
〈n1,↑n2,↑〉 and the “anti-Hund” ones danti-H = 〈n1,↑n2,↓〉 are
given by their “saturation” values of 1/3 and 1/6, respectively
[see Fig. 4(a)]. In the paramagnetic phase we therefore have
〈S2〉 = 3〈S2

z 〉 = 2 = Seff(Seff + 1) with the SU(2)-symmetric
Kanamori interaction. Hence Seff = 1 and, as we consider only
its spin-dependent contribution (g = 2), the corresponding
local moment is m  2.83μB.

So far we have used DFT + DMFT to analyze the para-
magnetic phase of La2NiTiO6. Being a mean-field theory,
DMFT allows us to follow it down to zero temperature or,
alternatively, to calculate the Néel temperature and switch to
the magnetically ordered solution below TN. The values of TN

calculated in our ab initio eg-only model for different values
of U = 4 to 7 eV are shown by the full and empty diamonds
in Fig. 4(c) for JH = 0.6 and 1.0 eV, respectively.

Before making a close comparison between the DMFT
results and the experimental TN some considerations are
in order: Even if DFT + DMFT is well known for giving
accurate results for three-dimensional transition-metal oxides,
the quantitative corrections due to spatial fluctuations are still
sizable in 3D. The reduction of TN is one of the most evident
of these corrections. Indeed, even if not as dramatic as in
2D, where the single-site DMFT TN is finite instead of zero
as predicted by the Mermin-Wagner theorem, this reduction
has been quantified by means of a diagrammatic extension of
DMFT to be ∼ 30% in the intermediate-to-strong coupling
regime [59].

In our specific case, we can also rely on random-phase
calculations and on spin-wave theory to evaluate the effect
of nonlocal correlations. For our value of the J1/J2 ratio the
random-phase approximation predicts for the fcc case with
S = 1 a reduction of TN of about 35% compared to the mean-
field value [23], in line with the above-mentioned result. The
solid line indicated by the arrow in Fig. 4(c) represents the
DFT + DMFT results taking into account the 35% reduction.
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FIG. 4. (Color online) Energetic balance for U =4 eV, JH =
0.6 eV, and β = 200 (eV)−1. (a) Different contributions to the
potential energy of the paramagnetic (PM) and antiferromagnetic
phases (red dots and blue squares, respectively). The two sets of data
given per quantity correspond to the two spin orientations. The error
bars are not visible as they are smaller than the symbol size. The
potential energy of the AFM solution is larger than that of the PM
one (potential energy loss). (b) Histogram of the expansion order
of the quantum Monte Carlo (QMC) diagrams contributing to the
fermionic trace for the two phases. Its average is proportional to the
kinetic energy. The shift towards higher expansion orders for the AFM
solution indicates a kinetic energy gain. In (c) TN calculated within
DFT + DMFT for the eg-only model is reported with diamonds (full
and empty symbols correspond to JH = 0.6 and 1.0 eV, respectively).
Fits to the data (black solid lines) yield a prefactor of the 1/(U + JH)
behavior which is very close to the estimate obtained from the
mean-field solution of a Heisenberg model with the hopping values
from Table I (black dashed line, for JH = 1.0 eV). From Ref. [23]
we estimated the reduction of the mean-field value, due to spatial
fluctuations (line indicated by the arrow).

This line gets quite close to the experimental value, especially
for the largest values of U considered. The most plausible
reason for an additional reduction of the theoretical TN is the
presence of a few percent of Ni-Ti antisite disorder, as reported
in Refs. [30,33,34].

Before switching to the thermodynamics of the magnetic
transition, let us also comment on the dashed line in Fig. 4(c).
This shows the behavior with U of the mean-field Néel
temperature of an S = 1 Heisenberg model on an fcc lattice
(kBTN = 4J2; see Ref. [23]), where in the expression for J2

the hopping values estimated from our DFT analysis have
been used [as in Eq. (3)]. The almost perfect agreement with
TN from the full DFT + DMFT calculation shows that it makes
perfect sense to identify the single-site DMFT result with the
mean-field Heisenberg outcome.

In order to prove that the physics of La2NiTiO6 is actually
that of a strong-coupling Heisenberg antiferromagnet, we
perform a thermodynamic analysis. The smoking gun ruling
out possible intermediate-coupling physics is a lower total
energy for the AFM phase realized through a kinetic energy

gain and a loss in potential energy [60–63]. Our results very
clearly indicate a kinetic energy gain, as shown in Fig. 4(b).
This is calculated from the first moment of h(k), the histogram
of the expansion order of the continuous-time hybridization-
expansion quantum Monte Carlo solver [64,65]. A shift toward
larger expansion orders indicates a gain in kinetic energy for
the AFM phase (�Ekin = EAFM

kin − EPM
kin < 0). At the same

time, as shown in Fig. 4(a), where the local terms of the
multiorbital Hubbard Hamiltonian are separately analyzed, we
detect a potential energy loss (�Epot = EAFM

pot − EPM
pot > 0),

ruling out intermediate-coupling physics. Our analysis reveals
that the potential energy loss is almost entirely given by
the corresponding increase in dU , the intraorbital double
occupancies by going from PM to AFM. As shown in Fig. 4(a),
the Hund interorbital double occupancies dH (proportional
to U−3JH), the anti-Hund ones danti-H (∝ U−2JH), and the
“spin-flip” term dℵ (∝ −JH), are close to compensating each
other. Since the pair-hopping terms hardly contribute, the
potential energy loss reads �Epot =2[(U−3JH)�dH + (U−
2JH)�danti-H + JH�dℵ + U�dU ], where �d indicates the
total difference in the respective quantity summed over spin
and orbital indices. Indeed it is almost entirely given by the
corresponding change in dU : �Epot ≈ 2U�dU .

This is a precise consequence of the strong-coupling
physics: the disordered phase has preformed localized mo-
ments that slightly delocalize upon entering the ordered phase
because they gain coherence. At the same time, the length of
the (unordered) local moment (whose square is proportional to
〈S2〉 [67]) changes only slightly by going from the PM to the
AFM phase: the latter is ∼0.002μB shorter than the former.

V. CONCLUSIONS

We have shown that La2NiTiO6 is a Hund’s-coupling-
driven Mott insulator, far in the strong-coupling limit. The
peculiar properties of this double perovskite come from the
presence of inactive d0 Ti “spacers” which enlarge the Ni-
Ni bonds isotropically in all directions, drastically reducing
the relevant bandwidth. The proper low-energy spin-spin
model is a Heisenberg Hamiltonian with next-nearest-neighbor
exchange coupling J2 equal to about 1.6 meV and nearest-
neighbor coupling J1 a factor of 4–5 smaller. On an fcc
lattice like the present one, this implies that frustration effects
are almost absent and the very low value of TN is a consequence
of the strong local fluctuations of the order parameter.
We demonstrate the strong-coupling nature of La2NiTiO6 by a
direct analysis of the energetic balance within DFT + DMFT.
This prediction can be tested, for instance, by looking for the
presence of spin polarons in photoemission as well as in optical
conductivity measurements [63,68,69] which should be visible
due to the pronounced three-dimensional character.

Our results unveil an additional family of double
perovskites—La2NiTiO6 being its initial member—that, due
to the dramatic reduction of the bandwidth, can be very
interesting for oxide engineering. One promising direction
is to try to split the two eg bands with strain or upon
heterostructuring. This can be achieved because, despite the
very isotropic J2, the 180◦ hoppings of the 3z2 − r2 and of
the x2 − y2 orbitals are not symmetric under rotations of

075108-5



M. KAROLAK, M. EDELMANN, AND G. SANGIOVANNI PHYSICAL REVIEW B 91, 075108 (2015)

the crystal axes. It should therefore be possible to induce
a splitting which, due to the hybridization between the two
eg orbitals, may result in a gap of inverted orbital character
at specific points of the Brillouin zone. The resulting band
structure can in fact be ideal for the realization of a correlated
topological insulator, with two d electrons in two entangled
orbitals forming a large local moment (hence more easily
detectable in an experiment). If the x2 − y2/3z2 − r2 splitting
turns out to be externally tunable, this class of d8 − d0 double
perovskites could become tremendously attractive from this
point of view. By substituting heavier isoelectronic elements
for Ni the spin-orbit coupling can also help in the opening of the
hybridization gap necessary to realize a correlated topological
insulator.

Note added in proof. Recently, we became aware of the
paper [70], where DFT calculations for La2NiTiO6 using an
idealized cubic structure were reported and, based on that, a
ferromagnetic ground state was found.
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