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Nematicphases, breaking spontaneously rotational symmetry, provide for ubiquitously observed states of matter
in both classical and quantum systems. These nematic states may be further classified by their N -fold rotational
invariance described by cyclic groups CN in 2 + 1D. Starting from the space groups of underlying 2D crystals,
we present a general classification scheme incorporating CN nematic phases that arise from dislocation-mediated
melting and discuss the conventional tensor order parameters. By coupling the O(2) matter fields to the ZN lattice
gauge theory, a unified O(2)/ZN lattice gauge theory is constructed in order to describe all these nematic phases.
This lattice gauge theory is shown to reproduce the CN nematic-isotropic liquid phase transitions and contains an
additional deconfined phase. Finally, using our O(2)/ZN gauge-theory framework, we discuss phase transitions
between different CN nematics.
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I. INTRODUCTION

Among all exotic phases of strongly correlated electron
systems, one of the most surprising is the electron nematic
[1–3], a translationally invariant phase that breaks sponta-
neously rotational symmetry [4–12]. During the past two
decades, experiments have proved the existence of such novel
phases of quantum matter in strongly correlated electron
systems such as high-Tc superconductors [13–15] and parent
compounds of iron-based superconductors [16,17], quantum
Hall systems [18–20], and in the form of spinor/dipolar
Bose condensation in optical lattices [21]. The spin nematic
[22–27] has also been suggested as a candidate for the hidden
order phase of the heavy fermion material URu2Si2 [28,29].
Correspondingly, the classical liquid crystal theory developed
by de Gennes [30] has successfully been extended to the
quantum case to understand the physics of the quantum
nematic with similar D∞h uniaxial symmetry [2]. One finds
here an analog in the form of the Pomeranchuk instability,
conveying that the deformation of the Fermi surface may
be described by a tensor parameter similar to the one of
the classical uniaxial nematic phase. It usually applies to the
2D (two-dimensional) nematic phase where the tensor order
parameter can be further reduced to a scalar one, characterizing
the anisotropy due to the rotational symmetry breaking, as has
been already studied extensively in the context of 2D electron
liquid systems [3,27]. Most quantum nematic phases, however,
occur in the (doped) strongly-correlated Mott insulator, hosting
an electron state reminiscent of the Wigner crystal.

Another route to nematic phases, developed by Zaanen
and Kleinert, has been achieved by means of dislocation-
mediated quantum melting of Wigner crystals [2,7,31]. Here,
the condensation of dislocations effectively restores the trans-
lational symmetry of the crystal, while leaving the rotational
symmetry broken. This is in essence an extension of the fa-
mous Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY)
theory [32–35], describing the finite temperature hexatic
phase resulting from the topological dislocation melting of
a triangular lattice, to the quantum domain.

In the crystal phase, the continuous space symmetry is bro-
ken into a specific subgroup, which breaks both translational
and rotational symmetry. This leads to the classification of
crystalline lattices in both two and three dimensions, efficiently
captured by the mathematical language of space groups. As
a result, when the translational symmetry is restored by dis-
location condensation, there are different rotational symmetry
subgroups descending from different space groups underlying
the original crystals. Hence there should be different nematic
phases characterized by their invariance under different ro-
tational subgroups, in addition to the uniaxial nematic with
D∞h symmetry. Despite examples like the classical D6 hexatic
in two spatial dimensions (2D) described by the KTHNY
theory [32–35] and the quantum nematic with C2 symmetry
descending directly from the uniaxial nematic in 3D [1,22],
the classification table of all nematic phases obtained in this
fashion in both 2D and 3D has not yet been provided.

The spatial dimension is critical when considering the bro-
ken rotational symmetry of the space groups and the resultant
classification of nematic order, since the 2D rotational group
O(2) is Abelian, while the 3D rotations form a non-Abelian
structure. Hence it is constructive to address the classification
of nematic phases in the 2D Abelian case and establish some
basic principles that may be applicable to the non-Abelian
cases in 3D for the further study. To this end, we revisit the
2D case and provide the classification scheme of 2D nematic
order, which allows us to establish a unified theory capturing all
rotational symmetries and connect with all specific examples
that were already extensively studied in Refs. [2,7,36,37].
Conventionally, the phrase “nematic” is reserved to phases
with broken rotational symmetry by rodlike molecules, which
have C2 symmetry. The term “hexatic” has then been invented
to specify the nematic phase with C6 symmetry. However,
there is room for many different rotational symmetry broken
phases, especially in the 3D case. This makes it tedious to
specify every single phase individually. Moreover, all these
phases break rotational symmetry in the same way and hence
can all be considered a “nematic.” Therefore we will employ a
systematic nomenclature to denote these phases. In particular,
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a “nematic” phase with residual rotational symmetry H (H is
the subgroup of O(2) in 2D or O(3) in 3D) is referred to as a
H nematic. For example, one may consider generalizing the
hexatic phase to a 3D Oh nematic, which arises as a descendant
from a Oh cubic crystal by topological melting.

In this paper, we show that dislocation condensation gives
rise to five different classes of nematic phases invariant under
different discrete subgroups CN of O(2) with N = 1,2,3,4,6.
These nematics are therefore referred to as CN nematics, which
correspond to the p-atic phases (p = N ) identified by Park
and Lubensky [38]. Generalizing the Z2 gauge theory in 3D
[36,39] describing the uniaxial nematic with D∞h symmetry,
we construct a general O(2)/ZN lattice gauge theory for all
CN nematic phases in 2 + 1D by coupling a O(2) matter
field to a ZN lattice gauge field [40–42] with a nematic
coupling J and a defect coupling K . First, we comment
on the symmetries and the construction of a general order
parameter theory in two dimensions, making connection to
earlier phenomenological proposals [30,38]. By mobilizing
the ZN gauge theory, we address the possible nematic phases
and the associated phase transitions in terms of J and K . This
includes exotic ZN deconfined phases at large K , which may be
related to exotic strongly coupled quantum phases. Analyzing
the whole phase diagram, we first discuss the conventional
CN nematic-to-isotropic phase transition that arises in the
small K limit. In the K → ∞ limit, the partition function
equates to that of the XY model and we also discuss the
large K topological ZN deconfined phase, which may be
characterized by a string order parameter descending from
the Fredenhagen-Marcu order parameter [43,44]. The gauge
formulation allows us to discuss possible transitions between
different CN nematics with considerable ease.

The remainder of the paper is organized as follows. In
Sec. II, we discuss the mechanism of dislocation proliferation
in detail and present the full classification table of nematic
phases obtained from dislocation-mediated melting in 2D. In
Sec. III, we then construct the corresponding order parameter
O(2)/ZN lattice gauge theory for all CN nematic phases
and discuss the corresponding phase diagram. In Sec. IV,
we focus on the strongly coupled limit of the ZN gauge field
connecting the O(2)/ZN gauge theory to the conventional
theory of nematic phases. Then in Sec. V, we corroborate
our previous results with Monte Carlo data. In Sec. VI, we
consider the emerging deconfined phase of the nematic gauge
theory in detail and discuss the relevant string order parameter
characterizing the topological order. In addition, we show that
the phase transition from the nematic to the deconfined phase
belongs to the XY� universality class. Finally, in Sec. VII,
we comment on the possibility of phase transitions between
different CN nematics within our gauge formalism.

II. CRYSTALLINE DISLOCATION-MEDIATED MELTING

In this section, we consider the general classification
scheme collecting the 2 + 1-dimensional quantum nematic
phases that may arise as descendants from crystalline phases
by topological melting. However, we do not directly address
the existence of such a quantum melting transition from the
parent crystal phase. For the general plausibility as well as
the experimental realization of such a scenario, we refer the

reader to the discussions in Refs. [45,46]. In Sec. II B, we
then introduce the order parameters for the nematic phases
and discuss the nature of the nematic-to-isotropic transition in
terms of our symmetry classification.

A. Melting picture

The guiding principle in our classification is the central
result stating that once the translational symmetries of the
parent crystal space group are modded out, one is left with
the underlying point group of the crystal. In first instance, it
is immediately apparent that, due to the fact that the Burgers
vector is fixed to the Bravais lattice, the condensation of dislo-
cations leads to a nematic phase breaking only rotational order
as dictated by the Bravais structure. Nonetheless, the Burgers
vector describing the dislocation is even more intricately tied to
the crystal symmetry. In particular, the dislocation will have
internal symmetry as imposed by the space group, making up
for a defect that only corresponds to translational symmetry.
Taking into account these “sufficient conditions” in addition
to the “necessary” conditions set by the Bravais structure, we
deduce the general classification table of 2D nematic order,
showing that there are five CN nematic phases.

The point of departure is the observation that as a conse-
quence of the structure of crystal symmetries, disclinations,
topological defects of the rotational order, are massive and
confined, once the translational symmetry is broken in the
rotational plane [47]. This leads to the possibility of prolifer-
ating a system with dislocations, while the disclinations remain
gapped. The process of proliferation of dislocations then, in
turn, effectively restores the translational symmetry and hence
describes a zero-temperature crystal-nematic phase transition
[31]. Due to the precise mathematical description of the crystal
symmetries in terms of space groups, this phase transition can
effectively be described with the respective symmetry. Starting
from the Euclidian group E(2), the elements {A|t} of which
transform a vector r by a rotation A ∈ O(2) followed by a
translation t ∈ R2,

r �→ Ar + t, (1)

a space group G is a subgroup of the Euclidian group that has
the property that the translations T = {t|{I |t} ∈ G} equate to a
linear combination of primitive lattice vectors ti . It is important
to realize that G/T is isomorphic to the point group P . This
essential property still holds for nonsymmorphic groups N ,
comprising point group elements {{B|t}|{B|0} /∈ N}, as all
translational symmetries are modded out.

These notions can then directly be employed to obtain the
distinct nematic phases in 2D. It is instructive to firstly consider
the melting of a simple Bravais lattice, which is effectively
obtained by applying T to the origin. In such a structure, it is
particularly straightforward to visualize the effect of disloca-
tions. A dislocation is characterized by a Burgers vector, which
represents the resultant vectorial lattice distortion. The Burgers
vector is fixed and can only equate to a linear combination of
primitive lattice vectors and hence simply connects lattice sites
of the original lattice, in the present case. As mentioned above,
the condensation of many dislocations effectively destroys the
long-range translational order. However, in absence of discli-
nations, the Burgers vector of each dislocation is a conserved
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TABLE I. The two-dimensional nematic phases or p-atics, which
arise as descendants of crystals by topological melting. The first col-
umn shows the five Bravais lattice structures, with their corresponding
point groups (PGs). Correspondingly, the second column displays
the relevant CN group describing the rotational order associated with
this Bravais lattice. The actual nematic phase is then obtained by
considering the full space group and its associated point group, which
may break the rotational symmetry to a smaller CN subgroup, as
presented in the last two columns.

Bravais lattice CN Bravais Space CN nematic
structure (PG) lattice group (PG) phase

Hexagonal (D6) C6 p6mm (D6) C6 nematic
p6 (C6)

p31m (D3) C3 nematic
p3m1 (D3)

p3 (C3)

Square (D4) C4 p4mm (D4) C4 nematic
p4gm (D4)

p4 (C4)

Rectangular (D2) C2 p2mm (D2) C2 nematic
p2gm (D2)
p2gg (D2)
pm (D1) C1 nematic
pg (D1)

Rhombic (D2) C2 c2mm (D2) C2 nematic
cm (D1) C1 nematic

Oblique (C2) C2 p2 (C2) C2 nematic
p1 (C1) C1 nematic

quantity and the resulting phase thus still has rotational order,
which is exactly captured by the point group of the original
Bravais lattice. We note that the point groups DN also contain
elements describing the associated mirror symmetries. These
additional constraints on the order parameter may be separated
and are not considered in the remainder, as we are solely
interested in the rotational order. Henceforth, we can indicate
the nematic phases by their characteristic CN invariant. As a
result, starting from the point groups underlying the Bravais
lattices, it immediately follows that a C2, a C4 and a C6 nematic
phase may be obtained from dislocation-mediated melting,
see Table I. In particular, the point group of the underlying
Bravais lattice structure pertains to a “necessary” condition
for the rotational order of the nematic phases. It imposes
the maximal symmetric rotational order resulting from the
symmetry breaking of the Bravais structure, which may then
be reduced by the full lattice symmetry.

As a next step, the “sufficient” conditions revealing the
full classification of the nematic phases are then obtained
by taking the space group into consideration. We stipu-
late the fact that the dislocations are intimately tied to
the translational structure of the crystal and therefore reflect the
crystal symmetry encoded by the space group. For example,
if the crystal symmetry is formed by multiple sublattices,
the Burgers vector is still a primitive lattice vector, while
the dislocation has internal structure as dictated by the
translational symmetry. Consequently, when the dislocations
condense the symmetries of the unit cell are reflected via

A

A

A

B

B

B

A
B

FIG. 1. (Color online) Figure displaying the dislocations in a A-
B honeycomb lattice. The dislocation can be decomposed in a “seven”
and “five” ring. On Bravais level, there are six types of elementary
dislocations corresponding with the Burgers vectors (the directions
of which are indicated with the black arrows in the center) oriented
along the six different primitive lattice vectors. However, as a 2π/6
rotation maps A (B) onto the inequivalent B (A), one obtains a C3

nematic rather than a C6 nematic.

the underlying crystal symmetries at short range, whereas the
collective nematic phase displays rotational order as revealed
by the underlying point group. This may be illustrated by
considering the representative example of two inequivalent
triangular lattices arranged into a honeycomb structure, see
Fig. 1. As the Bravais lattice is hexagonal, one could naively
argue that the Burgers vector can attain six distinct values,
creating a C6 nematic, i.e., a hexatic. Crucially, however, the
dislocation has an internal structure imposed by the space
group (cf. the two A-B inequivalent dislocations in Fig. 1),
which breaks the sixfold rotational structure creating a C3

nematic, connecting to the general statement that one should
be left with the point group when the translational symmetry is
effectively restored. It is straight forward to apply this general
procedure to any 2D space or so-called wall paper group.
As shown in Table I, starting from the 17 space groups, this
procedure leads to five different nematic states denoted as
CN , where N = 1,2,3,4,6. We finally note that these classes
of nematics are limited to the specific context of dislocation
melting. In contrast, there are quasicrystals with C5 or C7

symmetry. However, the dislocation melting mechanism for
quasicrystals is still in the dark. Therefore we exclude these
cases and only consider nematic phases that can be obtained
as descendants of real crystals.

B. Order parameter for nematic-to-isotropic phase transition

Having established the allowed symmetries of the p-atic
phase (p = N ) by dislocation melting, we now review the
Ginzburg-Landau-Wilson order parameter theory, describing
the CN nematic to isotropic liquid phase transition. The
simplest orientational order parameter with a CN symmetry in
two dimensions is the complex bond-order field [33,34,38,48]

zN (x) = eiNθ(x), (2)
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where θ (x) is the local angle of the orientational degree of
freedom with respect to some fixed axis.

In the nematic ordered phase 〈eiNθ(x)〉 �= 0, whereas in
the isotropic liquid 〈eiNθ(x)〉 = 0. This immediately leads
to the Ginzburg-Landau-Wilson action (in imaginary time
formalism, see Appendix A)

Seff = −Jeff

∫
d3x(∂μz∗

N∂μzN + c.c.), zNz∗
N = 1. (3)

Here we emphasize that the action is supplemented with the
constraint and the physical symmetry breaking order parameter
field is given by zN that has a well defined continuum limit in
the neighborhood of the transition, in contrast to z1 = eiθ(x).
With this caveat, the universality class of the CN nematic-to-
isotropic transition is XY.

A representation in terms of real order parameters is
obtained as follows. We can construct a corresponding CN

invariant tensor order parameter from the effective action
Eq. (3) by reassembling the imaginary and real part of eiθ(x)

into a two-dimensional real vector 
n to form higher order
tensors. To this end, following Park and Lubensky [38], we
introduce an N -rank complex tensor field for zN :

�N = eiNθ ε− ⊗ ... ⊗ ε−︸ ︷︷ ︸
N times

, (4)

where ε− = 1√
2
( 
e1 − i
e2) is a circular basis for the projection,

in the sense that the rotor 
n can be expressed as 
n =√
2Re(eiθ ε−) in this basis.
Rephrasing the effective action Eq. (3) in terms of the tensor

bases ε− ⊗ ... ⊗ ε−, we obtain

Seff = −Jeff

∫
d3x[(∂μRe�N )2 + (∂μIm�N )2], (5)

where Re�N and Im�N are N -order tensors contracted as

(∂μRe�N )2 = ∂μ(Re�N )abc···∂μ(Re�N )abc···. (6)

This consideration is general since both Re�N and Im�N

are symmetric for all pairs of indices, which makes different
contractions of the tensors equivalent. Furthermore, an anti-
clockwise π/2 rotation on ε− just interchanges the real and
imaginary parts of �N , which are therefore redundant. This
allows us to consider only [38]

QN =
√

2Re�N, (7)

where QN is a traceless and symmetric N th rank tensor.
Equation (5) becomes

Seff = −Jeff

∫
d3x(∂μQN )2. (8)

Note that in the case N = 2, we retrieve the familiar order
parameter for a 2d classical liquid crystal Qab ∼ (nanb −
1
2δab). Similarly, for general N , a generalized Qabc... tensor
can be obtained. For example, for N = 3, one gets

Q3 = Qabc ∼ nanbnc − 1
4 (naδbc + nbδca + ncδab). (9)

This order parameter can finally be employed (in a “soft spin”
formulation) to obtain a Ginzburg-Landau-Wilson theory,
which is nothing but a series expansion in powers of QN

in addition to lowest order gradients of QN . The allowed

terms and coefficients are then as usual determined by a
set of phenomenological parameters and global rotational
invariance. Note that already for N = 2 the term trQ3 vanishes
identically in two dimensions, and the transition is expected to
be in the XY universality class.

III. GAUGE THEORY DESCRIPTION OF QUANTUM
LIQUID CRYSTALS

Let us now turn to an another route to address nematic
ordering and phase transitions. In this scenario, instead of
introducing a higher rank tensorial order parameter with the
correct point group symmetries, one encodes the residual CN

symmetry of the nematic by introducing gauged vectorial
degrees of freedom, as in Refs. [36,39]. There the authors
considered such a formulation especially fruitful since the
symmetry of the order parameter as well as the role of
topological defects are captured by the theory throughout
the phase diagram. In fact, the gauge-defect term of their
classical nematic leads to the possibility of a second order
nematic-isotropic phase transition in three spatial dimensions.
Apart from capturing the symmetries and the topological
defects, our motivation for the gauge description of quantum
nematics is also the possibility of strongly coupled quantum
system with “emergent” nematic ordering and associated
gauge fields. In this respect, our approach is reminiscent of
the so-called deconfined criticality scenario [49]. On the other
hand, various realizations of quantum gauge-matter systems
are relevant in quantum information theory [50,51].

In general, the introduction of “fake” gauge symmetries
is always allowed, since they merely represent redundancies
in the full set of degrees of freedom in the theory. After
fixing or eliminating the gauge degrees of freedom, the
original physical variables are recovered. In particular, this
applies to any physical observable, which are always required
to be gauge invariant, as well as to any possible order
parameter for a symmetry breaking phase transition of the
orientational degrees of freedom, since it is impossible for
a gauge noninvariant order parameter to develop a nonzero
vacuum expectation value. In addition to correctly capturing
the nematic degrees of freedom, the gauge formulation of the
problem allows us to directly apply existing results available
in the gauge-theory literature.

Since the symmetry group to be gauged is the discrete group
CN � ZN , the most straightforward approach is to define the
theory on an auxiliary lattice. The resulting gauge theory,
describing the CN nematic on a lattice, is given by O(2) vector
matter coupled to a ZN gauge field and will be referred to
as O(2)/ZN theory in the remainder of this work. We note
that it is the coupling to the gauge field that allows for the
correct description of the CN -nematic with only the residual
O(2)/ZN orientational degrees of freedom. This is in essence
a generalization of the O(3)/Z2 theory used to describe the
uniaxial nematic in three spatial dimensions [36,39].

To set the stage, let us first consider the N = 1 case, which
in our context could describe, e.g., a ferroelectric nematic fluid
[52]. Obviously, the C1 nematic is a special case since it is not
invariant under any nontrivial discrete subgroup of O(2). The
effective theory for the orientational order is simply the O(2)
vector or XY model in 2 + 1 dimensions. The SO(2) � U (1)
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vector/rotor 
ni can be parametrized by a complex phase ni =
eiθ . As a result, the Euclidean action of the lattice theory in
the imaginary time formalism takes the following form (see
Appendix A)

SXY = −J

2

∑
〈ij〉

(n∗
i nj + c.c.) = −J

∑
〈ij〉

cos(θi − θj ), (10)

where J > 0 is the nematic (ferromagnetic) coupling on
the regularization lattice. The ordered phase of the XY
model, with long-range orientational order 〈ni〉 = 〈eiθi 〉 �= 0,
then describes the C1 nematic phase and the disordered
rotationally invariant phase pertains to the isotropic liquid
phase. The nematic-isotropic phase transition can be viewed as
the profileration of topological defects, the 2π vortices of the
XY model. These defects disorder the orientational order for
J < Jc, the critical value of J , and finally lead to the liquid
phase with the associated nematic rigidity J → 0 at long
distances.

A. ZN lattice gauge theories for nematics

For the CN≥2 nematic phases, however, a pure XY model
is not enough since it cannot reflect the symmetry of the
orientational degrees of freedom in the ordered phase. Instead,
we introduce a ZN gauge field that is minimally coupled
to the rotors ni . The gauge-theory action can then be
written in imaginary time as (see, e.g., Refs. [39,40,42] and
Appendix A)

SN = SI + SG (11)

with

SI = −J

2

∑
〈ij〉

(n∗
i Uijnj + c.c.), (12)

SG = −K

2

∑
�

∏
〈ij〉∈�

Uij + c.c. (13)

The term SI is the lattice version of the minimal coupling of
ni to a ZN gauge field Uij ∈ ZN , living on the lattice links,
and J > 0 denotes the nematic (ferromagnetic) interaction.
SG represents the simplest gauge invariant action for the
gauge field Uij , where K is a coupling constant related to
the gauge field strength, and the symbol “�” represents the
elementary plaquettes of the cubic lattice composed of four
nearest neighbor links.

Similar to the XY model, the rotor field is represented
as the complex phase ni = eiθi and the Uij ∈ ZN can then
simply be parameterized by a U (1) phase: Uij = e−iϕij with
ϕij = 2mijπ/N , with mij = 1,2, . . . ,N − 1. Our orientation
conventions are as shown in Fig. 2 and note that Uji = U−1

ij .
As a result, the action (11) can finally be rewritten as

SI = −J
∑
〈ij〉

cos (θi − θj + ϕij ), (14)

SG = −K
∑
�

cos(ϕ�), (15)

where we denote the lattice curl of ϕij as ϕ� = (
∑

〈ij〉∈� ϕij ).
Written in this form, the action is clearly a generalization of

FIG. 2. (Color online) The conventions of the XY-ZN lattice
gauge-theory. The SO(2) rotors ni are defined on lattice sites (red
arrows). Gauge fields Uij are defined on the lattice links with
orientations (black arrows). Note that the space-time lattice is an
auxiliary lattice regulating the theory, while the point group symmetry
of the nematic is reflected by introduction of the gauge fields. For
example, in the Z2 case, the gauge symmetry makes reduces the
original rotor at site l in to a headless director (red and red dashed
arrow). A disclination, represented by a frustrated plaquette (blue
minus sign), is a configuration where the gauge links combine to a
nonzero ZN vorticity of the rotor field when encircling the frustrated
plaquette.

the XY model including additional gauge degrees of freedom.
These are, however, only introduced to achieve the nematic
point group symmetry, since the action SN is now invariant
under arbitrary ZN gauge transformations

θi → θi + 2π

N
,

ϕij → ϕij + 2π

N
, for all adjacent links 〈ij 〉, (16)

for each lattice site i. Before going in to the details of the gauge
theory and its phase structure, we will now first motivate the
above form of the action as the description of the possible
nematic order in 2 + 1 dimensions.

B. Topological defects and gauge fields: ZN

disclinations in a nematic

The form of the action SI in Eq. (14) clearly reflects the
point group symmetry CN � ZN in the orientational rotor field
θi . In contrast, the term SG with coupling K has up to now only
been justified by the fact that it is allowed by symmetry. We
will now show that it represents the elementary disclinations
in the nematic and therefore plays a key role in the universal
properties of the CN nematics.

The only nontrivial topological defects in the CN nematic
phase are the disclinations. We expect that the phase transition
and lack of nematic order is associated with the profileration
of these defects. Due to the ZN symmetry, an elementary
disclination is represented by a defect (Volterra-Frank) angle
of θdefect = 2π

N
. Such an elementary ZN disclination can be

constructed on the lattice as a gauge link configuration {Uij }
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satisfying ∏
〈ij〉∈�

Uij = e2πi/N = eiθdefect ∈ ZN, (17)

around a particular plaquette �, since then the rotor field
ni acquires a rotation of θdefect when encircled around � in
an anticlockwise fashion, see Fig. 2. Furthermore, clearly
this defect angle is a gauge invariant property of the gauge
field configuration {Uij }. In the imaginary time formalism,
the gauge fields can be taken nontrivial only on spatial slices
without loss of generality, leading to ZN “magnetic” fields.
In fact, the gauge field allows us to construct all the defect
angles representing disclinations of the point group ZN as
configurations of the gauge fields {Uij }. On the other hand, a
full 2π vortex is captured by the configurations of the rotor
angle θi as in the XY model and does not require a nontrivial
ZN gauge-field configuration.

Inspection of the term SG now reveals that the extra gauge
coupling K represents a ZN defect (or a disclination or a
vortex) suppression term. In fact, the role of K is an effective
disclination core energy, and is completely analogous to that
appearing in Ref. [39], or to the core energy appearing for the
2π vortices in the XY model (usually parametrized in terms
of the defect fugacity y). Although one can of course assign
different energies Ki to the N different disclinations in ZN ,
we have for simplicity assigned the same coupling to all defect
angles. The generalization will be briefly discussed in Sec. VI.

C. Universal properties of the O(2)/ZN theory

As shown below, the O(2)/ZN gauge theory (11) is
characterized by a phase diagram that includes at least three
phases: an isotropic liquid phase with disordered matter
field and ZN gauge fields confined, a topological phase
associated with deconfined ZN gauge fields, and finally an
ordered nematic phase of matter field ni , similarly as found
in Ref. [39]. Before turning to that discussion, we first want
to describe how the gauge field and gauge symmetries are
expected to affect the universal and critical behavior of the
model as compared to the C1 or XY case.

It is instructive first to consider the limit K → ∞, where
the ZN disclinations are completely suppressed. This sets∏

〈ij〉∈�
Uij = 1 for all � in the lattice, (18)

which allows us to write Uij = uiu
∗
j for ui = e2πimi/N ∈ ZN

without loss of generality (on a topologically trivial lattice).
The resulting action is of the form

SN [K → ∞] = −J
∑
〈ij〉

cos

[
θi − θj + 2π (mi − mj )

N

]

= −J
∑
〈ij〉

cos(θ ′
i − θ ′

j ), (19)

which, by gauge symmetry, is just the partition function of the
XY model in the variables θ ′

i = θi + 2πmi/N , and includes
only 2π disclinations. For more detail, see the calculation in
Appendix C 2. In fact, this argument rigorously shows that by
introducing the ZN gauge symmetry, the universal and critical

properties are only affected for finite K , since the K → ∞
partition function is that of the XY model up to a irrelevant
multiplicative constant coming from the gauge group volume
(similarly as in, e.g., the Mattis Ising spin glass [53]).

We thus see that the full phase structure of the CN

symmetric nematic is only revealed by also considering the
role of the ZN disclinations appearing at finite K . A similar
argument using gauge invariance and summing over the
gauge transformations for any finite K proves that only the
gauge invariant content of the matter {ni} and gauge fields
{Uij } is of relevance to the phase transition and universal
properties (as, e.g., only gauge invariant disorder or frustration
is relevant in spin glasses [53]). When combined with the well
known triviality of all gauge noninvariant correlators (Elitzur’s
theorem), this line of arguments essentially completes the
proof of the relevance of our gauge model Eq. (11) to describe
the universal properties of nematic phases in 2 + 1 dimensions
with CN point group symmetries.

D. O(2)/ZN phase diagram

The O(2)/ZN effective theory contains XY-type rotor fields
and ZN gauge fields, which both can go through phase
transitions as a function of the couplings J and K . The
topology of the phase diagram is of course reminiscent of
that in the O(3)/Z2 lattice gauge theory [36,39] and can
be determined similarly by analyzing the phases appearing
at suitable limiting values of J and K . This results in the
phase diagram shown schematically in Fig. 3, which we now
summarize.

(i) J → 0 limit. The matter becomes irrelevant and the
theory describes a ZN lattice gauge theory with action SG.
The ZN gauge field undergoes a confinement-deconfinement
phase transition as a function of K [54,55]. In the confined
phase for small K , the gauge field has large fluctuations leading
to a condensate of the gauge fields that renders well-defined
isolated fluxes absent. On the other hand, in the deconfined

FIG. 3. (Color online) The schematic phase diagram of the
O(2)/ZN gauge theory. The CN nematic phase has long-range
orientational order and ZN disclinations. In the isotropic liquid phase
at small J and K , the ZN disclinations are condensed and the
orientational order is destroyed. In the ZN�2 deconfined phase, only
N tuples of ZN�2 vortices are condensed, leading to a phase with free
ZN disclinations but no long-range orientational order.
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phase at large K , the flux excitations are gapped and isolated
ZN fields exist in the spectrum. The characteristic behavior
of the gauge field in these phases will also extend up to a
region of finite J [56–58]. Moreover, the deconfined phase has
topological order, characterized by a nonlocal order parameter.
This will be discussed in Sec. VI.

(ii) J → ∞ limit. For J large (but finite), the SI term
suppresses all nongauge fluctuations of rotor fields, since
cos (θi − θj − ϕij ) = 0, and thus the rotor and gauge fields are
ordered, independent of K . Even for K = 0, an excitation of
the gauge flux is still gapped via the SI term and the spectrum
contains Coulomb-confined neutral pairs of gauge excitations
with finite energy. Hence there is no phase transition as a
function of K for large enough J . We identify this phase with
ordered rotor fields and free ZN gauge flux excitations as the
CN nematic phase.

(iii) K → ∞ limit. As shown in Sec C 2, the partition
function reduces to that of a regular XY model. As a result
of this equivalence, the system exhibits a three dimensional
XY-type phase transition along the line K = ∞. However,
the phase transition of the matter field is characterized by the
ZN gauge invariant composite field eiNθ rather than eiθ and
this affects the universality class of the transition. In the case
N = 2, this has been studied by various authors [56–58] and
was referred to as the XY� universality class, which we will
also adopt in the remainder.

(iv) K → 0 limit. Here the gauge fields do not have inde-
pendent dynamics and the decrease of the nematic coupling J

drives a phase transition between the CN nematic phase and the
isotropic liquid phase (the ZN confined phase with disordered
rotors). On symmetry grounds this transition is expected to be
in the XY universality class and this will be discussed in more
detail in Sec. IV.

E. Dual description

There exist a well known dual formulation of the XY
model that emphasizes the role of the defects or vortices.
This is obtained by treating the matter field θi in the
Villain approximation, as recollected in Appendix B. The
dual formulation shows manifestly how the gauge symmetry
encodes for the disclinations and their properties in the phase
structure of our gauge model of nematics.

The corresponding dual action of Eqs. (12) and (13) can be
written as

S̃N = − 1

8π2J

∑
�̃

A2
�̃ − i

∑
〈ĩ j̃〉(�)

Aĩj̃

(
J XY

� + ϕ�
2π

)

−K
∑
�

cos (ϕ�), (20)

where Aĩj̃ is a noncompact U (1) gauge field dual to the rotor
field θi . Here, ĩ label the sites, 〈ĩ j̃〉 the links, and �̃ the
plaquettes in the dual lattice and are canonically associated,
respectively, with the cubes, plaquettes and links of the original
lattice. The dual gauge-field strength is A�̃ = ∑

〈ĩ j̃〉∈�̃ Aĩj̃

and the original ZN gauge fields are ϕij = 2πmij /N with mij

integer mod N .
Both the XY vortices, represented by the integer current

J XY
� , and the ZN fluxes are charged under the dual gauge field

Aĩj̃ , as in the normal XY duality. However, from the second
term in Eq. (20) we see that the ZN vortices are fractionally
charged and this leads to a statistical ZN phase that is attached
to a flux of the ZN gauge field and to the flux of the dual gauge
field A�̃, which corresponds to the rotor current in the duality.
Comparing this to the charge of the usual 2π vortices J XY

� ,
we see that in the ordered phase of O(2)/ZN the ZN vortices
indeed represent the ZN disclinations in the CN nematic.

Regarding the dual description of the phase structure we
proceed as follows. Firstly, we see that the ordered phase
at J large is determined by the dual gauge field in the
Coulomb phase of U (1) gauge theory and the original ZN

gauge symmetries. The phases with disordered rotor fields
are characterized by a (Higgs) condensate of the 2π vortices
J XY

� breaking the associated U (1)-gauge symmetry, just as
in the usual XY duality. In fact by referring to the coupling
term in Eq. (20), the normal XY transition can be considered
as a condensation of N tuples of ZN vortices. This effect,
however, does not include the fractional ZN vortices and
leaves an intact ZN gauge symmetry in the system for K

sufficiently large. At energies below the dual U (1)-photon
mass gap, this disordered phase at large K is nontrivial and
described by the deconfined phase of pure ZN gauge theory
with topological order. Similar Zq topological phases appear
in, e.g., U (1)-gauge theory with q-charged matter [59–61] and
also in a 3+1-dimensional compact U (1)-gauge theory with
fractionalized flux lines [62], which is the generalization of
the dual description Eq. (20) of our O(2)/ZN model to higher
dimensions. We will return to the detailed characteristics of
the deconfined (topological) phase later in Sec. VI.

Finally, as K decreases, also the ZN vortices can condense
leaving no free gauge degrees of freedom describing a
completely disordered and isotropic liquid phase. By the usual
arguments of duality, the elementary excitations of this phase
carry charges 2π/(2π/N ) = N under the ZN gauge field, i.e.,
are necessarily gauge invariant.

IV. K → 0 LIMIT OF THE O(2)/ZN THEORY

In this section, we focus on the limit K → 0 of the
O(2)/ZN gauge theory that features the nematic-to-isotropic
phase transition. This bears most experimental relevance, as
the deconfined phase for large K is intimately related with the
introduction of the gauge degrees of freedom and therefore
contains auxiliary physics in addition to the nematic degrees
of freedom.

We now consider the phase transition occuring in the K →
0 limit. It is intuitively clear that when also J is small, the
rotor fields are disordered and the ZN gauge field is strongly
fluctuating, describing an isotropic liquid phase. Increasing J

will then align the rotor field ni and drive a phase transition
from the isotropic liquid to the CN nematic phase. In the K →
0 limit, the action Eq. (11) reduces to

SN [J,K = 0] = −J
∑
〈ij〉

(Uijn
∗
i nj + c.c.)

= −J
∑
〈ij〉

cos(θi − θj + ϕij ). (21)
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The ZN gauge fields Uij on different links are decoupled
and can therefore be traced out to obtain an effective action
for the matter fields. It is convenient to do so in the Villain
approximation of the action in Eq. (21) (see Appendix B),

e−Seff =
∑
{ϕij }

e−SN [J,K=0] =
∑
{φi,μ}

∏
〈i,μ〉

eJ cos(�μθi+φi,μ)

→
∑
{ϕi,μ}

∑
{liμ}∈Z

∏
〈i,μ〉

NV (J )e− JV
2 (�μθ+ϕiμ+2πliμ)2

,

(22)

where NV (J ) is an unimportant (analytic) normalization factor.
The sum over the gauge fields can now be reorganized as
follows:

e−Seff �
∑

{miμ}∈ZN ,{liμ}∈Z

∏
〈i,μ〉

NV (J )e− JV

2N2 (N�μθ+2πmiμ+2πNliμ)2

=
∑

{siμ}∈Z

∏
〈i,μ〉

NV (J )e− JV

2N2 (N�μθ+2πsiμ)2

= e−SV [JV /N2] × NV (J )Nl , (23)

where SV [J ′] is the action of the 2π -periodic Villain model
with coupling J ′. This model has a critical point at J ′

c � 0.33 in
three dimensions [63] and it follows that the model of Eq. (23)
is critical at coupling JV c = J ′

cN
2. Using the relation between

the original coupling J in Eq. (21) and the JV in the Villain
model [63],

e
− 1

2JV � I1(J )

I0(J )
, (24)

1 2 3 4 5 6 7
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J c

FIG. 4. (Color online) The K = 0 critical value Jc of the
nematic-to-isotropic transition as a function of N from Monte Carlo
data (blue dots). The line shows the critical coupling from the Villain
estimate Eq. (24).

we obtain an estimate for the critical coupling Jc(JV c) of
the O(2)/ZN model in the limit K → 0. These values agree
rather well with the critical coupling from our Monte Carlo
simulations of the model in Eq. (21), as shown in Fig. 4. We
further note that the Gaussian model of Eq. (23) itself of course
also corresponds to a 2π -periodic cosine model, however only
in terms of the gauge invariant variable Nθi as

Seff � −Jeff

∑
〈ij〉

cos N (θi − θj ). (25)

This is to be expected, since only gauge invariant terms
appear after we have summed over the configurations of the
gauge field. Close to the transition, this exactly reproduces
the Ginzburg-Landau description of the nematic-to-isotropic
transition in the XY universality class.

V. MONTE CARLO RESULTS

We have also simulated our gauge model using Monte Carlo
in order to verify the topology of the phase diagram discussed
above as well as the characteristics of the nematic-to-isotropic
phase transition in the limit K → 0.

A. K = 0 limit

We simulated the gauge model for K = 0 to verify that
the transition is in the XY universality class and check
the Villain estimates Eq. (24) for the critical couplings Jc

as a function of N . To determine Jc qualitatively at K =
0, we employ standard Mote Carlo simulations, using the
metropolis algorithm on a cubic lattice with Ns = 123 sites
with periodic boundary conditions. The obtained ensembles
of equilibrium states were corroborated by comparing data
obtained by heating ordered initial states at large J and cooling
disordered initial states at small J . The critical couplings Jc for
different N can readily be estimated by computing the specific
heat CV = 1

Ns
(〈S2

N 〉 − 〈SN 〉2), local magnetization m = 〈|�i |〉
and susceptibility χ = Ns(〈|�i |2〉 − 〈|�i |〉2) for the gauge
invariant quantity �i = eiNθi , and associating developing
singularities to a phase transition. Note that for a finite size
system, the maximum of CV and χ , which are used to judge a
phase transition, are not exactly at the critical point. However,
they can in general offer an estimation for the critical coupling
provided the system is large enough. The data for all N � 6
are consistent a transition in the XY universality class. Our
values for the critical couplings Jc are shown in Fig. 4 along
with the values obtained from the Villain approximation.

B. Phase diagrams

We have also simulated the gauge model (14) and (15)
with Monte Carlo method using the Metropolis algorithm on
systems of size Ns = 123 with periodic boundary conditions
in order to verify the phase structure in the K-J plane. To
obtain the rough topology of the phase diagram, we monitored
the peaks of the specific heat CV and the susceptibility χ and
identified them with the critical values of the couplings Jc,Kc.
Our results for the cases N = 2 and N = 6 are shown in Figs. 5
and 6. As we have already noted, the critical value of Jc(N ) at
K = 0 grows roughly as N2. On the other hand, the transition
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FIG. 5. (Color online) The phase diagram of O(2)/Z2 theory.
The phases are identified as in Fig. 3.

in the K → ∞ limit is fixed at J XY
c � 0.45. The behavior of

Kc(N ) as a function of N for the pure gauge theory is also
known [54], with Kc growing for larger N . This results to the
fact that the size of the deconfined phase shrinks as a function
of N , as is evident from Figs. 5 and 6.

This comes as no surprise. First of all, when N → ∞, the
XY-ZN theory Eq. (11) tends to a XY-U (1) theory, which is
known to exhibit no phase transition for the K = 0 line [41].
Specifically, we can explicitly see that when K = 0 in the strict
N → ∞ limit, the partition function becomes

Z =
∫

D[θi]
∫

D[ϕij ]e
∑

〈ij〉 J cos(θi−θj −ϕij )

= (2π )Ns+Nl I0(J ), (26)

where I0 is a modified Bessel function and Ns , Nl are the
number of sites and number of links respectively. This function
is analytic for all finite J . In fact, the partition function obtained
is that of an XY chain of length (Ns + Nl), which exhibits
no phase transition for any finite J . Secondly, in the limit

0 1 2 3 4
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FIG. 6. (Color online) The phase diagram of O(2)/Z6 theory.
The phases are identified as in Fig. 3, note the shrinking size of
the deconfined phase (enlarged in the inset) as N grows.

N → ∞, the gauge group becomes a compact U (1), and the
whole line of phase transitions from the nematic to the isotropic
liquid as well as the deconfined phase of the gauge theory
disappear for any finite K [41,64,65], leaving a trivial phase
diagram with no transitions.

VI. BEYOND CONTINUOUS ROTATIONAL
SYMMETRY BREAKING

Although the existence of the ZN deconfined phase for
large but finite K is mainly an academic question when
considering spatial rotational symmetry breaking, such a
deconfined phase comes alive in the presence of internal
rotational symmetry: a case in point being the spin degree
of freedom. In this section, we first enlighten the physics of
the deconfined phase by discussing the connection between
the ZN deconfined phase, stripe fractionalization, and the spin
nematic phase (such as that of possible relevance to the high-Tc

superconducting cuprates). We then discuss the topological
nature and topological order parameter of the deconfined phase
and the corresponding phase transition to the nematic.

A. The deconfined phase

The deconfined phase of our gauge model in Eqs. (14)
and (15) is a phase exhibiting no long-range order in the
rotor fields due to the proliferation of a subsetof topological
defects. We have already described this phase transition in
terms of the dual formulation of our model in Sec. III E. To
see how this happens in the original formulation, consider the
defect structure implied by the different terms in Eqs. (14)
and (15). The ZN disclinations carry the core energy ∼K ,
whereas the 2π vortices have only an implicit core energy
∼J coming from the cosine term of the XY model. Therefore
when K is large, the ZN disclinations are gapped but at small
enough J ∼ J XY

c , the 2π -vortices will become gapless and
proliferate. However, at the same time, the 2π vortices are
N -fold tuples of ZN vortices and are favored energetically.
Once the XY vortices proliferate, the matter field will disorder
and leave only the ZN gauge degrees of freedom. Since for
large K the gauge fields are deconfined, this phase is morally
equivalent to the deconfined phase of the pure gauge theory
[66] and we will present a suitable string order parameter for
this phase transition that involves both the matter and gauge
fields.

For this phase to appear, we thus need conditions were it is
possible to tune the nematic coupling J and the core energy
K independently. In the context of a quantum nematic liquid
crystal, this is basically equivalent to promoting the gauge
fields to be independent degrees of freedom in addition to
the orientational degrees of freedom. If the core energy of a
single disclination (as described by the K in the plaquette
term) is very large, they can bind together to form 2π

disclinations and liberate themselves from the ZN defect sup-
pression. The subsequent proliferation of these 2π dislocations
makes the system enter a nontrivial liquid phase without
long-range nematic order but free disclinations [39] that is
described by the deconfined phase of the ZN lattice gauge
theory.
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To understand this phase, we can make an analogy to the
spin nematic phase in the context of stripe fractionalization
[23,67], where such physics is indeed encountered. Consider
an antiferromagnet with long-range stripe order in both charge
and spin density. Charge stripes act as domain walls or
equivalently magnetic π–phase boundaries separating the Neel
ordered regions. In this case, the elementary topological defect
of the stripe order is a spin dislocation on the bipartite lattice,
carrying a half electric charge. Such a defect causes spin
frustration due to the bipartite antiferromagnetic order: the
Neel vector changes direction when passing through a charge
stripe. This resulting spin frustration can then effectively
raise the core energy of the stripe dislocation. However,
this energy punishment can be evaded by binding two stripe
dislocations into a double dislocation, which is effectively
a charge dislocation. In the case of large energy cost per
spin frustration, one thus identifies a scenario in which the
stripe order is melted by the proliferating of only charge, i.e.,
pairs of the elementary dislocations. The resulting phase is
a stripe liquid exhibiting effective translational and rotational
symmetry. Nevertheless, this is an unusual liquid and in fact
described by the deconfined phase of a Z2 lattice gauge theory
where Z2 vortices (visons) have the interpretation of stripe
dislocations. Such a spin nematic phase was first proposed by
Zaanen et al. [23,67] and further explored in Refs. [68–70]. In
particular, in Ref. [70], various stripe loop metal phases were
studied.

B. Topological order parameter and phase transition at large K

Let us finally briefly comment on two characteristics of
the deconfined phase: the topological string order parameter
and the nature of the phase transition for the matter fields,
relegating the details to the Appendix C. In addition to the
field ni = eiNθ that constitutes an order parameter for any
phase transition driven by the coupling J involving the CN

ordered nematic, we need a topological order parameter for the
gauge fields that is also adequate in the presence of charged
matter fields and can identify the deconfined phase. It turns
out that to this end we can define a string order parameter
including both the rotor fields and the gauge fields known as
the the Fredenhagen-Marcu order parameter [43,44]:

R(CL) ≡ O(CL/2)√
W (CL)

=
〈
n∗

k(
∏

ij∈C1/2
Uij )nm

〉
√

〈∏ij∈C Uij 〉
. (27)

In the above, CL/2(k,m) is an arbitrary path of length L/2
connecting lattice sites k and m and W (CL) refers to a
corresponding Wilson loop along a full loop CL of length
L with CL/2 ⊂ CL. It can be shown [43,44,61] that this indeed
distinguishes the ZN deconfined phase from the CN nematic
phase and the isotropic liquid. Specifically,

lim
L→∞

R(CL) = 0, ZN deconfined phase,

lim
L→∞

R(CL) �= 0, CN nematic or isotropic liquid.

The phase transition between the confined and deconfined
phases in the pure gauge theory is captured by the Wilson
loop, and the above can be considered as generalization of this
in the presence of matter fields.

Considering the phase transition in terms of the matter
fields, the nematic-deconfined phase transition can be under-
stood analytically in the K → ∞ limit, as shown in detail in
the Appendix C. Namely, in this limit, one can readily prove
the equivalence of the matter coupled gauge theory of Eq. (11)
to that of the XY model. This result actually not only holds
for the gauge model with uniform coupling J , but also for the
richer case of arbitrary couplings. One must, however, be aware
of the caveat that the gauge invariant quantity (ni)N = eiNθi

is a composite field in the effective XY model at K → ∞.
Specifically, the correlation function can be written as

〈(n∗
k)N (nm)N 〉K→∞ = 〈eiN(θk−θm)〉XY. (28)

This affects some aspects of the universality class of the
transition, for instance the anomalous dimension η of the
order parameter [56,57] and is usually referred to as the XY�

universality class. The qualitative features of this universality
class are expected to carry over to finite K up to the tricritical
point, which is consistent with our Monte Carlo simulations,
with the important addition of the phase transition of the
gauge fields. We conclude that the phase transition is fully
described by the topological string order parameter and the
XY� transition of the matter fields.

VII. NEMATIC PHASE TRANSITIONS

Nematic phases are usually analyzed within the Ginzburg-
Landau-Wilson framework in terms of phenomenological
continuum theories for the nematic degrees of freedom at the
phase transition, as we discussed in Sec. II B for the nematic-
to-isotropic transition. Apart from this phase transition, a more
interesting example of a nematic phase transition based on
symmetry breaking is encountered by starting from a nematic
with high symmetry and driving a phase transition to a nematic
phase with lower symmetry.

In our context this means that the CN nematic phase can, in
principle, also undergo a phase transition that breaks the CN

symmetry to a lower subgroup. Here, we point out how one
can incorporate simple arguments within our gauge formalism
to describe such phase transitions between different nematics
that would be more involved in terms of phenomenologically
constructed Landau-type theories.

A. Phase transitions between different CN nematic phases

Here we describe phase transitions between different CN

nematics by additional matter fields with Higgs terms. Since
the CN symmetry of the nematic is described by the ZN gauge
symmetry, the addition of suitable Higgs terms is capable of
“breaking” that gauge symmetry to a specific subgroup. We
note that until now we have described the phase transitions by
the condensation of the gauge defects, whereas the Higgs terms
arise from nontrivial background fields, as in, e.g., the stripe
phases. For example, the hexatic phase with a C6 symmetry
can in principle break to a C3 nematic, if there is a possibility
to introduce the A and B sublattice inequivalence as shown in
Fig. 1.

In the O(2)/ZN gauge theory, this phase transition can
easily be accounted for in the ZN gauge sector. Namely, it can
be driven by an extra Higgs term in addition to the ZN gauge
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theory Eq. (13):

SHiggs = −M
∑
〈ij〉

σ ∗
i U

N/2
ij σj + H.c., (29)

where σi is an Ising (or Z2) field with charge N/2. When the
Ising field is ordered 〈σi〉 �= 0, we can pick the unitary gauge
where σi ≡ 1∀i and therefore the Higgs field completely drops
out from the dynamics. However, despite the Higgs term, the
theory still has a gauge symmetry given by ZN/2, as both σi

and SHiggs ∼ ∑
〈ij〉 U

N/2
ij are invariant under ϕij → ϕij + 4π

N
.

Now in order to make the remaining degrees of freedom
explicit and as remarked earlier, it is consistent to assign
different core energies K for the ZN disclinations. Separating
the ZN/2 configurations in the gauge fields as

ϕij = 2π

N
mij = 2π

N
(2lij + kij ), (30)

where lij = 0,1, . . . ,N
2 − 1 ∈ ZN/2 and kij = 0,1 ∈ Z2, we

can adjust the gauge field term as

K
∑
�

cos(ϕ�) →

∑
�

δk�,0K0 cos
(4π

N
l�

)
+ δk�,1K1 cos

[
2π

N
(2l� + k�)

]
,

(31)

which is just a Z2 character or conjugacy class expansion in
terms of the element ϕ�. Clearly we can have independent
gauge dynamics for the ZN/2 subgroup of ZN = Z2 × ZN/2.

The symmetry of the Higgs ordered phase is readily
apparent when we dualize the theory with the additional Higgs
term Eq. (29) in the unitary gauge

S̃N = − 1

8π2J

∑
�̃

A2
�̃ − i

∑
ĩ,μ(�)

Aĩ,μ

(
J XY

� + 2l�
N

+ k�
N

)

−
∑
�

K0δk�,0 cos

(
4πl�
N

)

−
∑
�

K1δk�,1 cos

[
2π (2l� + k�)

N

]

−M
∑
〈ij〉

cos(πkij ). (32)

In the limit M large, the gauge field completely freezes to
the ZN/2 subgroup with kij = 0. As a result, one obtains a
O(2)/ZN/2 gauge theory and the factor in the mutual gauge
coupling term attains a value of 2/N instead of the original
charge 1/N for the ZN . Hence the Higgs term (29) indeed
effectively drives a phase transition from CN to CN/2 nematic
as a function of M and the transition is in the Ising universality
class.

To see this, note that in effect we have a “Z2/Z2” gauge
theory for σi , although the Z2 gauge field coupling to σi is of
course the original ZN gauge field in the system. The phase
diagram for such theories was discussed in Ref. [41], where
it was shown that the phase transition to the Higgs phase as a
function of M is given by the Z2 Ising transition.

Such extra discrete fields σi arise from some other degrees
of freedom system in the original system, for example the
“valley” symmetry of A-B sublattices on the honeycomb
lattice. In the disordered phase (i.e., no “valley” symmetry
breaking), we can integrate out σi in Eq. (29) to obtain an
invariant term UN

ij that is irrelevant for the ZN gauge theory.
In contrast, in the symmetry breaking phase the σi field (that
arises spontaneously or explicitly) gives rise to the Higgs term
Eq. (29). Hence the ZN to ZN/2 phase transition is indeed
analogous to the order-disorder phase transition of the Ising
gauge theory. Similarly, the other possible phase transitions
arise in the same way, e.g., the transition C6 to C2, may be
described in the same way by a Higgs terms with N/3 charged
Z3 matter. This transition is then described by a Z3 Potts model
[41,71]. We can also break the CN symmetry of the nematic
completely by adding a ZN Higgs field with the fundamental
charge.

There is also the possibility of topological phase transitions,
e.g., between the ZN deconfined and the ZN/2 deconfined
phase, by tuning the gauge coupling K1 → 0. More generally,
a transition can be tuned in terms of the gauge couplings
{Ki}i∈ZN

for a subgroup of ZN in the ZN deconfined phase
of the gauge theory, leading to Ising or Potts transitions to the
deconfined phase of the subgroup. Similarly, for example, in
the limit of small K1 above, there is a phase transition between
the CN nematic and the deconfined ZN/2 phase as function of
J . Admittedly, the tuning of K1 independently is in both cases
physically somewhat artificial. Note that the condensation of
the odd ZN fluxes and the 2π vortices, as required for the ZN/2

deconfined phase, will always disorder the matter field. Thus
the latter transition will actually involve an XY transition of
the matter fields plus a confinement transition for the odd ZN

fluxes/vortices. In this particular case, one would expect an
Ising or Potts (Z2 or Z3) phase transition for the gauge fields.
The left over ZN/2 gauge degrees of freedom are then in the
deconfined phase once the matter field disorders.

VIII. CONCLUSION AND DISCUSSION

In this paper, we have provided a full symmetry classi-
fication of quantum nematic order in 2 + 1 dimensions by
dislocation melting of crystalline phases We further con-
structed an O(2)/ZN gauge theory describing the nematic
phases in terms of two parameters: the nematic interaction
J and a defect suppression term K , related to the gauge
fields. The resulting phase diagram contains at least three
different phases: the CN nematic phase, isotropic liquid and a
topological phase arising from the gauge fields.

Using our gauge theory description, we can further gener-
ically describe all the universal properties of the possible
CN nematic phases, in particular the various phase transition
between the CN nematics in addition to the nematic-to-
isotropic liquid phase transitions. This is due to the efficient
way the introduced auxiliary gauge degrees of freedom encode
for the desired nematic symmetries. We also verified the salient
points of the phase diagram of our gauge model with Monte
Carlo simulations.

In addition to the conventional nematic phases, we have
shown how the theory can be applied beyond the continuous
symmetry breaking scheme of nematic ordering. This amounts
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to taking into account the gauge degrees of freedom as
independent degrees of freedom. We found “deconfined”
topological phases corresponding each CN nematic phase,
similar to that of Ref. [39]. In these phases the gauge degrees
of freedom themselves play a central role and there is no long-
range nematic order. Conceptually, these are two-dimensional
analogues of the spin nematic phase and are similar to those
arising in the “deconfined” quantum criticality scenario [49].
In particular, the topological phase is separated from the
nematic phase by a second order transition (of the nematic
degrees of freedom), although the matter and gauge fields both
go through a phase transition and the behavior of the gauge
fields is only revealed by a nonlocal string order parameter.

The strategy for the classification of nematic phases via
melting and point groups in 2D can be generalized to the 3D
case. Descending from the 230 space groups of 3D crystals, it
follows within the same consideration that the nematic phases
are characterized by the 32 crystalline subgroups of O(3), i.e.,
the three dimensional point groups. The non-Abelian nature of
these groups makes the generalization to three dimensions fun-
damentally different. For instance, the analog of our O(2)/ZN

lattice would be an O(3) matter field coupled to a non-Abelian
discrete gauge field and thus considerably more involved.
These issues will therefore be addressed in future work.
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APPENDIX A: IMAGINARY TIME FORMALISM

As is well known, the quantum statistical problem with
Hamiltonian H at inverse temperature β = 1/T (kB ≡ 1)
reduces to classical field theory in three Euclidean dimensions,
with the imaginary time action S and periodic imaginary time
τ � τ + β (� ≡ 1). In this paper, we will solely focus on
the T = 0 quantum phase transitions of the nematic phases
described by our gauge model Eqs. (14) and (15). Since this
model is based on the introduction of the gauge field degrees
of freedom relating to the spatial symmetries of the nematic,
we now clarify their role in our imaginary time action.

The N = 1 case is the familiar quantum XY model in 2 + 1
dimensions. This has the Hamiltonian

HXY[J0,J1] = 1

2J0

∑

x

L2

x + J1

∑

x,
i

cos(θx − θ
x+
i), (A1)

where L
x is the two-dimensional angular momentum canoni-
cally conjugate to the rotor field, [L
x,θ
y] = iδ
x,
y . Here, the

x label spatial lattice sites and 
i spatial unit vectors. The

imaginary time formulation relates this to the Euclidean action

SXY[J0,J1]

=
∫ β

0
dτ

∑

x

J0

2
(∂τ θ
x(τ ))2 + J1 cos(θx(τ ) − θ
x+
i(τ )),

which is the highly anisotropic limit (J0 → ∞ and aτ → 0
with J0aτ = const.) of

SXY =
∫ β

0
dτJ0

∑

x,τ

cos(�τ θ
x) + J1

∑

x,
i

cos(θx − θ
x+
i)

∼ J
∑
〈ij〉

cos(θi − θj ). (A2)

By the standard lore of field theory and critical phenomena,
the isotropic model described by Eq. (A2) and its particular
limit Eq. (A1) describing the 2 + 1-dimensional quantum
system in the operator formalism are expected to carry the
same universal properties. This justifies the analysis of the
latter model Eq. (A2) with regards to the quantum system.
Nevertheless, the quantum model is really described by the
rotational symmetries in the spatial dimensions, and the full
three dimensional isotropy of Eq. (A2) broken by the (periodic)
imaginary time direction. Restoring units, we see that J0 ∼
J0/�

2, and this sets the size of the quantum fluctuations in the
system.

Note in particular that the quantum model features the two-
dimensional XY model at every constant τ slice, but it is the
proliferation of the timelike vortex loops of arbitrary length in
the imaginary time direction that drives the phase transition,
and leads to the similar critical behavior as in the classical
model. On the other hand, in the extreme high-temperature
limit �β → 0 the quantum model reduces to the classical two-
dimensional XY model.

For the models O(2)/ZN , it is more instructive to start with
the imaginary time actions in Eqs. (14) and (15), the highly
anisotropic limits of which are

SI ∼
∫ β

0
dτ

J0

2

∑

x

(�τ θ
x + φ
x)2

+ J1

∑

x,
i

cos(�
iθ
x + ϕ
x,
i),

SG ∼
∫ β

0
dτ

∑

x,
i

K0

2
(�τ ϕ
x,
i + φ
x+
i − φ
x)2

+K1

∑
�
x

cos(ϕ�
x ),

where �
x label the spatial plaquettes and we have denoted
φ
x ≡ ϕ
x,τ the time component of the gauge potential. The
gauge transformations are given by

φ
x → φ
x + 2π

N
�τ λ
x, (A3)

ϕ
x,
i → ϕ
x,
i + 2π

N
�
iλ
x, (A4)

where λ
x(τ ) is an arbitrary integers mod ZN valued function
on the lattice {
x,τ }.
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These lead to the Hamiltonians

HI = 1

2J0

∑

x

�2

x + J1

∑

x,
i

cos(�
iθ
x + ϕ
x,
i), (A5)

HG = 1

2K0

∑

x,
i

E2

x,
i + K1

∑
�
x

cos(ϕ
x,
i), (A6)

where �
x = J0(�τ θ
x + φ
x) is the canonical momentum of
the gauge coupled rotor, including the time component of
the gauge potential φ
x . Similarly, E
x,
i = K0(�τ ϕ
x,
i + �
iφ
x)
is the ZN electric field, canonically conjugate to the gauge
potential, i.e., [E
x,
i ,ϕ
y, 
j ] = 2πi/Nδx+
i,
y+
j . For a gauge
system, the canonical formalism necessarily specifies a gauge
and associated constraints. The above form of the Hamiltonian,
where the field φ
x appears without time derivatives, is valid in
the gauge where we set

φ
x(τ ) = 0 for all 
x. (A7)

This eliminates the gauge transformations λ
x(τ ) that depend
on the τ direction on the lattice. However, we still have satisfy
the constraint

δH

δφ
x
= 0 =

∑
i

�
iE
x,
i − Q
x, (A8)

which is the Gauss’ law. The charge is defined in terms of the
rotor field as

Q
x = �
x = J0�τ θ
x, (A9)

i.e., the rotor angular momentum. The remaining gauge
degrees of freedom are determined by transformations of the
form

ϕ
x,
i → ϕ
x,μ + 2π�
iλ
x/N, (A10)

where λ
x is an arbitrary integer mod ZN on the spatial lattice 
x
but constant in τ . We conclude that the Hamiltonian Eq. (A6)
has only spatial gauge symmetry, as is appropriate for the
quantum nematics.

APPENDIX B: VILLAIN APPROXIMATION AND DUALITY
OF THE XY-ZN MODEL

We now briefly recollect the Villain approximation and
the XY-duality transformation for the theory Eq. (12) [37,72].
For more details we refer the reader to, e.g., Ref. [72]. In
the following, we will use vector notation on the lattice as
Li,μ ≡ Lij , which represents the link variable Lij on the link
i,μ ≡ ij from i to j = i + μ in the direction of the unit vector

eμ (μ = x,y,τ in 2 + 1 dimensions). We will also denote with
�μ the finite difference operator �μf (i) ≡ f (i + μ) − f (i).

The Villain approximation, valid in the limits J → ∞ and
J → 0, takes the form

eJ cos �i,μ → NV (J )
∑

li,μ∈Z
e− JV

2 (�i,μ+2πli,μ)2
(B1)

= NV (J )
∑

Li,μ∈Z
e−L2

i,μ/(2JV )eiLi,μ�i,μ , (B2)

where li,μ and Li,μ are integer valued auxiliary fields, JV (J )
is the effective Villain temperature and NV (J ) = √

2πJI0(J )

is an analytic normalization factor [63,73,74]. Henceforth we
will simply denote the effective coupling JV as J .

1. Duality

We apply Eq. (B2) to �i,μ = �μθi + ϕi,μ to dualize the
XY variables θi [72]:

e−SI = eJ
∑

i,μ cos(�μθi+ϕi,μ)

→
∞∑

Li,μ=−∞
e
∑

i,μ[−L2
i,μ/(2J )+iLi,μ(�μθi+ϕi,μ)]. (B3)

We rewrite the sum over the Li,μ as

∞∑
Li,μ=−∞

=
∫

D[Li,μ]

∞
′∑

Vμ,i=−∞
e
∑

i,μ 2πiLi,μVi,μ , (B4)

which loosely speaking takes into account the vortices by the
substitution �μθi → �μθi + 2πVi,μ, where now −∞ < θi <

∞ and the integers Vi,μ are related to the local vortex density
as J XY

� = ∑
νλ∈� εμνλ�νVi,λ = V�. Moreover, the action for

a configuration depends only different vortex numbers J XY
� ,

and the tilde in the sums over Vi,μ in the partition function
refers to a constraint to eliminate the overcounting [72].

Now we can integrate over the rotors θi in the partition
function Z = ∑

{ϕi,μ}
∫
D[θi]e−S to get∫

D[θi]e
i
∑

i,μ �μLi,μθi =
∏

i

∫ ∞

−∞
dθie

i
∑

μ �μLi,μθi

=
∏

i

2πδ

( ∑
μ

�μLi,μ

)
.

The constraint
∑

μ �μLi,μ = 0 is the discrete version of

∇ · 
L = 0 of a vector field 
L = Lμ. This can be solved by
introducing a field Aĩ,μ on the dual lattice satisfying

2πLi,μ = εμνλ�νAĩ,λ = A�̃, (B5)

where ĩ denotes the dual lattice site and A�̃ is the dual plaquette
pierced by the bond i,μ on the original lattice. However,
shifting Aĩ,μ by

Aĩ,μ → Aĩ,μ + �μaĩ, (B6)

where aĩ is an arbitrary real function on the dual lattice,
leads to the same Li,μ and therefore to physically equivalent
configurations. In terms of Aĩ,μ this represents a gauge
symmetry. In fact, this ambiguity leading to overcounting is
exactly similar to that arising in terms of Vi,μ.

The theory now can be re-expressed using Eq. (B5),

S̃N = − 1

8π2J

∑
�̃

A2
�̃ − i

∑
ĩ,μ(�)

Aĩ,μ

(
J XY

� + ϕ�
2π

)

−K
∑
�

cos (ϕ�), (B7)

and where we sum over the vortex numbers J XY
� ∈ Z, the

noncompact dual gauge field Aĩ,μ ∈ 2πR, and the original
ZN gauge field ϕij in the partition function.
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The first term represent a noncompact U (1) gauge theory
for the dual field Aĩ,μ, with the summation

∑
�̃ running over

the dual lattice plaquettes. The third term is just the original ZN

gauge theory. The vortex densities V� and ϕ� are both charged
under the dual gauge field Aĩ,μ, as in the usual XY duality.
Moreover, noting that ϕij = 2π

N
mij , the charge coupling is

i
∑

ĩ,μ(�)

Aĩ,μ

(
J XY

� + 1

N
m�

)
, (B8)

whence the ZN vortices carry a fractional charge of 1/N as
compared to the 2π -vortices, exactly as we would expect. The
dual gauge symmetry dictates that∑

μ

�μ

(
J XY

� + ϕ�
2π

)
= 0. (B9)

However, the ZN field strength ϕ� is conserved only up to
integers

�μϕ� = 0 mod 2π (B10)

and therefore can source the integer current J XY
� . This means

that 2π -vortex lines can begin/end on sites where ZN fluxes
end/begin and is a consequence of the compactness of the ZN

gauge group [64] in combination with the usual XY vortices.
Intuitively this is clear in the sense that we can consider the
vortices J XY

� as N tuples of the ZN fluxes. We also see that
the total defect current J XY

� + ϕ�/2π , or the defect charge
in units of 1/N , is conserved. Since the defects interact with
Coulomb forces in the ordered phase, just as in the usual
XY model, such “splitting” is energetically costly and the
main contribution comes from closed defect loops of J XY

�
and ϕ�.

We conclude that the dual theory is given by a noncompact
U (1) gauge theory coupled to the original ZN gauge theory,
with the coupling term encoding the mutual statistics of 2π/N

between the ZN flux and the original rotors θi , whose density
is represented by the flux A�̃. In addition to the ZN vortices,
the standard 2π vortices J XY

� are charged under the U (1) dual
gauge field, as in the XY duality. Note that while the ZN

vortices carry the core energy K , the usual core energy for
the 2π -vortices J XY

� has not been explicitly included. In this
degenerate limit, the summation over J XY

� can be performed
leading to the constraint Aĩ,μ ∈ 2πZ. This in effect creates a
mass gap in the system and is the crude analog of the usual
Higgs symmetry breaking and mass in the U (1) gauge theory
that occurs in the J small regime.

APPENDIX C: THE DECONFINED PHASE

Here we present a more detailed discussion about the
deconfined phase at large K . First we define the string order
parameter for the topological phase and then focus on the
K → ∞ limit of the theory.

1. Fredenhagen-Marcu order parameter

In terms of usual Landau symmetry breaking arguments,
one might be inclined to think that the field eiNθ constitutes an
order parameter for any phase transition driven by the coupling
J involving the CN ordered nematic. However, in the large K

FIG. 7. (Color online) A gauge invariant string order parameter
O(L) defined by Eq. (C2). Red arrows are rotor fields at the ends of
the string. Blue bonds indicate an arbitrary gauge string that connects
the two rotors. Take the O(2)/Z2 case as an example, the gauge field
living on each bond can take two values, i.e., +1 and −1, under the
constraint U� = 1.

regime, this order parameter is not actually sufficient to fully
characterize the phase transition due to the presence of the ZN

gauge fields. For the pure ZN gauge theory, an order parameter
is given by the Wilson loop

W (CL) =
〈 ∏

〈ij〉∈C

Uij

〉
, (C1)

where CL denotes a closed path of length L on the lattice. As
is well known, the L → ∞ asymptotic behavior of the Wilson
loop characterizes the confinement-deconfinement transition
in a pure gauge theory. However, it in general fails to do
so in the presence of any charged matter fields. Hence it
would be worthwhile to identify an order parameter that
could distinguish the order-disorder for the matter field and
the confinement-deconfinement for the gauge field simultane-
ously.

Inspired by the string operator in matter-coupled lattice
gauge theory [75] and the string correlator recently suggested
for systems with topological matter [76], we can define a
string order parameter including both rotor fields and gauge
fields as (see Fig. 7)

O(CL/2) = 〈n∗
k

⎛
⎝ ∏

ij∈CL/2(k,m)

Uij

⎞
⎠ nm〉, (C2)

where CL/2(k,m) is an arbitrary path of length L/2 connecting
two rotors nk and nm. It is straightforward to see that this string
order parameter is invariant under the gauge transformation
θk → θk + 2π

N
,ϕij → ϕij − 2π

N
. We can renormalize the string

order parameter (C2) with the Wilson loop (C1) to obtain the
Fredenhagen-Marcu order parameter [43,44]

R(CL) ≡ O(CL/2)√
W (CL)

=
〈n∗

k

(∏
ij∈C1/2

Uij

)
nm〉√

〈∏ij∈C Uij 〉
. (C3)

It can be shown [43,44,61] that R(CL) distinguishes the ZN

deconfined phase from the CN nematic phase and the isotropic
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liquid:

lim
L→∞

R(CL) = 0 ZN deconfined phase,

lim
L→∞

R(CL) �= 0 CN nematic or isotropic liquid.

The difference between the small K and large K limits
of R(CL) is due to the behavior of the gauge field in the
presence of the matter field. In the small K limit, the gauge
field is strongly fluctuating, which renders isolated ZN defects
absent, in analogy to the confined phase in pure gauge theory.
However, due to the matter fields, a phase with free ZN defects
is possible for large enough J but this transition is driven
by the matter field. Actually, in a gauge theory with matter,
any string order parameter of the gauge field always decays
exponentially, which is why the denominator is introduced in
R(CL). However, only in the phase with deconfined gauge
fields and disordered matter fields, the limit L → ∞ results
in a nonzero value and therefore serves as the correct order
parameter of the topological phase.

2. The K → ∞ limit: phase transition and order parameter

In the K → ∞ limit, only defect free configurations are
allowed. Hence all nontrivial plaquette excitations of the ZN

gauge fields are prohibited, leading to the constraints ϕ� = 0
or U� = 1 on all plaquettes for the ZN lattice gauge fields
Uij . This constraint allows us to parametrize the gauge field as
Uij = u∗

i uj , where ui = eizi and zi are ZN fields defined on
the lattice sites i as zi = 2πmi

N
with mi = 0,1, . . . ,N − 1. As

a consequence, the denominator in R(L) equates to unity and
R(L) reduces to the string order parameter O(L).

The underlying reason for the above results is that the
partition function of the O(2)/ZN turns out to be equivalent to
that of the XY model in the K → ∞ limit. This can be shown
directly. To this end, we apply the constraint Uij = u∗

i uj to
rewrite Eq. (11) in the following form:

SK→∞ = −J
∑
〈ij〉

[(uini)
∗(ujnj ) + c.c.]. (C4)

As a result, the partition function becomes

ZK→∞ =
∑
{ui }

∫ 2π

0
D[θi]e

−SK→∞

=
∑
{ui }

∫ 2π

0
D[θi]e

J
∑

ij [(uini )∗(uj nj )+c.c.]. (C5)

Now we can shift the variables ni → n′
i ≡ u∗

i ni at every
site i.

By gauge invariance of the action and the measure D[θi] =∏
i dθi , we get

∑
ui

∫ 2π

0
dθiF(uini) = N

∫ 2π

0
dθiF(ni) (C6)

for any arbitrary functional F . Henceforth,

ZK→∞ = NNs

∫ 2π

0
D[θi]e

J
∑

ij (n∗
i nj +c.c.), (C7)

where Ns is the number of the lattice sites. The above form
makes it immediately apparent that the partition function is
just the partition function of the XY model up to a constant
prefactor, i.e., ZK→∞ = NNsiteZXY.

However, the usual XY field ni = eiθi is not gauge invariant
and therefore cannot characterize the phase transition as
an order parameter. Instead, we need a gauge invariant
quantity, e.g., (ni)N = eiNθi , which is a composite field in
the usual XY model. The correlation function of (ni)N can be
written as

〈(n∗
k)N (nm)N 〉SN

= 〈eiN(θk−θm)〉XY. (C8)

For the physical matter field nN
i , the phase transition is in

the so-called XY� universality class. Put differently, this is
just the statement that while the partition function (C7) is
exactly same as that of the XY model, the relevant correlation
function at the transition is a composite field rather than the
usual XY field. This affects some aspects of the universality
class of the transition, for instance the anomalous dimension
η [56,57].

Similar arguments apply to any gauge invariant field in the
model. Let us now discuss this in more detail. First define a
gauge invariant “bond” Zij ≡ n∗

i Uijnj [77].
The most general gauge invariant average is then given

by 〈F({Zij })〉 where F is an arbitrary functional of the bond
variables Zij on the lattice. By virtue of Elitzur’s theorem,
the expectation values of all other quantities must vanish. A
particular such average is

〈 ∏
〈ij〉∈C

Z
pij

ij

〉
, (C9)

whereF is defined by the set of integers {pij }〈ij〉∈C along some
path C. In order to compute the expectation value, the action
may be reformulated as

SN = −1

2

∑
〈ij〉

Jij (Zij + Z∗
ij )

−1

2

∑
{ijkl}∈�

K�(ZijZjkZklZli + c.c.). (C10)

In Eq. (C10), we generalized the theory defined in Eqs. (12)
and (13) to allow for locally varying coupling terms Jij and
K�. Note that Eq. (C9) reduces to string correlator O(CL/2) in
Eq. (C2) when the integers pij are taken unity along the path
C. Now, here is a simple yet important point:

O(CL/2) =
⎛
⎝∏

ij∈C

δ

δJij

⎞
⎠ ln Z|Jij =J,K�=K, (C11)

with Z the partition function. However, as we have proven, Z

becomes the partition function of the XY model in the K → ∞
limit and this result generalizes for nonuniform couplings Jij .

075103-15



LIU, NISSINEN, NUSSINOV, SLAGER, WU, AND ZAANEN PHYSICAL REVIEW B 91, 075103 (2015)

It follows that⎛
⎝∏

ij∈C

δ

δJij

⎞
⎠ ln Z(K → ∞)|Jij =J = 〈n∗

knm〉XY. (C12)

We thus observe that the string order parameter reduces to the
standard two-point correlator of the XY model in K → ∞
limit. This, of course, is also seen by evaluating O(CL/2) in
the specific gauge Uij = 1 for all ij .

Repeating, mutatis mutandis, the above steps, it is also
readily seen that, for any integer p, the average

〈(n∗
k)p

⎛
⎝ ∏

ij∈Ck,m

U
p

ij

⎞
⎠ (nm)p〉SN

= 〈(n∗
knm)p〉XY. (C13)

This is the generalization of Eq. (C8), since the gauge field
string becomes trivial when p = N and drops out from the
right-hand side.

At last, the astute reader may note that the above steps in
Eqs. (C4)–(C7) can easily be generalized to allow for varying
couplings constants Jij . This then leads to the equivalence
of the matter coupled gauge theory of Eq. (11) in the limit
K → ∞ to that of the XY model not only for the the standard
uniform XY model, but also for the far richer case of arbitrary
couplings. Yet another illuminating way to obtain this result
for general couplings Jij is obtained by examining the gauge

invariant formulation of the action in Eq. (C10). We note that
in the K → ∞ limit, the product∏

ij∈�
Zij = 1, (C14)

for any plaquette � on the lattice. The action of the XY model
generalized for arbitrary couplings Jij then becomes

SXY = −1

2

∑
ij

Jij (n∗
i nj + c.c.)

= −1

2

∑
ij

Jij (Zij + Z∗
ij )|∏

ij∈� Zij =1. (C15)

Where in the second line of Eq. (C15), the bonds Zij are
subject to the condition of Eq. (C14). This is so as the product
around any closed loop of the interactions in the XY model
must satisfy Eq. (C14). That is, around any plaquette,

(n∗
i nj )(n∗

jnk)(n∗
knl)(n

∗
l ni) = 1. (C16)

On the other hand, the expression for the XY action in the
second line of Eq. (C15) is nothing but the action of the
matter coupled gauge theory in the limit of K → ∞ (where
the gauge action of Eq. (13) simply gives rise to the constraint
of Eq. (C14)). Putting all of the pieces together, this establishes
equivalence (an exact bond algebraic duality) [78] of the XY
model with general couplings Jij and the O(2)/ZN theory with
the same couplings in the K → ∞ limit.
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