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Hidden order as a source of interface superconductivity
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Interfacial superconductivity is observed in a variety of heterostructures composed of different materials
including superconducting and nonsuperconducting (at appropriate doping and temperatures) cuprates and iron-
based pnictides. The origin of this superconductivity remains in many cases unclear. Here, we propose a general
mechanism of interfacial superconductivity for systems with competing order parameters. We assume that
parameters characterizing the material allow formation of another order like charge- or spin-density wave
competing and prevailing superconductivity in the bulk (hidden superconductivity). Diffusive electron scattering
on the interface results in a suppression of this order and releasing the superconductivity. Our theory is based
on the use of Ginzburg-Landau equations applicable to a broad class of systems. We demonstrate that the local
superconductivity appears in the vicinity of the interface and the spatial dependence of the superconducting order
parameter �(x) is described by the Gross-Pitaevskii equation. Solving this equation we obtain quantized values
of temperature and doping levels at which �(x) appears. Remarkably, the local superconductivity shows up even
in the case when the rival order is only slightly suppressed and may arise also on the surface of the sample
(surface superconductivity).
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I. INTRODUCTION

Interesting phenomena have been discovered a few years
ago in the study of superconductivity in different materials,
especially in high-Tc superconductors—cuprates and Fe-based
pnictides. It turned out that the critical temperature of the
superconducting transition Tc in heterostructures, e.g., in
bilayers, is higher than the critical temperature Tc of bare
films that can be even nonsuperconducting [1–13]. The
authors of Ref. [14] (see also Ref. [9]) studied bilayers
consisting of two cuprates—overdoped (La2−xSrxCuO4 with
x = 0.35) and underdoped (0.1 < x < 0.12) cuprate films.
The largest increase of Tc was about 11 K—from Tc = 21 K
in bare underdoped films to Tc = 32 K in bilayers. Moreover,
superconductivity has been observed in bilayers composed
of nonsuperconducting materials, La2−xSrxCuO4 with x = 0
(an insulator) and La2−xSrxCuO4 with x = 0.45 (normal
metal) [2]. The critical temperature reached 50 K. Further
experimental studies showed the independence of the critical
transition temperature in bilayers La2−xSrxCuO4/La2SrCuO4

on x in a rather wide doping interval (0.15 < x < 0.47) [15].
A slight increase of Tc has been measured also in another

high-Tc superconductor—YBa 2Cu3O7 films covered by a
thin Ag film [16]. A few decades ago, a similar effect has
been observed in bilayers composed of conventional low-Tc

superconductors and normal metals [17–19]. These latter
experiments were motivated by original Ginzburg’s ideas on
the possibility to get a surface superconductivity with a high
transition temperature [20,21].

Other high-Tc superconductors where an enhancement of
superconductivity at the interface has been established are
the so-called iron-based pnictides discovered in 2008 [22]. In
this type of superconductor competing order parameters (OP),
magnetic and superconducting, may coexist. To be more exact,
the spin density wave (SDW) and the superconducting OP may
arise in these materials (see reviews in Refs. [23–27]) with the
amplitudes W and � depending on temperature and doping.

The interfacial superconductivity in one of the Fe-based
pnictides (CaFeAs doped with La, Ce, Pr, or Nd) was observed
by Wei et al. [28]. Whereas the bulk critical temperature
was equal to about 30 K, a small fraction of samples had
a Tc � 49 K. Even higher Tc � 77 K was achieved by a
Chinese experimental group in another Fe-based material
(single unit-cell FeSe films on SrTiO3) [29].

Very encouraging for understanding the very nature of
high-Tc superconductivity seems to be the effect of apparent
enhancement of superconducting transition temperature at the
interface between an iron-based chalcogenide superconductor
(FeSe) and SrTiO3 used as substrate [30,31]. This discovery
questioned the role of phonons in bulk iron-based supercon-
ductors [30] and confirmed the presence of the magnetic
order (spin-density wave) as a key ingredient for high-Tc

superconductivity in iron-based superconductors [31].
Rather actively the interface superconductivity is studied

in heterostructures LaAlO3/SrTiO3 [1]. It is assumed that
a two-dimensional electron gas is formed at the interface.
The effect of an electric field has been employed to explore
the phase diagram of LaAlO3/SrTiO3 interface [3,4]. Aside
from superconductivity, the phenomenon of ferromagnetism
induced at the interface of an oxide heterostructure has been
observed recently [32,33]. The review in Ref. [34] provides an
excellent overview over the possible symmetries and degrees
of freedom of correlated electrons that can evolve at oxide
interfaces. It includes interalia, superconductivity, magnetism,
ferroelectricity, and charge and spin orders as well. Moreover,
it has been found that, at the interfaces between LaAlO3

and SrTiO3, superconductivity coexists with ferromagnetism
[33,35–37], a surprising result offering a potential for exotic
superconducting phenomena due to highly broken inversion
symmetry of the interface and a ferromagnetic background
[36].

Several theories have been suggested to explain the
phenomenon of interface superconductivity. Some of them
consider a nonuniform charge distribution near the interface
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and use a phenomenological relation of Tc to this distri-
bution [7,10,38]. Different ideas have been used in other
theories [39], where bilayers composed of superconductors
with different ratio of the Tc and pairing strength were
considered and it was assumed that Tc is suppressed by
phase fluctuations. In the vicinity of the interface the role
of these fluctuations is not important as compared to the
bulk due to suppression of fluctuations by the proximity
effect. However, this suggestion cannot explain the observed
independence of Tc on the doping level x. Perhaps, there
is no single mechanism responsible for the interface su-
perconductivity because it was observed in quite different
materials under various conditions. The important ingredient
of this effect is the presence of an interface or some sort of
nonhomogeneity.

In this paper we propose a mechanism for the interface
superconductivity. The proposed mechanism is very robust
and general being independent of the microscopic details
of considered materials. It is applicable to any materials
where, alongside the superconducting order parameter (OP),
another OP exists. We do not pretend to apply our theory
to any system where the interface superconductivity occurs,
but we show that it can be used for materials in which two
OPs may potentially exist. As is well known, in high-Tc

superconductors, an important role is played by the charge
or spin ordering [23–27]. In cuprates, a charge density wave
(CDW) has been observed recently in numerous experiments
[40–50] and discussed in Refs. [51–55]. It may exist alongside
superconductivity, whereas in Fe-based superconductors, the
spin density wave is more important. The presence of the
nonsuperconducting OP W (CDW or SDW) changes such
characteristics of superconducting state as London penetration
depth [56–58], heat capacity [59,60], etc.

We show that the presence of a “hidden” OP � in a het-
erostructure with W �= 0 may lead to the appearance of local
superconductivity at the interface at temperatures T > Tc(W ),
where Tc(W ) is the critical temperature of the superconducting
transition of bare films composing the heterostructure which
depends on the amplitude W . We consider a heterostructure
with an interface where W is locally suppressed. This
suppression may be caused by an enhanced impurity scattering
and doping level in the vicinity of the interface. The enhanced
impurity scattering can be caused by the interdiffusion of atoms
and/or roughness of the interface. Both factors suppress the
CDW or SDW. In this case, in a vicinity of the interface
where W is suppressed, local superconductivity arises with
�(x) decaying on a characteristic scale of the order of
the superconducting coherence length ξs. Interestingly, the
local superconductivity occurs at “quantized” temperatures
because the OP �(x) is described by the linearized Gross-
Pitaevskii equation, i.e., by the Schrödinger equation with
a one-dimensional potential well which always has discrete
energy levels (or only one level). In the one-dimensional case
(flat interface) the local superconductivity arises even at a
rather small suppression of W .

Note that stimulation of the bulk superconductivity by
impurities in materials with two OPs was considered by one
of the authors a long time ago [61]. Recently, the effect
of superconductivity stimulation by impurities in the bulk

of Fe-based pnictides with two OPs has been analyzed by
Fernnades et al. in Ref. [62].

In Sec. II, the general nonhomogeneous Ginzburg-Landau
equations describing two coupled order parameters are intro-
duced. In the homogeneous case, we derive conditions for the
coefficients in the Ginzburg-Landau equations that should be
fulfilled for obtaining one of the possible three phases: (1)
pure superconducting, (2) pure charge- or spin-density wave,
and (3) a mixed state. In the nonhomogeneous case, a solution
of the Ginzburg-Landau equations for the order parameters
is obtained, whereby detailed calculations are shifted to the
Appendixes. In Sec. III, we discuss applicability of the theory
to the case when the constituents of the heterostructure are
high-Tc cuprates or iron-based pnictides. We propose also
an experimental setup suitable for testing our predictions.
Concluding, we discuss our results in Sec. IV.

II. GENERAL CONSIDERATIONS

A. Free energy and self-consistency equations

We start with the expression for the free energy F for a
system with two order parameters (OPs), � and W . In the
one-dimensional case, i.e., in the case of a preferred direction
provided by the interface, the free energy is given by

F = 1

2

∫
dx

[
ξ 2

s (�′)2 − as�
2 + bs

2
�4 + γ�2W 2

+ ξ 2
w(W ′)2 − awW 2 + bw

2
W 4

]
, (1)

where �′ and W ′ denote the spatial derivatives of correspond-
ing order parameters, and the coefficients ξs,w, as,w, bs,w, and
γ are in general not independent and show a complicated
dependence on doping and/or temperature, and on the mean
free path. These coefficients are presented in Sec. III for the
case of cuprates and iron-based pnictides.

The free energy is written in the Ginzburg-Landau form
of Eq. (1) in the vicinity of a critical temperature. However,
the critical temperatures Tdw,s of the transitions into a state
with a finite W , respectively, � may be quite different. We
assume that the doping level described by the parameter μ is
chosen in such a way (μ = μc) that the critical temperature
Tdw for the nonsuperconducting OP W coincides with the
critical temperature of the superconducting transition Ts.
This is possible because Tdw depends on μ, whereas Ts

does not. Thus the coefficients as,w and bs,w depend on
the differences η = (1 − T/Ts), δ[μ2] ≡ μ2 − μ2

c , and on
impurity concentration nimp.

The variation of F with respect to � and W yields the
self-consistency (or the Ginzburg-Landau) equations

− ξ 2
s �′′ + �[−as + bs�

2 + γW 2] = 0, (2)

− ξ 2
wW ′′ + W [−aw + bwW 2 + γ�2] = 0, (3)

which represent the foundation of our considerations.

B. Homogeneous case

Equations (2) and (3) without the spatial derivatives yield
different uniform solutions, i.e., three different points on the
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plane of order parameters (�,W ). We denote these points by,
respectively, �� (where � �= 0, W = 0), �W (where � = 0,
W �= 0), and �W� (where � �= 0, W �= 0, i.e., both OPs
coexist), each corresponding to an extremum of the free energy
functional F(�,W ). Analyzing these points we determine the
conditions for a particular point to correspond to a minimum
as follows.

(1) ��, where � = √
as/bs, corresponds to a minimum

if the second derivatives of F with respect to � and W are
positive, implying

bs > 0, γ as − awbs > 0. (4)

In particular, the coefficient as must be positive.
(2) �W , where W = √

aw/bw, corresponds to a minimum
if the conditions

bw > 0, γ aw − asbw > 0 (5)

are fulfilled. In particular, the coefficient aw must be positive.
(3) �W�, where � = √

(asbw − γ aw)/D and
W = √

(awbs − γ as)/D with D = bsbw − γ 2, corresponds to
a minimum provided the conditions

bs > 0, bw > 0, bsbw − γ 2 > 0 (6)

are satisfied. It follows from the definition of D and the
expressions for � and W that the conditions

asbw − γ aw > 0, awbs − γ as > 0 (7)

should be fulfilled.
Clearly, the latter inequalities (7) are incompatible with

those in (4) and (5). This fact is evident from topological
arguments, namely, if the point �W� is a minimum of
F(�,W ), then the points �� and �W can only correspond
to a maximum or a saddle point of the free energy functional.

C. Nonhomogeneous case

In the case of heterostructures where the OPs depend on
the coordinate x, the most interesting nontrivial solution of the
system of equations (2) and (3) corresponds to those where
the OP W goes to a finite value W∞ = W−∞ (an asymmetric
case W∞ �= W−∞ can be considered analogously) while �

vanishes at distances from the interface exceeding ξw. In other
words, we consider the case when the system is at the point
�W far away from the interface. We assume that the OP W (x)
is suppressed near the interface, e.g., due to an enhanced
impurity scattering in the vicinity of the interface or diffusive
scattering on the interface. The diffusive scattering may be
caused either by interdiffusion or interface roughnesses. As
is known (see Ref. [63] and references within), the critical
temperature Tdw is suppressed by impurity scattering while
the critical temperature Ts of the superconducting transition is
only weakly affected. The most essential dependence of the
coefficients as,w and bs,w on impurity scattering is the one of
the coefficient aw.

Doping level near the interface also may be changed due
to interdiffusion of atoms. Another reason for a change of the
coefficients in the Ginzburg-Landau equations is a different
crystal symmetry at the interface. Such a mechanism of
enhanced superconductivity at twin boundaries has been con-
sidered for conventional low-Tc superconductors in Ref. [64].

A change in the energy spectrum of cuprates near the surface
has been calculated in Ref. [65]. This change can also lead to a
modification of coefficients in the Ginzburg-Landau equations
or even to a surface superconductivity. It is worth noting that
the properties of surface superconductivity in systems with
one (superconducting) OP in magnetic field have been studied
theoretically in Refs. [66–69].

The interface behavior of W can be modeled via the spatial
dependence of the coefficient aw, i.e.,

aw(x) =
{

−a0, |x| < L,

aw, |x| > L,
(8)

where L is a characteristic width of the region where W is
suppressed. The expression for a0 is presented in Sec. III for a
particular case. Formula for aw(x) at |x| > L implies that the
amplitude W±∞ = √

aw/bw is the same at x → ±∞, having
a lower value at the interface x = 0; see Fig. 1(a). We will
show that, under these circumstances, a superconducting OP
� arises at the interface decaying to zero as x → ∞.

Note that in our previous publication [70] we analyzed non-
homogeneous solutions for the Ginzburg-Landau equations
(topological defects) assuming that all the coefficients in these
equations are constant. The found solutions may correspond to
metastable states with energies higher than that for a uniform
solution. In the case considered here, a nonuniform solution

FIG. 1. (Color online) (a) Sketch of considered system. The
CDW (or SDW) order parameter W is suppressed near an interface
between two materials in which superconducting order parameter �

may exist alongside W . This suppression leads to the appearance of
interfacial superconductivity, which can be thus regarded as “hidden.”
(b) The case of strong suppression of W with solutions of �n(x)
given by hypergeometric functions. Note that �0(x) has the shape of
a soliton, whereas other solutions have nodes. (c) In the case of a weak
suppression of W , one has a shallow “potential” in the “Schrödinger”
equation and there exists only one “energy” level given by Eq. (16).
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for �(x) is enforced by a built-in defect described by a
nonconstant coefficient as(x).

In order to find the spatial dependence of W (x) and �(x),
we assume that the superconducting OP � is small. Then, in
the main approximation the equation for W acquires the form

−ξ 2
wW ′′ + W [−aw(x) + bwW 2] = 0, (9)

where aw(x) is given by Eq. (8). This equation can be solved
exactly, but for simplicity we restrict ourselves to the simplest
case of a narrow region of suppression, i.e., L 	 ξw/

√
a0, thus

obtaining the solution

W (x) = W∞ tanh[(|x| + x0)/
√

2ξw], (10)

where the integration constant x0 obeys the equation

sinh(2x0κw) = 4ξ 2
wκw/a0L ≡ r, (11)

with κw = ξ−1
w

√
aw/2.

Next, we consider separately the cases of a strong [r 	 1;
cf. Fig. 1(b)] and, respectively, weak [r 
 1; cf. Fig. 1(c)]
suppression of W at the interface.

Strong suppression, r 	 1. In this case, the product
2x0κw � r is small and the quantity x0 in Eq. (10) can be
neglected. Substituting W (x) in this approximation into Eq. (2)
one obtains

ξ̃ 2
s �′′ + [E + U cosh−2(κwx)]� = g�3, (12)

where ξ̃s = ξs
√

bw, E = asbw − γ aw, U = γ aw, and
g = bsbw. Equation (12) has a form of the Gross-Pitaevskii
equation [71,72]. Solving this equation one can determine
the spatial dependence of the superconducting OP �. The
calculations in this case formally coincide with those carried
out in Ref. [70] if the interchange � ↔ W is done. For
completeness we repeat the steps one has to perform seeking
for a solution �(x). Assuming that � is small, the right-hand
side of Eq. (12) can be neglected and we are left with the
linearized Gross-Pitaevskii equation, i.e., the “Schrödinger”
equation, which can be solved considering the eigenvalue
problem

L̂�n = En�n, (13)

where the operator L̂ = −ξ̃ 2
s ∂2

xx − U cosh−2(κwx), and �n

and En are the eigenfunctions and eigenvalues of L̂. The
solutions �n corresponding to a discrete spectrum of En can
be expressed in terms of hypergeometric functions and the
“energy” levels (E < 0) being given by [73]

En = − ξ̃ 2
s κ2

w

4

[
−(1 + 2n) +

√
1 + 4U

ξ̃ 2
s κ2

w

]2

. (14)

Provided the inequality 4U/ξ̃ 2
s κ2

w < 8 is fulfilled, there is
only one “energy” level with n = 0 and the corresponding
solution �0(x) has a form of a soliton. Otherwise there are
several solutions decaying far away from the interface and
corresponding to En.

Representing the OP � close to a certain “energy” level En

as �(x) = cn�n(x) + δ�n(x) with a small correction δ�n(x)
orthogonal to �n(x), one obtains the coefficients cn,

c2
n = E − En

g〈〈�4
n(x)〉〉 , (15)

where 〈〈f (x)〉〉 = ∫ ∞
−∞ dx f (x) (double angle brackets are

used to distinguish the notation from the averaging over
momenta directions introduced in Appendix A).

Note an important point. The condition E < 0 that de-
termines the appearance of the interface superconductivity
coincides with the condition (5) that provides the stability of
the state with W �= 0 and � = 0 in the bulk. This means that
if a nonsuperconducting state in the bulk is characterized by a
nonzero OP W , any suppression of W leads to the appearance
of local superconductivity. We demonstrate this considering
the case of a small suppression of W .

Weak suppression, r 
 1. In this case, one obtains from
Eq. (11) x0κw � ln

√
2r and the spatial dependence of �(x) is

determined by the Gross-Pitaevskii equation (12) with the “po-
tential” U cosh−2(κwx) → V(x) = 1 − tanh2[κw(|x| + x0)].
In other words, the function �(x) is determined by the
“Schrödinger” equation that provides the “energy” levels in
a shallow “potential” well V(x). As is well known [73], there
always exists a single “energy” level

E0 = −J 2/(2ξ̃s)
2, (16)

where J = 〈〈V(x)〉〉 = 4κ−1
w exp(−2κwx0). The amplitude c0

is given again by Eq. (15) with n = 0. This means that a
superconducting condensate with a small amplitude � � TsE0,
where Ts is the superconducting transition temperature in
the bulk, necessarily arises at the interface as soon as the
competing OP is arbitrarily weakly suppressed.

Note that, in the case of a two-dimensional point defect
instead of the interface, |E0| is an exponentially small [73]
quantity and, therefore, the radius of the decay of the
condensate is exponentially large.

III. APPLICATION TO CUPRATES AND PNICTIDES

A. Relation of coefficients to microscopic parameters

Here, we present the expressions for the coefficients in
the Ginzburg-Landau expansion for the case of cuprates and
iron-based pnictides.

As has been shown in Ref. [74], the model that has been
developed in detail in Refs. [75–77] for Fe-based pnictides
(generally, to two-band superconductors with an SDW) is
applicable to quasi-one-dimensional superconductors with a
CDW, and, after certain modification, also to cuprates.

First, we consider the region |x| > L and assume
that the impurity concentration in this region is small,
i.e., the mean free path l 
 ξs,w. In the model of
Refs. [75–77], the coefficients are related to the micro-
scopic parameters of the model via as = η, bs � 1.05,
aw = η(1 − β1) − 〈β2δ[μ2]〉, bw = s3m, and γ = s2m, where
η = 1 − T/Ts and δ[μ2] = μ2 − μ2

c with μ being a function
that describes the curvature of the Fermi sheets of the
quasi-one-dimensional superconductor or a deviation of the
average Fermi surface from the perfect circle in iron-based
superconductors, where partial nesting between the elliptical
electron bands and the circular hole bands leads to the
formation of the spin-density wave. The functions s2m, s3m,
and β1,2 (see Appendix A) depend on the dimensionless critical
curvature m = μc/πTs defined in such a way that the critical
temperature Tdw of the formation of the OP W equals Ts, where
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Ts,dw are the critical temperatures for the transition into the,
correspondingly, superconducting and CDW or SDW state in
the absence of the competing order and doping. The critical
μc is determined by the equation (see Appendix A)〈

2μ2
cs1m(μc)

〉 = ln(Tdw/Ts), (17)

where the critical temperature Tdw depends, generally speak-
ing, on impurity concentration which is assumed to be small
far from the interface.

Next, consider the region |x| < L, where the impurity
scattering is assumed to be stronger. In this case, the tempera-
ture Tdw � Tdw0[1 − (4πTdw0τ )−1], where Tdw0 is the critical
temperature of the transition into a state with W �= 0 in the
absence of impurities and superconductivity, τ = l/v is the
momentum relaxation time for intraband scattering, and the
mean free path l is assumed to be larger than v/Tdw0. One can
easily show that, in this case, a0 = aw − (4πTdw0τ )−1, where
aw is given by the expression above. Provided the condition
aw 	 (4πTdw0τ )−1 	 1 is fulfilled, then the coefficient a0 in
Eq. (8) is positive (meaning that −a0 < 0) and considerably
exceeds aw.

B. Temperature and doping dependence

Considering the expression (15) for the coefficients cn, one
can see that at small difference |E − En|, the OP � is also
small. It turns to zero at certain temperatures or doping levels,
where E(Tn,μm) = En(Tn,μn) holds, with En(Tn,μn) given by
Eq. (14) with coefficients expressed through the microscopic
parameters and the temperature. In Fig. 2 we plot the
temperature dependence of the amplitudes �n corresponding
to different eigenvalues En. Clearly, when the temperature T

becomes lower than the temperature T0 determined by Eq. (14),
the superconducting OP �0(x) arises at the interface with the
amplitude increasing when T is lowered. The temperature T0

is lower than Ts (η > 0), but, under certain conditions, higher
than the temperature Tb at which the superconducting state
becomes more favorable in the bulk. At T < T1, a new branch
�1(T ) appears, etc.

The minimal temperature Tn (or maximal nmax) at which
the branch �nmax (T ) appears is determined by the condition

2nmax �
√

1 + 4U ξ̃−2
s κ−2

w − 1. It can be shown that at a given

FIG. 2. (Color online) Sketch of temperature dependence of the
amplitudes �n corresponding to different eigenvaluesEn; see Eq. (14).
At a given temperature T , the state with the largest �n, i.e., the state
�0, corresponds to a minimum of the free energy. However, the
transitions between different �n are possible.

temperature T , the state with the largest �n, i.e., the state
�0, corresponds to a minimum of the free energy. However,
the transitions between different �n are possible analogous to
transitions between an overcooled state and equilibrium.

C. Interface superconducting transition temperature

Our considerations concerned the case when the system is at
the point �W far away from the interface, i.e., the conditions (5)
are valid while the conditions (4) are violated. When applied
to the case of quasi-one-dimensional materials with the CDW
or to material like iron-based pnictides with an SDW, these
conditions can be presented in the form

A2η + B2δ[μ2] < 0, A1η + B1δ[μ2] < 0, s3m > 0,

(18)

where A1 = s3m − s2m(1 − β1), B1 = s2mβ2, A2 = s2m −
s3(1 − β1), and B2 = 1.05β2 if expressed via the microscopic
parameters of the model. The coefficients A1,2 and B1,2

depend on μ(μ0,μϕ) and may attain positive or negative
values (only B2 is a positive quantity). If these coefficients
are all positive, then these conditions can be fulfilled provided
δ[μ2] < 0. Thus we can rewrite them as B2|δ[μ2]| > A2η

and B1|δ[μ2]| > A1η. In terms of microscopic parameters the
latter can be written as

η < cμB1/A1 ≡ 1 − T̃W , η < cμB2/A2 ≡ 1 − T̃�, (19)

where cμ = |δ[μ2]| and we introduced the “critical” tempera-
tures T̃W,� = TW,�/(πTdw,s).

One can distinguish from the physical point of view two
different cases as follows.

(a) The case T� < TW is realized if the quantity
D ≡ A1B2 − A2B1 = s3s3m − s2

2m > 0 provided that A1 and
A2 are positive. In this case, the pure superconducting state
(minimum of the free energy at ��) exists at tempera-
tures T < T� with �2

un = as/bs. In the temperature range
T� < T < TW , a mixed state (the state of coexistence) with
� �= 0 and W �= 0 given by expressions just before Eq. (6)
takes place. At T > T0, a pure CDW state or, more gen-
erally, a W state occurs with W 2

un = aw/bw. In the interval
TW < T < T0, one has a surface (or interface superconduc-
tivity), where T0 is the temperature determined by Eq. (14)
corresponding to n = 0 (the ground state). At T0 < T < Tdw,
the system is nonsuperconducting with the OP W �= 0. In
Fig. 3(a) we show schematically the temperature dependence
of � and W and also the temperature range in which the
local superconductivity exists. At temperatures TW,�, second-
order phase transitions occur and the OPs � and W arise
continuously [see expressions for � and W before Eq. (6)
where � ∼ √

TW − T and W ∼ √
T − T�]. Note an obvious

analogy with conventional second-type superconductors in a
magnetic field H [78,79]. The quantities T�,W are analogous
to the critical fields Hc1,c2 [cf. Fig. 3(c)] so that at T < TW

one has a purely superconducting state (full expulsion of the
magnetic field), a mixed state in the interval TW < T < T�

(correspondingly, the Abrikosov’s vortex state) and a surface
or interface superconductivity in the range T� < T < T0

(correspondingly, in the range Hc2 < H < Hc3). At last, at
T > T0, one has a pure W state which corresponds to the
normal state in conventional superconductors. Note that same
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FIG. 3. (Color online) (a) In the case T� < TW , three ranges of
temperature. For T < T�, the system is in a pure superconducting
state, whereas in the temperature range T� < T < TW , a mixed
state (the state of coexistence) with � �= 0 and W �= 0 is realized.
Thus the bulk superconducting transition temperature corresponds
to TW . The temperature range of the coexistence state is widened
(enhancement of superconductivity) on appearance of the interface
superconductivity with the highest transition temperature T0 (there
may be other transition temperatures Tn). Finally, for T > T0, the
system is in a pure W state (CDW or SDW) up to its transition into
the normal state at Tdw. (b) In case T� > TW , the system may be in
either the pure superconducting or in the pure W state. The transition
from one into another is of the first order at a temperature T1pt. If T0

falls into the region T1pt < Ts, which is possible if the difference
Ts − T1pt is positive and sufficiently large, then, at the interface,
superconductivity is induced. (c) An analogy with conventional
second-type superconductors in a magnetic field H is sketched. The
quantities T�,W and T0 are analogous to the critical fields Hc1,c2

and Hc3, respectively, i.e., up to Hc1 the system is in a purely
superconducting state (full expulsion of the magnetic field), in a mixed
state in the interval Hc1 < H < Hc2, and in the Abrikosov’s vortex
state for Hc2 < H < Hc3 losing the superconducting properties for
H > Hc3. (d) If, instead of temperature, the doping (or curvature) μ

is considered, the situation is similar to the temperature dependence.

analysis can be performed if, instead of temperature, the
doping (or curvature) given by cμ in Eq. (19) is considered
and one obtains the corresponding situation as depicted in
Fig. 3(d).

(b) The case T� > TW is realized if the quantity
D ≡ A1B2 − A2B1 = s3s3m − s2

2m < 0 provided that A1 and
A2 are positive. In this case, the pure superconducting
state (minimum of the free energy at ��) exists again
at temperatures T < T�, but this minimum is global only
at T < T1pt, where the critical temperature T1pt for the
first-order phase transition is determined by the equation
F(aw/bw) = F(as/bs). At T > Tdw, a uniform solution for
W = √

aw/bw arises, but it corresponds to a global minimum
at T > T1pt. In this case, no region of coexistence exists,

and at T = T1pt a first-order phase transition from the su-
perconducting state to a state with W �= 0 takes place with
increasing temperature; see Fig. 3(b). Now, if T0 as determined
by Eq. (14) corresponding to n = 0 (the ground state) falls
into the region T1pt < Ts, which is possible if the difference
Ts − T1pt is positive and sufficiently large, then, at the interface,
superconductivity is induced.

D. Experiments

The obtained appearance of superconductivity (or enhance-
ment of the critical transition temperature) at an interface
between two materials in which, alongside superconductivity,
another order exists and is energetically more favorable may
be realized in two prominent examples of such systems. One
of them, the cuprates, show a charge-density wave order
alongside superconductivity [40–50]. In these materials, an
enhancement of superconducting transition temperature has
been found in a bilayer constructed of La1.65Sr0.35CuO4 and
La1.875Ba0.125CuO4 [9,14].

Superconductivity accompanied by a spin-density wave is
known to exist in the iron-based pnictides, where the interface
superconductivity is proposed to be the driving effect behind
the almost doubling of superconducting transition temperature
in CaFe2As2 [28,80].

Unfortunately, there are no data on spatial dependence
of the order parameter accompanying superconductivity in
these experiments; neither has the spatial dependence of the
superconducting order parameters been investigated in these
experiments. Such a measurement would provide a test of
our theory, if charge- or spin-density wave would have been
suppressed near the interface.

Another interesting effect also serving as a test of our
predictions is related to the fact that there might appear a
hysteretic behavior stemming from the presence of different
“energy” levels [see Eq. (14)]. This results in a sequence
of temperatures Tn at which � formally vanishes but the
temperature dependence of � is determined by the highest
temperature of them all, i.e., by T0 since the minimum of the
free energy is deepest here. Interestingly, at a temperature Tn

a local minimum of the free energy is present and adjusting
� by means, e.g., of an external field, one can let it follow
the temperature dependence of �n after the relaxation of
external constraints, so, indeed, “there’s a lot of room for new
combinations” [80].

IV. DISCUSSION

We have studied a system with two competing OPs one
of which is the superconducting OP � and another, W , can
be the amplitude of the charge- or spin-density wave. On the
basis of Ginzburg-Landau equations we have shown that if
the temperature and doping are chosen in such a way that the
state with W �= 0 and � = 0 is favorable, i.e., it corresponds
to a minimum of the free energy in the bulk of the sample,
an arbitrarily small suppression of W at an interface or a
defect leads to the appearance of local superconductivity. This
mechanism of local superconductivity in a system with two
OPs may be responsible for the interface superconductivity
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observed in many materials including cuprates and iron-based
pnictides. As is firmly established, in cuprates and iron-based
pnictides, CDW (or quadrupole charge order [81]) or SDW
can exist alongside superconductivity.

We found that in case of a strong suppression of W at some
point, there are several solutions for the superconducting OP
�(x) which are localized on the scale of the coherence length
ξs. These solutions are found from the nonlinear Schrödinger
equation (or Gross-Pitaevskii equation) and correspond to
different “energy” levels. Each solution arises at certain values
of temperatures Tn (or doping level μn) and has a different form
changing from a solitonlike one to an oscillatory function
decaying at infinity. However, only the solitonlike solution
�0(x) corresponds to a minimum of the free energy. Other
solutions �n(x) (with n �= 0) with nodes have higher energies.
They correspond to metastable states. If the corresponding
potential V(x) in the Schrödinger equation is not deep enough,
there is only one “energy” level and only one solitonlike
solution for �(x).

In the case of an asymmetric potential V(x), the localized
solution for �(x) exists provided that the potential well is
deep enough [73]. If for some reason the OP W is suppressed
at the surface, the solutions for �(x) have the same form as in
the case of the symmetric V(x) and surface superconductivity
arises in the sample. Note an important point. The local
superconductivity may arise in one- or two-dimensional cases
(a flat interface or a point defect) if the suppression of the OP
W is small. This means that even if the minimal value of W (x)
corresponds to a minimum of the free energy in a uniform case,
in a nonuniform case local superconductivity would arise at
the interface or at the surface.

The developed theory is able to explain the emergent or
enhanced interface superconductivity in some cuprate or iron-
based pnictide heterostructures. The predictions can be tested
in further experiments.

Remarkably, the used approach based on the consideration
of Ginzburg-Landau equations for two coupled order param-
eters does not depend on the nature of order described by
those. The obtained results are also applicable to description
of an arbitrary “hidden” order evolving at the interface, e.g.,
the ferromagnetism induced at the interface of an oxide
heterostructure observed recently [32].

Note that localized superconductivity may arise also in a
homogeneous sample if a nonuniform W (x) state (for example,
stripes) is energetically favorable due to an internal mecha-
nism (e.g., the Larkin-Ovchinnikov-Fulde-Ferrel mechanism)
[82,83]. Analysis of this state with two competing order
parameters deserves a separate consideration [84].
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APPENDIX A: DOPING DEPENDENCE OF THE
COEFFICIENTS IN GINZBURG-LANDAU EQUATIONS

In the notation of Refs. [75–77], the Ginzburg-Landau
equations have the form

− ξ 2
s ∇2� + �

[
W 2s2m + �2s3 − ln(Ts/T )

] = 0, (A1)

−ξ 2
w∇2W + W

[〈2μ2s1m〉 + W 2s3m

+ �2s2m − ln(Tdw/T )
] = 0, (A2)

where ξs,w are the coherence lengths (at low temperatures) for
� and W , respectively, and Ts,dw are, respectively, the critical
temperatures for the transition into the pure superconducting
state or into a state with a CDW or an SDW only. In other
words, Tdw is the critical temperature for the transition into
the charge-ordered state in absence of � and μ, while Ts

is the superconducting transition temperature in absence of
W . The angle brackets mean the angle averaging (in Fe-
based pnictides) or integration along the sheets of the Fermi
surfaces in quasi-one-dimensional superconductors. The func-
tions s1m, s2m, etc. are functions of the normalized curvature
m = μ/(πTs), where μ = μ0 + μϕ cos[(p2

y + p2
z )1/2a] is a

curvature in quasi-one-dimensional superconductors with a
doping-dependent value of μ0. It is assumed that the Fermi
surface of these superconductors consists of two slightly
curved sheets which are perpendicular to the x axis [74].
In the case of Fe-based pnictides, μ = μ0 + μϕ cos(2ϕ) is a
quantity that describes elliptic (μϕ �= 0) and circular (μϕ = 0)
Fermi surfaces of electron and hole bands [75–77]. All
quantities − �, W , and μ − are measured in units of πTs.
The expressions for the coefficients in the GL expansion with
account for impurity scattering have been calculated in Ref.
[85].

Replacing the derivative ∇ → ∇ − i2πA/�0, one can use
Eqs. (A1) and (A2) to describe vortices in superconductors
with a CDW [86], where �0 is the magnetic flux quantum.

As it is seen from Eq. (A2), the critical temperature Tdw

depends on doping, i.e., on the parameter μ. We choose this
parameter μ = μc in such a way that Tdw(μc) = Ts. This means
that at T = Ts, the quantities � = W = 0, and, thus, μc obeys
the equation 〈

2μ2
cs1m(μc)

〉 = ln(Tdw/Ts), (A3)

where μc is a function of two parameters, i.e.,
μc = μc(μ0,μϕ).

Then, we expand the function s1m(μ,T ) in the de-
viations δ[μ2] = μ2 − μ2

c and δT = Ts − T , thus obtain-
ing s1m(μ,T ) = s1m(μc,Ts) + β1δT + 〈β2δ[μ2]〉, and use
Eq. (A3) to obtain equations in a general standard form (as-
suming that all the functions depend only on one coordinate x),

− ξ 2
s �′′ + �[−as + bs�

2 + γW 2] = 0, (A4)

−ξ 2
wW ′′ + W [−aw + bwW 2 + γ�2] = 0, (A5)

with �′ and W ′ as well as �′′ and W ′′ denoting the first
and second derivatives with respect to x, respectively. These
equations determine extrema of the free energy functional
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[cf. Eq. (1)]

F = 1

2

∫
dx

[
ξ 2

s (�′)2 − as�
2 + bs

2
�4 + γ�2W 2

+ ξ 2
w(W ′)2 − awW 2 + bw

2
W 4

]
, (A6)

with respect to � and W , and the corresponding coefficients of
the GL expansion are related to variables in Eqs. (A1) and (A2)
via as = η, bs = s3 � 1.05, aw = η(1 − β1) − 〈β2δ[μ2]〉,
bw = s3m, and γ = s2m, where η = 1 − T/Ts. The expressions
for the coefficients in terms of the microscopic parameters of
the model for cuprates and iron-based pnictides are given as
follows:

s3 =
∞∑

n=0

(2n + 1)−3, (A7)

s1m =
∞∑

n=0

(2n + 1)−1[(2n + 1)2t2 + m2]−1, (A8)

s2m =
∞∑

n=0

〈[(2n+1)2 − m2](2n + 1)−1[(2n + 1)2 + m2]−2〉,

(A9)

s3m =
∞∑

n=0

〈(2n + 1)[(2n + 1)2 − 3m2][(2n + 1)2 + m2]−3〉,

(A10)

β1 =
∞∑

n=0

〈4m2(2n + 1)[(2n + 1)2 + m2]−2〉, (A11)

β2 =
∞∑

n=0

2(2n + 1)−1[(2n + 1)2 + m2]−1, (A12)

where t = T/Ts, and the angle brackets 〈· · · 〉 denote the
angle averaging (in iron-based pnictides) or integration along
the sheets of the Fermi surfaces (in quasi-one-dimensional
superconductors or cuprates).

APPENDIX B: DETAILS ON SOLUTION OF
THE GROSS-PITAEVSKII EQUATION

Here we sketch the solution of the Gross-Pitaevskii equation
for �. In zero-order approximation we obtain for �0 from

Eq. (12)

ξ̃ 2
��′′

0 + �0[E + U cosh−2(κwx)] = 0. (B1)

This equation is integrable and its solutions ψn corresponding
to a discrete spectrum of En are expressed in terms of
hypergeometric functions [73]. In our notations, the “energy”
levels of discrete spectrum are given by [73]

En = − ξ̃ 2
s κ2

w

4

[
−(1 + 2n) +

√
1 + 4U

ξ̃ 2
s κ2

w

]2

(B2)

and their maximal number nmax is determined by
2nmax �

√
1 + 4U ξ̃−2

s κ−2
w − 1.

We expand the correction δ� to the zero-order solution
�0 in terms of the normalized eigenfunctions �n ≡ ψn of
the operator L̂ = −ξ̃ 2

s ∂2
xx − U cosh−2(κwx). These functions

obey the equation

L̂ψn = Enψn. (B3)

Solutions of Eq. (12) can be written explicitly if the quantity
E = E(η,δ[μ2]) is close to a certain “energy” level En, say
to EN , such that E � EN = E(ηN,δ[μ2

N ]) (if considering the
model for cuprates or iron-based pnictides, the “temperature” η

or doping δ[μ2] should be chosen properly). We write Eq. (12)
in the form

L̂� = EN� + R(�), (B4)

with R = g�3 + (E − EN )� and represent � as �(x) =
cNψN (x) + δ�N (x), where δ�N (x) = ∑′

n cN,nψn(x), and the
summation runs over all n except the term n = N . We
substitute this �(x) into Eq. (B4) and multiply this equation
first by ψN and then by ψn with n �= N , then integrating the
obtained result each time over x. Thus, taking into account
the orthogonality of different eigenfunctions, we find the
coefficients cn,

c2
N = E − EN

g
〈〈
ψ4

N

〉〉 , (B5)

cN,n = gc3
N

〈〈
ψ3

Nψn

〉〉
En − EN

with n �= N, (B6)

where 〈〈f (x)〉〉 = ∫ ∞
−∞ dx f (x). Obviously, in Eq. (B6), ψn

and ψN have to have same parity (both even or both odd).
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