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We present a theory of Galilean-invariant conventional and chiral px ± ipy fermionic superfluids at zero
temperature in two spatial dimensions in terms of a dual gauge theory. Our formulation is general coordinate
invariant. The parity-violating effects are encoded in the Wen-Zee term that gives rise to the Hall viscosity and
edge current. We show that the relativistic superfluid with the Euler current reduces to the chiral superfluid in
the limit c → ∞. Using Newton-Cartan geometry, we construct the covariant formulation of the effective theory
and calculate the energy current.
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I. INTRODUCTION

After almost a century since the discovery of superfluidity
in liquid helium, the macroscopic manifestation of quantum
mechanics in superfluids is still a fascinating topic of physics
[1–3]. Modern sophisticated experiments with liquid helium
and ultracold atomic gases allow us to study various properties
of these quantum liquids in great detail. Among different types
of superfluids, chiral two-dimensional fermionic superfluids
play a prominent role. Originally studied in thin films of
3He-A, nowadays these superfluids attract considerable experi-
mental and theoretical attention in the context of fault-tolerant
quantum computation [4,5]. In this paper, we will consider
a two-dimensional chiral superfluid with the condensate
expressed in momentum space as

�p = (px ± ipy)�̂, (1)

where �̂ is a real function of the magnitude of momentum.
Microscopically, this condensate can be realized using spin-
polarized (i.e., single-component) fermions with short-range
attractive interactions, the system studied before in ultracold
experiments [6]. Alternatively, the elusive Moore-Read (ν =
5
2 ) quantum Hall state can be understood as a px ± ipy

superfluid of composite fermions [7].
As already realized by Onsager, London, and Feynman, the

phase of the macroscopic wave function plays a central role in
the theory of superfluidity. Today, this phase is identified with a
gapless Goldstone boson of the broken global particle number
symmetry. The low-energy and long-wavelength physics of
conventional superfluids can thus be encoded in the effective
theory of the Goldstone boson. Interestingly, in two spatial
dimensions, a U(1) gauge boson (photon) carries just one
degree of freedom and has zero spin. This observation suggests
the possibility of having a dual description of superfluids in
terms of a gauge field [8]. In Sec. II, we will realize exactly this
idea for Galilean-invariant conventional and chiral superfluids.
As will become evident in Sec. III, it is straightforward to
incorporate quantum vortices in the dual description: they
are pointlike sources, i.e., charges, of the dual gauge field.

Moreover, the duality formulation will allow us in Sec. IV
to identify the relativistic theory that gives rise to the chiral
superfluid in the nonrelativistic limit c → ∞.

General coordinate invariance proved to be essential in
Einstein’s construction of the general theory of relativity.
Here, we will take advantage of the nonrelativistic version
of this principle that was first proposed in [9]. Technically,
the effective theory will be invariant under space-time dif-
feomorphisms. This enables us to study superfluids living
on arbitrary two-dimensional spatial manifolds and to use
arbitrary space-time coordinates. This formalism is useful even
if one is only interested in flat space physics since it allows
us to calculate easily various currents and their correlators by
taking small variations of the action with respect to external
sources. In Sec. V, we will construct the covariant formulation
of the theory of superfluids in Newton-Cartan geometry, which
appears to be the most natural formalism for nonrelativistic
physics [10–16]. Using this formulation, we will calculate the
energy current for both conventional and chiral superfluids in
Sec. VI.

This paper is a continuation of [17] and our previous work
[18], where the effective theory of Galilean-invariant chiral
superfluids in terms of Goldstone phase was constructed. Our
predictions might be relevant for two-dimensional chiral su-
perfluids to be realized in experiments with single-component
ultracold fermions.

II. DUAL DESCRIPTION OF TWO-DIMENSIONAL
SUPERFLUID

A. Conventional superfluid

First, we consider a conventional nonrelativistic s-wave
fermionic superfluid living on some two-dimensional surface
with a generically time-dependent metric gij . Since at zero
temperature the superfluid does not dissipate energy, it is an
isentropic fluid and we can start from the action

S =
∫

dt dx
√

gLsf (2)
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with g = detgij and the Lagrangian [19,20]

Lsf = 1

2
ρgij v

ivj − ε(ρ) − θ

[
1√
g

∂t (
√

gρ) + ∇i(ρvi)

]
−Atρ − Aiρvi. (3)

Here, vi is the superfluid velocity and ρ is the particle number
density,1 ε is the internal energy density, and ∇i stands for
the spatial covariant derivative (Levi-Civita connection). In
addition, we included the coupling of the superfluid to the
background U(1)N gauge field Aμ. The term with the Lagrange
multiplier θ ensures the conservation of the particle number. In
Appendix A, we demonstrate that θ is actually the Goldstone
field of the broken U(1)N particle number symmetry. Note that
under a constant shift of θ , the action changes only by a total
derivative. This is the realization of the U(1)N symmetry in
the effective theory.

In two spatial dimensions, the U(1)N particle number
current J μ = (ρ,ρv) can be expressed as2

J μ ≡ εμνρ∂νaρ = 1
2εμνρfνρ, (4)

where we introduced the dual gauge field aμ. Indeed, the gauge
transformation

aμ → aμ − ∂μχ (5)

leaves the current J μ invariant. In the new language, the
conservation law of the particle number is

εμνρ∂μfνρ = 0, (6)

which is trivially satisfied.
The transformation (4) thus allows us to trade the hydro-

dynamic theory of the constrained variables ρ and vi for the
theory of the field aμ which has the gauge freedom. Indeed,
from the duality relation (4) we find

ρ = b, vi = −εij ej

b
, (7)

where we introduced the dual magnetic field b ≡ εij ∂iaj =
g−1/2εij ∂iaj and the dual electric field ej ≡ ∂taj − ∂jat . In
the dual language, the Lagrangian (3) can thus be expressed in
the simple form

Lsf = gij eiej

2b
− ε(b) − εμνρAμ∂νaρ, (8)

which is a nonlinear theory of electromagnetism in two
spatial dimensions. As shown in Appendix B, small Goldstone
fluctuations around the homogeneous ground state in flat space
with Aμ = 0 are described by the linearized version of Eq. (8),
which is just the relativistic Maxwell electrodynamics.

For any effective theory, a power-counting scheme must
be specified that orders various terms according to their

1In this paper, we follow the notation of [18]. This implies that the
mass density and the particle number density coincide because we
set the mass of the elementary fermion to unity.

2Here, we introduced the tensor εμνρ = 1√
g
εμνρ , where the totally

antisymmetric Levi-Civita symbol is defined by εtij ≡ εij and ε12 ≡
+1.

importance. Here, we will use the hydrodynamic power
counting which allows large Goldstone fluctuations and thus
the velocity and density are not assumed to be small. In other
words, we set ρ ∼ v ∼ Aμ ∼ O(1) and θ ∼ O(p−1), where p

is a small-momentum scale. We thus find thatLsf ∼ O(1), i.e.,
it is of the leading order in the hydrodynamic power counting.
For the dual gauge potential, this implies a ∼ O(p−1).

The dual theory defined by the Lagrangian (8) is invariant
under the nonrelativistic version of the general coordinate
transformations that was introduced in [9]. Indeed, first we
observe that with respect to a spatial diffeomorphism xi →
xi + ξ i(t,x), the hydrodynamic fields ρ and vi transform as
follows [18,21]:

δρ = −ξk∂kρ, δvi = −ξk∂kvi − vk∂iξ
k + gikξ̇

k. (9)

This result together with Eq. (7) implies3

δb = −ξk∂kb, δei = −ξk∂kei − ek∂iξ
k + bεikξ̇

k. (10)

We find that these transformation rules are satisfied provided
the dual gauge potential transforms simply as a one-form under
the spatial general coordinate transformation, i.e.,

δaμ = −ξk∂kaμ − ak∂μξk. (11)

Using this result together with the transformation rules for Aμ

and gij found in [9]4

δAt = −ξk∂kAt − Akξ̇
k,

δAi = −ξk∂kAi − Ak∂iξ
k + gikξ̇

k,

δgij = −ξk∂kgij − gik∂j ξ
k − gkj ∂iξ

k,

(12)

it straightforward to demonstrate that the Lagrangian (8)
transforms as a scalar and the action (2) is indeed invariant.

Although we do not specify a microscopic fermionic model
and pairing mechanism here, we note that the transformation
rules (12) are only valid if the “gyromagnetic ratio” gψ and the
spin sψ of the fermion field in the microscopic model satisfy5

gψ − 2sψ = 0. (13)

Throughout this paper, we will assume that this relation is
valid. Generalization to the case gψ − 2sψ �= 0 can be obtained
in a straightforward fashion by following [12].

3To prove the second equation in (10) we used δvi = −ξk∂kv
i +

vk∂kξ
i + ξ̇ i , δ

√
g = −ξk∂k

√
g − √

g∂kξ
k , and the identity εij ∂kξ

k =
εik∂kξ

j + εkj ∂kξ
i .

4The overdot denotes the temporal derivative.
5gψ is a parameter which introduces a nonminimal coupling of

fermions to the background U(1)N magnetic field of the form Lg ∼
gψBρ, where ρ is the superfluid density that coincides with the total
density at T = 0. Since the background gauge field Aμ, introduced
in this paper, is completely unrelated to the electromagnetic gauge
potential, it is important to keep in mind that gψ does not coincide with
the gyromagnetic ratio of the fermionic atom. In general, the value of
gψ can be determined experimentally by rotating the superfluid [i.e.,
switching on the U(1)N magnetic field] and measuring the U(1)N
current.
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Time-reversal and parity transformations are given by

T : t → −t, θ → −θ,Ai → −Ai, at → −at ;

P : x1 ↔ x2, A1 ↔ A2, at → −at , a1 ↔ −a2.
(14)

It is now straightforward to check that the Lagrangian (8) is
separately invariant under T and P .

Notably, in the dual formulation we can write the Chern-
Simons action which is gauge invariant and general coordinate
invariant

SCS = νa

4π

∫
dt dx εμνρaμ∂νaρ ∼ O(p−1). (15)

In our power counting this term is more important than the
action (2). In addition, in terms of the original hydrodynamic
variables it is nonlocal in position space. Note, however, that
the Chern-Simons term makes the dual photon [aka U(1)N
Goldstone boson] massive [22] and thus should not appear in
the theory of a compressible superfluid. For this reason, in the
following we set νa = 0.

Given a general coordinate-invariant theory it is straight-
forward to calculate its stress tensor. General coordinate
invariance implies that for Ak = 0 the contravariant stress
tensor can be calculated as [9,23]

T ij = 2√
g

δS

δgij

. (16)

For the superfluid defined by the Lagrangian (8) we find the
ideal fluid result

T
ij

ideal =
[

dε

db
b − ε

]
︸ ︷︷ ︸

P (b)

gij + e2gij − eiej

b

= P (ρ)gij + ρvivj , (17)

where we introduced the pressure P as the function of the
superfluid density and used that in two spatial dimensions, the
projector e2gij − eiej = εikekε

jlel = ρ2vivj .
In the dual formulation, the global U(1)N particle number

symmetry is realized nontrivially. It is unrelated to the dual
gauge symmetry, but appears as the dual magnetic flux
symmetry since the total particle number is given by

N =
∫

dt dx
√

gb. (18)

The flux symmetry is broken spontaneously by the ground
state of the dual electrodynamics [24]. Under an infinitesimal
U(1)N transformation the sources transform as

δAμ = −∂μα, δgij = 0. (19)

Finally, it is straightforward to demonstrate that the effective
theory is Galilean invariant for Aμ = 0 and gij = δij . The
infinitesimal Galilean boost is a combination of the diffeo-
morphism ξk = vkt and the gauge transformation α = vkxk .
Galilean transformations are physical symmetries because they
do not modify the background fields (see Sec. 2.1 in [25]).

B. Chiral superfluid

We now consider a two-dimensional chiral superfluid. In
addition to the conventional breaking of the global U(1)N

particle number symmetry, it exhibits spontaneous breaking
of the spatial rotation symmetry. In the following, it will
be denoted by SO(2)V , i.e., the group of rotations of the
orthonormal two-dimensional vielbein to be introduced in the
following. We will assume the symmetry-breaking pattern

U(1)N × SO(2)V → U(1)D, (20)

where U(1)D stands for the diagonal combination of U(1)N
and SO(2)V which remains unbroken. As the result at zero
temperature, the low-energy physics is governed by just one
Goldstone boson. An important example of such a superfluid is
the chiral px ± ipy fermionic superfluid briefly introduced in
Sec. I. Notably, the chiral condensate (1) breaks spontaneously
time-reversal and parity symmetries which gives rise to
qualitatively new effects compared to phenomena taking place
in the conventional superfluid discussed above.

As a first step towards the dual description of the chiral
superfluid, we will follow [18] and introduce an orthonormal
spatial vielbein ea

i with a = 1,2. Since such a vielbein is
defined only up to a local SO(2)V rotation

ea
i → ea

i + φ(t,x)εabeb
i , (21)

we can introduce the spin connection

ωt ≡ 1
2

(
εabeaj ∂t e

b
j + B

)
,

ωi ≡ 1
2εabeaj∇ie

b
j = 1

2

(
εabeaj ∂ie

b
j − εjk∂jgik

)
,

(22)

where we defined eaj ≡ ea
i g

ij and the magnetic field B ≡
εij ∂iAj . By construction, under a local SO(2)V rotation, the
connection transforms as an Abelian gauge field, i.e.,

ων → ων − ∂νφ. (23)

In addition, under spatial diffeomorphisms, ων transforms
simply as a one-form

δωμ = −ξk∂kωμ − ωk∂μξk. (24)

Note that under the discrete symmetries, ων transforms similar
to the dual gauge field aμ:

T : ωt → −ωt ; P : ωt → −ωt , ω1 ↔ −ω2. (25)

The dual effective theory of the chiral superfluid is now ob-
tained by adding to the Lagrangian (8) the general coordinate-
invariant Wen-Zee term [26]

LWZ = −sεμνρωμ∂νaρ = −sρ(ωt + ωiv
i). (26)

Within our power counting, this subleading term is of order
O(p). Provided the parameter s is kept fixed, LWZ breaks
separately parity and time reversal, but preserves the combined
PT symmetry. If one transforms the chirality of the ground
state s → −s, both P and T are preserved separately by
the Wen-Zee term. One must set s = ± 1

2 for the px ± ipy
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superfluid.6 As has been realized recently in [28–30], the
two-dimensional chiral pairing in higher partial waves is more
subtle. We defer the construction of the effective theory for
this case to a future work.

It is well known that the chiral superfluid studied here
is a topological quantum liquid since its ground state has
different topological properties in the weakly (BCS) and
strongly (BEC) coupled regimes that are separated by a
quantum phase transition [3,7]. This implies the presence of a
protected gapless fermionic Majorana mode localized on the
boundary between the two phases. We emphasize that in our
construction we did not specify the equation of state ε(ρ) and
thus the effective theory described here should be valid in both
phases. Although the Majorana mode does not appear as an
explicit degree of freedom, it is integrated out and gives rise to
nonanalyticity of the term ε(b) in the Lagrangian at the phase
transition point.

Since in the effective theory of chiral superfluids the spatial
vielbein does not appear linearly, but only quadratically, it is
natural to expect that the introduction of the vielbein and spin
connection is actually not necessary and that the theory can be
formulated covariantly using the spatial metric gij only. While
this is not obvious within the formalism presented in [18], it is
straightforward to eliminate the vielbein in the dual formalism
developed here. Indeed, up to a surface term we can rewrite
the Wen-Zee Lagrangian as

LWZ = −sεμνρaμ∂νωρ = −s(atBω − εij aiEωj ), (27)

where we introduced the gravitomagnetic field Bω ≡ εij ∂iωj

and the gravitoelectric field Eωj ≡ ∂tωj − ∂jωt . In Appendix
C, we show that

Bω = 1
2R,

Eωi = 1
2

[−∂t

(
�k

ij

)
εjlgkl − ∂iB

]
,

(28)

where R and �k
ij stand for the Ricci scalar and Chirstoffel

symbol, respectively. Thus, the Wen-Zee term can be indeed
written only in terms of the metric gij and its derivatives.

The Wen-Zee term gives rise to novel phenomena. In the
context of quantum Hall effect, these were investigated for
example in [26,31,32]. Here, we study its consequences for
the chiral superfluid. First, due to the presence of the magnetic
field B in Eq. (22), it leads to the modification of the U(1)N
current

J μ

edge = − 1√
g

δSWZ

δAμ

=
(

0,
s

2
εij ∂jρ

)
. (29)

This is the well-known Mermin-Muzikar edge current [33]
responsible for the macroscopic angular momentum of the

6The effective theory can also be used for the low-energy description
of anyon superfluids. In particular, for anyons with the statistical
phase angle θ = π (1 − 1/n) [27] we must fix s = (n − 1/n)/2.
Similar to the chiral superfluid, our construction is valid only if the
“gyromagnetic ratio” and the spin of the anyon are fine tuned to
satisfy Eq. (13). This restriction can be easily relaxed by following
arguments of [12].

chiral ground state

LGS =
∫

d2x εij x
iJ j

edge = s

∫
d2x ρ. (30)

Second, the stress tensor is also modified compared with
the ideal fluid result (17). Indeed, from the variation of the
connection under a small variation of the metric [18]

δωt = − 1
4εingjk∂tgnkδgij − 1

4Bgij δgij ,

δωl = − 1
4εingjk∂lgnkδgij − 1

2εjk∂j δglk

+ 1
4εmk∂mglkg

ij δgij , (31)

we find

δSWZ = −s

∫
dt dx εμνρδωμ∂νaρ, (32)

which gives rise to the modification7

�T
ij

WZ = 2√
g

δSWZ

δgij

= (
viJ j

edge + vjJ i
edge

) + T
ij

Hall − s2

4
ρRgij , (33)

where we introduced the Hall viscosity stress tensor [34–36]

T
ij

Hall = −ηH (εikgjl + εjkgil)Vkl (34)

with Vkl ≡ 1
2 (∇kvl + ∇lvk + ∂tgkl) and ηH = − s

2ρ. In sum-
mary, the dual Wen-Zee term leads to the parity and time-
reversal violating effects such as the edge current and the Hall
viscosity. For a detailed discussion of these effects, we refer
to [18,36].

Now that we have the stress tensor, it is straightforward
to demonstrate that the invariance of the action under a small
spatial diffeomorphism ξ i ,

S[aμ + δaμ,Aν + δAν,gij + δgij ] = S[aμ,Aν,gij ], (35)

implies the Euler equation

1√
g

∂t (
√

gJk) + ∇iT
i
k = EkJ

t + εikJ
iB, (36)

where we introduced T i
k ≡ T ijgjk and the total U(1)N current

Jμ ≡ J μ + J μ

edge.
Finally, it is instructive to demonstrate how the hydrody-

namic conservation equations arise in the dual formalism.
As noted above, the conservation of the particle density is
simply encoded in the Bianchi identity (6). On the other hand,
the Euler-Lagrange equations give rise to the vorticity and
hydrodynamic Euler equations. Indeed, since the dual gauge
field always appears with a derivative, the equations of motion
are given by

∂μ

[√
g

∂Lch

∂∂μaν

]
= 0, (37)

where Lch = Lsf + LWZ. The Gauss law (ν = t) reads as

1√
g

∂i

(√
g

ei

b

)
= B + s

2
R (38)

7We used the Gauss law (39) to obtain the term ∼ s2 in Eq. (33).
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or in the covariant form

gij∇i

ej

b
= B + s

2
R. (39)

The external magnetic field and Ricci curvature play the role
of a background smooth charge distribution for the dual gauge
field. If we define the vorticity W ≡ 1

2εij∇ivj = 1
2∇i

ei

b
, the

Gauss law becomes the vorticity equation

2W = B + s

2
R. (40)

It is straightforward to check that the spatial components (ν =
k) of Eq. (37) give rise to the Euler equation. In terms of the
hydrodynamic variables, it is given by

Dtvk + ∇kP

ρ
= Ek + sEωk + (B + sBω)εikv

i, (41)

where we introduced the material derivative Dt ≡ ∂t + v · ∇
and used the Gauss equation (39). Although it is not manifest,
this equation is equivalent to Eq. (36).

III. VORTICES

It is evident from Eq. (40) that, in the presence of a
background magnetic field B, a two-dimensional superfluid
carries vorticity. Moreover, in a chiral superfluid the vorticity
is also sourced by the Ricci curvature R of two-dimensional
space. While any regular superfluid flow is necessarily irro-
tational, the vorticity in a superfluid originates from singular
solutions known as quantum vortices. Due to conservation
of the topological winding number in a static background,
the total number of vortices is strictly conserved in that case.
Locally, this leads to the conservation law

1√
g

∂t

(√
gJ t

v

) + ∇iJ
i
v = 0, (42)

where we introduced the topological vortex current Jμ
v . In

terms of the Goldstone field θ , this current is given by8

Jμ
v = 1

π
εμνρ∂ν∂ρθ, (43)

which implies Jv ∼ O(p) in our power-counting scheme.
Consider a superfluid living on a closed spatial manifold

M. Since in a fermionic superfluid a vortex carries π/2 units
of vorticity, we can use Eq. (40) and find that the total number
of vortices is given by

Nv =
∫

dx
√

gJ 0
v = �

π
+ 2sχ, (44)

where � = ∫
dx

√
gB is the total magnetic flux piercing M

and the Euler characteristic χ = 2 − 2g, where g is the genus
of M. This is the reason why for the chiral superfluid the total
number of vortices is sensitive to the topology of the manifold
M. For example, for a px ± ipy superfluid on a sphere in the
absence of magnetic flux one finds Nv = ±2. The formula (44)

8The prefactor 1/π in Eq. (43) appears in the case of a fermionic
superfluid. Note that for a bosonic superfluid, the prefactor is two
times smaller.

is analogous to the one in the quantum Hall effect, with the
second term known as the shift [26].

Now, we will extend our effective theory by adding the
vortex part to the dual Lagrangian. This is relevant if vortices
are present in the ground state, which happens if the right-hand
side of Eq. (44) is nonvanishing. Since the vortex current is
conserved, it can be dualized

Jμ
v = εμνρ∂νbρ, (45)

where we introduced the gauge field bρ ∼ O(1) dual to the
vortex current. This field transforms as a one-form under
general coordinate transformations. Up to the next-to-leading
order in our power counting we can now generically add to the
Lagrangian the following terms9 that are general coordinate
invariant:

Lv = −q̃vε
μνρaμ∂νbρ − qv

(
εμνρAμ∂νbρ − gij ev

i e
v
j

2bv

)

+ νb

4π
εμνρbμ∂νbρ, (46)

where we defined bv ≡ εij ∂ibj and ev
j ≡ ∂tbj − ∂jbt . Our

normalization of the current (43) also implies q̃v = −π . The
first two terms make the vortex charged with respect to aμ

and Aμ, respectively, while the third term transmutes its
quantum statistics [37]. It is well known that in a conventional
two-dimensional superfluid the vortex is a pointlike boson that
is charged with respect to the dual gauge field aμ, but is neutral
with respect to Aμ [38,39]. For this reason, qv = νb = 0 for
the conventional superfluid. On the other hand, vortices are
known to be Abelian anyons in a chiral superfluid [40], which
implies νb �= 0. In addition, in the weakly coupled BCS phase
they accommodate gapless Majorana fermionic modes which
can be included in the effective theory [41,42]. We defer better
understanding of the vortex physics in the BCS phase of chiral
superfluids to a future work.

IV. RELATIVISTIC SUPERFLUID AND
NONRELATIVISTIC LIMIT

In this section, we demonstrate that one can obtain the
chiral superfluid as the nonrelativistic limit (c → ∞) of
the relativistic superfluid found recently in [43]. A similar
procedure was used in [44] to derive nonrelativistic invariant
actions for Hall systems.

Here, we briefly review the construction of [43]. The
relativistic theory is formulated in the dual language, where
the relativistic U(1) current

jμ = nuμ = εμνρ∂νaρ. (47)

Here, the relativistic dual gauge field aμ ∼ O(p−1) was intro-
duced. The three-velocity satisfies uμuμ = −1. The effective
theory is defined by the gauge-invariant action

S =
∫

d3x
√

|g|( L0︸︷︷︸
O(1)

+ L1︸︷︷︸
O(p)

), (48)

9Note that an additional general coordinate-invariant term
f (b)εij ∂ibj can be eliminated from the vortex Lagrangian by the
redefinition aμ → aμ + σ (b)bμ with a properly chosen function σ (b).
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where gμν is the space-time metric and g ≡ det gμν . The
leading-order Lagrangian is given by

L0 = −εrel(n)/c − εμνλAμ∂νaλ, (49)

where εrel(n) is the relativistic energy density as the function
of n = √

fμνf
μν/2 (fμν = ∂μaν − ∂νaμ), and Aμ is the back-

ground U(1) gauge field.
Up to redefinitions, the subleading part of the Lagrangian

can be written as10

L1 = ξ (n)Fμνf
μν + κaμJμ, (50)

where Fμν is the field strength of the U(1) gauge field Aμ and
the Euler topological current is

Jμ = 1

8π
εμνλεαβγ uα

(
∇νuβ∇λuγ − 1

2
Rνλβγ

)
. (51)

As explained in [43], the Euler current is identically conserved,
i.e., ∇μJμ = 0. While ξ (n) can not be fixed by a symmetry
argument only, the gauge invariance requires κ to be a constant.
For a detailed discussion of the Euler current and the effective
theory of the relativistic superfluid, we refer the reader to [43].

First, we perform the nonrelativistic limit for the conven-
tional superfluid defined by the leading-order Lagrangian L0.
To this end, we use

xμ = (ct, xi), ∂μ = (c−1∂t , ∂i),

Aμ = (c−1At ,Ai), aμ = (c−1at , ai)
(52)

and decompose the relativistic energy density into the rest
mass part and the internal part, i.e.,

εrel = nc2 + ε. (53)

In addition, in the nonrelativistic regime it is convenient to
parametrize the metric in terms of gij , Ai , and At [9]:

gμν =
(

−1 − 2At

c2 −Ai

c

−Ai

c
gij

)
. (54)

Relativistic covariance implies thatAμ transforms as the gauge
field in Eq. (12) under spatial diffeomorphisms.

Now using

|g| =
[

1 + 2At + AiAi

c2

]
g + O(1/c4),

n = b − e2

2bc2
− εijAiej

c2
− AiAib

2c2
+ O(1/c4),

(55)

we arrive at

S0 = −c2
∫

dt dx
√

gb +
∫

dt dx
√

gLsf + O(1/c2). (56)

Here, Lsf is given by Eq. (8), where we identified the U(1)N
gauge potential Aμ = Aμ + Aμ. After subtracting the rest

10One may argue that additional terms are allowed. For example,
f (n)εμνλuμ∂νuλ ∼ O(p) should be included into L1. This term,
however, can be eliminated by the redefinition aμ → aμ + χ (n)uμ

with the properly chosen function χ (n). Our choice of χ (n) differs
from [43], where it was chosen to eliminate the term ξ (n)Fμνf

μν but
keep f (n)εμνλuμ∂νuλ.

mass term11 from S0 one recovers the nonrelativistic theory
(8) describing the conventional superfluid. Notably, the action
depends only on the linear combination Aμ + Aμ, but not
on Aμ and Aμ, separately. Physically, this means that the
momentum density must be proportional to the particle number
current, which within our conventions can be written simply
as

J i = T 0i . (57)

This is not a surprise since this result is valid for Ai = 0 in
any general coordinate-invariant system composed of single
species of particles provided Eq. (13) is fulfilled [9,12,23].

Now, we perform the nonrelativistic limit of the subleading
Lagrangian L1. As demonstrated in Appendix D, in this limit
the Euler current is given by

J0 = Bω

4π
+ O(1/c2),

Ji = −εij (Eωj + ∂jB/2)

4πc
+ O(1/c3),

(58)

where we introduced the magnetic field constructed from Ai ,
i.e., B = εij ∂iAj . As a result, we find

S1 = κ

4π

∫
dt dx

√
g(atBω − εij ai{Eωj + ∂jB/2})

+ 2c

∫
dt dx

√
gξ (b)bB + O(1/c). (59)

In the following, we will assume ξ (b) ∼ 1/c, which leads to
a finite nonrelativistic limit. Moreover, the requirement (57)
fixes ξ (b) to be

ξ (b) = κ

8πc
+ O(1/c3) (60)

leading finally to

S1 =
∫

dt dx
√

gLWZ + O(1/c2) (61)

with s = −κ/4π . This proves that the relativistic superfluid
defined by Eqs. (48)–(50) reduces to the chiral superfluid in
the nonrelativistic limit.

Finally, we must emphasize that the condition (60) is a
direct consequence of Eq. (13) which is assumed to be true
throughout this paper. For gψ − 2sψ �= 0 one must fix ξ (b)
differently since in that case Eq. (60) is generalized to [12]

J i = T 0i − gψ − 2sψ

2
εij ∂jJ

0. (62)

For example, if one sets gψ − 2sψ = −κ/(4π ) then ξ (b) must
vanish in the nonrelativistic limit, i.e., ξ (b) = O(1/c3).

V. NEWTON-CARTAN FORMALISM

So far, we imposed nonrelativistic general coordinate
invariance only under spatial diffeomorphisms ξ i(t,x). It is

11The first term in (56) can be removed by adding an appropriate
chemical potential. This is achieved by shifting A0 as A0 = −c +
At /c.
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possible to include also the symmetry under temporal diffeo-
morphisms ξ t (t,x) which generate a local reparametrization
of time. This extended version of nonrelativistic general
coordinate invariance under ξμ(t,x) with μ = (t,i) was first
demonstrated to be valid for a theory of nonrelativistic particles
with no interactions [45] and more recently for the theory
of fractional quantum Hall effect [12] (see also [11,13–
16]). Here, we will assume the invariance of the effective
theory of superfluids with respect to temporal and spatial
diffeomorphisms, which leads to the following transformation
rule for the background fields [12,45]:

δAt = −ξμ∂μAt − Aμξ̇μ,

δAi = −ξμ∂μAi − Aμ∂iξ
μ + e�gij ξ̇

j ,

δ� = −ξμ∂μ� + ξ̇ t − Ciξ̇
i,

δCi = −ξμ∂μCi − Cj∂iξ
j + ∂iξ

t + Ci(ξ̇
t − Cj ξ̇

j ),

δgij = −ξμ∂μgij − gkj ∂iξ
k − gik∂j ξ

k − (Cigjk + Cjgik)ξ̇ k,

(63)

where Ci ≡ gijCj and ξμ∂μ ≡ ξ t∂t + ξ i∂i . This is a gen-
eralization of Eq. (12). Here, we introduced two additional
background fields � and Ci which couple to the energy density
and current, respectively (see Sec. VI for more details).

The transformation rules (63) for �, Ci , and gij follow most
naturally from Newton-Cartan geometry which was developed
by Cartan with intention to geometrize Newtonian gravity.
We will briefly review its basics here and refer the reader to
[10–16] for a detailed presentation. Subsequently, the covari-
ant formulation of the effective theory of the conventional
and chiral superfluid will be presented in Newton-Cartan
space-time.

A. Geometry

A Newton-Cartan space-time is a manifold that comes with
a degenerate metric tensor with upper indices g

μν
nc , a one-form

nμ, and a velocity vector V μ with the properties

nμgμν
nc = 0, nμV μ = 1. (64)

Given (gμν
nc , nμ, V μ), we can uniquely introduce the metric

tensor with lower indices gnc
μν by imposing the conditions

gμρ
nc gnc

ρν = δμ
ν − V μnν, gnc

μνV
ν = 0. (65)

Now, we can define a connection

�ρ
μν ≡ V ρ∂μnν + 1

2gρσ
nc

(
∂μgnc

νσ + ∂νg
nc
μσ − ∂σgnc

μν

)
(66)

in Newton-Cartan space-time. Notably, the connection is
not symmetric in the lower indices which gives rise to the
nontrivial torsion tensor

T ρ
μν ≡ 2�

ρ

[μν] = 2V ρ∂[μnν]. (67)

Obviously, the torsion vanishes provided the form nμ is
closed, i.e., dn = ∂[μnν] = 0. Here, we will impose a weaker
condition, namely, n ∧ dn = n[μ∂νnρ] = 0, which ensures an
absolute notion of space. This follows from Frobenius theorem
because in this case there is a unique spatial slicing of
Newton-Cartan space-time which nμ is normal to. We mention
that in the language of [11,13,14,16] the torsion considered in

this paper is purely temporal. A more general Newton-Cartan
geometry with spatial torsion was discussed in [11,14,16].

To make connection with the transformation law (63), we
use the following parametrization [12]:

nμ = (e−�, −e−�Ci), V μ =
(

e�(1 + Cjv
j )

e�vi

)
, (68)

which is consistent with n · V = 1. Since nμ and V μ transform
in Newton-Cartan space-time simply as

δnμ = −ξκ∂κnμ − nκ∂μξκ,

δV μ = −ξκ∂κV
μ + V κ∂κξ

μ,
(69)

we can easily reproduce the last three equations in (63) with the
help of Eq. (68). In addition, the parametrization (68) implies
the following expressions for the metric tensor:

gnc
μν =

(
v2 −vj − v2Cj

−vi − v2Ci gij + viCj + vjCi + v2CiCj

)
,

gμν
nc =

(
C2 Cj

Ci gij

)
. (70)

Finally, we notice that the condition n ∧ dn = n[μ∂νnρ] = 0
leads to the constraint on the source Ci :

εij [∂iCj + Ci∂tCj ] = 0. (71)

While Aμ does not transform as a one-form under nonrela-
tivistic general coordinate transformations, we can modify it
as follows [12]:

Ãt ≡ At + 1
2e�gij v

ivj ,

Ãi ≡ Ai − e�gij v
j − 1

2e�gklv
kvlCi.

(72)

A simple derivation of Eq. (72) can be found in [16]. Using
Eqs. (68) and (69), one can check that Ãμ transforms as a
one-form, i.e.,

δÃμ = −ξκ∂κÃμ − Ãκ∂μξκ . (73)

In the following, we will need a spin connection in Newton-
Cartan geometry. Within Newton-Cartan formalism it is given
by

ωμ = 1
2εabeaν∇nc

μ eb
ν, (74)

where ∇nc
μ stands for the covariant derivative in Newton-Cartan

space-time and ea
μ denotes the vielbein with a = 1,2. For � =

Ci = 0, the components of ωμ were calculated in [10,18]. It
is straightforward to generalize the construction to the case
of nonvanishing � and Ci . Indeed, in this case ea

μ can be
parametrized using the spatial vielbein ea

i , spatial velocity vi ,
and the source Ci :

ea
μ = (−vj ea

j , ea
i + Civ

j ea
j

)
, eaμ =

(
Cje

aj

eai

)
. (75)

One can easily check that ea
μ = gnc

μνe
aν and eaμ = g

μν
nc ea

ν . In
addition, gnc

μν = ea
μea

ν and g
μν
nc = eaμeaν . This form is also

consistent with the orthogonality requirements ea
μV μ = 0,

nμeaμ = 0. One can thus interpret V μ and nμ as vielbein vector
and one-form with a = 0.
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Given Eq. (74), we find

ωμ = 1
2εabeaν

⎡
⎢⎣∂μeb

ν − V λ∂μnνe
b
λ︸ ︷︷ ︸

=0

− 1
2gλρ

nc

(
∂μgnc

νρ + ∂νg
nc
μρ − ∂ρg

nc
μν

)
eb
λ

⎤
⎥⎦

= 1
2εabeaν

[
∂μeb

ν − 1
2

(
∂μgnc

νρ + ∂νg
nc
μρ − ∂ρg

nc
μν

)
ebρ

]
= 1

2εabeaν∂μeb
ν − 1

2εabeaνebρ∂νg
nc
μρ. (76)

Written in components

ωt = 1
2

{
εabeaj ∂t e

b
j + εij [∂ivj + ∂t (Civj )]

}
,

(77)
ωi = 1

2

{
εabeaj ∂ie

b
j − εjk[∂jgik + vj∂iCk + ∂j (vkCi) + v2Ci∂jCk] − εjkCj [∂tgik + ∂t (vkCi) + v2Ci∂tCk]

}
,

where the constraint (71) was used. In the following, we will need only the terms that are linear in Ci , hence, it is sufficient to
write

ωt = 1
2

{
εabeaj ∂t e

b
j + εij [∂ivj + ∂t (Civj )]

}
,

(78)
ωi = 1

2

{
εabeaj ∂ie

b
j − εjk[∂jgik + vj∂iCk + ∂j (vkCi) + Cj∂tgik]

} + O(C2).

The expression (22) is recovered when vi is equal to the
superfluid velocity. This can be seen as a gauge fixing of the
Newton-Cartan geometry.

B. Covariant description of superfluids

We are now in position to write the action of the nonrel-
ativistic superfluid in covariant form in the Newton-Cartan
formalism. For the conventional superfluid we find

S =
∫

dt dx
√

γ [ρV μ(∂μθ − Ãμ) − ε(ρ)], (79)

where we introduced the superfluid density ρ that transforms
as a scalar, i.e., δρ = −ξκ∂κρ. In addition, we defined γμν ≡
gnc

μν + nμnν [46] with the determinant γ = e−2�g. Equation
(79) is a generalization of our construction in [18] to the case
with nonvanishing � and Ci . For completeness, in Appendix
A we rewrite the theory solely in terms of the Goldstone boson
field θ .

It is straightforward to generalize this construction to
the case of the chiral superfluid which in Newton-Cartan
formalism is described by the action

S =
∫

dt dx
√

γ [ρV μ(∂μθ − Ãμ − sωμ) − ε(ρ)]. (80)

In this formulation, the current is convective

Jμ ≡ − 1√
γ

δS

δAμ

= ρV μ, (81)

which implies that in Newton-Cartan geometry the scalar ρ

can be constructed covariantly as

ρ = nμJμ. (82)

In the special case � = Ci = 0, it is easy to solve the equations
of motion for ρ and vi with the result

Dt θ = −viDiθ − 1

2
gij v

ivj + ε′(ρ),

vi = −gijDj θ + s

2
εij ∂j ln ρ,

(83)

where Diθ = ∂iθ − Ai − sωi . Note that in Newton-Cartan
formalism the superfluid velocity vi is given by (minus) the
covariant derivative of the Goldstone field plus an additional
term that is proportional and perpendicular to the gradient
of the superfluid density.12 This term is responsible for the
edge part of the current that appears in the ground state in
the presence of inhomogeneities and gives rise to the angular
momentum (30). Also due to this extra term, in the present
formulation one finds T ij = T

ij

ideal + T
ij

Hall.
Finally, we will generalize the dual description of a

superfluid presented in Sec. II to the covariant form in
Newton-Cartan space-time. First, from Eqs. (79) and (80) we
notice that for � �= 0 the conservation equation of particle
number is given by

∂μ(
√

γ Jμ) = 0, (84)

which is identically satisfied by

Jμ = εμνρ
nc ∂νaρ, (85)

where we introduced ε
μνρ
nc ≡ √

γ −1εμνρ . In Newton-Cartan
space-time ε

μνρ
nc transforms as a tensor.13 Given this tensor and

the current Jμ that transforms as a vector

δJμ = −ξκ∂κJ
μ + J κ∂kξ

μ, (86)

the gauge potential must transform simply as a one-form

δaμ = −ξκ∂κaμ − aκ∂μξκ . (87)

The dual theory of the conventional superfluid in Newton-
Cartan space-time is given by the action

S =
∫

dt dx
√

γLsf (88)

12Since the superfluid velocity has no unique definition in the
microscopic theory, its redefinition is allowed and is known as the
frame transformation in the theory of hydrodynamics [47].

13This can be demonstrated by using the identity εμνρ
nc ∂κξ

κ =
εμνκ

nc ∂κξ
ρ + εμκρ

nc ∂κξ
ν + εκνρ

nc ∂κξ
μ.
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with the Lagrangian

Lsf = −ε(ρ) − εμνρ
nc Ãμ∂νaρ, (89)

where ρ = nμJμ = ε
μνρ
nc nμ∂νaρ or using the parametrization

(68) one finds ρ = b + εijCiej . This Lagrangian follows
directly from Eq. (79). Using the equation of motion

vi = −εij ej

ρ
, (90)

we can eliminate the velocity field vi and rewrite the
Lagrangian as

Lsf = e2� gij eiej

2ρ
− ε(ρ) − e�εμνρAμ∂νaρ, (91)

which is the generalization of Eq. (8) to the case with
nonvanishing � and Ci .

The covariant form of the dual theory of a chiral superfluid
in Newton-Cartan geometry is given by

Lch = Lsf + LWZ

= −ε(ρ) − εμνρ
nc Ãμ∂νaρ − εμνρ

nc ωμ∂νaρ. (92)

VI. ENERGY CURRENT

Provided the background sources are static, the system has
time translation symmetry. By Noether theorem this leads to
the conservation of the energy current Jμ

ε . The Newton-Cartan
formalism developed above is a convenient framework for the
calculation of Jμ

ε . The current is defined by

δS =
∫

dt dx
√

γ Jμ
ε ∂μξ t , (93)

which follows from the invariance of the effective action under
(global) time translations. Employing now Eq. (63) we find

J t
ε = 1√

ge−�

(
δS

δ�
− δS

δA0
A0 + δS

δCi

Ci

)
→ 1√

g

δS

δ�
,

J i
ε = 1√

ge−�

(
δS

δCi

− δS

δAi

A0

)
→ 1√

g

δS

δCi

,

(94)

where the most right expressions are valid provided A0 = � =
Ci = 0. This explains why � and Ci serve as external sources
for the energy density and current, respectively.

By applying now the prescription (94) to the action (79) we
first calculate the energy current of the conventional superfluid.
For A0 = � = Ci = 0 one finds

J t
ε,ideal = 1√

g

δS

δ�
= 1

2
ρgklv

kvl + ε(ρ),

J i
ε,ideal = 1√

g

δS

δCi

= ρDt θvi

=
(

P + ε(ρ) + 1

2
ρgklv

kvl

)
vi, (95)

which is the well-known result for an ideal fluid. In the second
equation, we used the equations of motion (83) with s = 0 and
the relation P + ε(ρ) = ρε′(ρ).

Now, we are ready to calculate how the energy current (95)
is modified in the chiral superfluid. For simplicity, we will only

consider the background A0 = � = Ci = 0. Since

SWZ =
∫

dt dx
√

γLWZ (96)

does not depend on �, we find

J t
ε = 1√

g

δS

δ�
= 1

2
ρgklv

kvl + ε(ρ). (97)

Hence, there is no correction to the energy density compared
to the conventional superfluid. On the other hand, the modi-
fication of the spatial energy current is nontrivial. Indeed, for
the chiral superfluid we find

δS =
∫

dt dx
√

gρ[δClv
lDt θ − sδωt − svlδωl] (98)

with

δωt = 1
2εij ∂t (δCivj ),

δωi = − 1
2εjk[vj∂iδCk + ∂j (vkδCi) + δCj∂tgik],

(99)

where Eq. (78) was applied. In Appendix E, the resulting
energy current is found to be given by

J l
ε = 1√

g

δS

δCi

=J l
ε,ideal + s

2

[
1√
g

∂t (
√

gρ) + ∇i(ρvi)

]
εlj vj + T lm

Hallvm.

(100)

The second term vanishes if the equations of motion are used.
The last term is the correction due to the modification of the
stress tensor. A similar correction also arises in dissipative
Navier-Stokes hydrodynamics [48] and parity-violating hy-
drodynamics of normal fluids [49].

VII. CONCLUSION

In this paper, we have constructed the leading-order terms in
the effective action of conventional and chiral two-dimensional
fermionic superfluids using the dual gauge field formulation.
A similar low-energy description for superconductors was
developed in [41,42,50], with the important difference that
for the superfluid the action is not purely topological due to
the presence of a gapless Goldstone mode.

Compared to other works, we impose nonrelativistic dif-
feomorphism invariance [9] that puts stringent constraints on
the form of the effective action. It also allows us to consider
superfluids living on curved manifolds. We use the Newton-
Cartan formalism [10–16] to present a covariant formulation
of the superfluid with sources that couple to all conserved
currents. We have also shown that the parity-breaking rela-
tivistic superfluid of [43] reduces to the chiral superfluid in
the nonrelativistic limit. In particular, the coupling of the dual
gauge field to the Euler topological current reduces to the
famous Wen-Zee term.

Even though the chiral superfluid studied here has Galilean
invariance, the Newton-Cartan formalism can be applied to
more general cases without Galilean or Lorentzian invariance
[11,13,14,16]. In particular, it would be useful to construct
a covariant effective action of chiral superconductors, i.e.,
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charged superfluids coupled to a dynamical electromagnetic
field.
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APPENDIX A: GOLDSTONE BOSON FORMULATION

In this Appendix, we demonstrate that the theory defined
by the Lagrangian (3) is equivalent to the leading-order
general coordinate-invariant theory of nonrelativistic s-wave
superfluid found previously in [9,27]. Up to a surface term the
Lagrangian (3) is

Lsf = ρDt θ + ρviDiθ + 1
2ρgij v

ivj − ε(ρ), (A1)

where we introduce the covariant derivative Dμθ = ∂μθ − Aμ.
The Euler-Lagrange equation δS/δvi = 0 gives us

vi = −Diθ (A2)

and thus θ can be identified as the Goldstone field of the
spontaneously broken U(1)N particle number symmetry. Now,
we can substitute Eq. (A2) into (A1) and find

Lsf = ρ

(
Dt θ − gij

2
DiθDj θ

)
︸ ︷︷ ︸

X

−ε(ρ), (A3)

where we introduced the combination X which is general
coordinate invariant and reduces to the chemical potential in
the ground state. Due to the equation of motion δS/δρ = 0, ρ

and X are the Legendre dual variables and we finally arrive at
[9,27]

Lsf = P (X), (A4)

where P = ρdε/dρ − ε is the thermodynamic pressure as the
function of the generalized chemical potential X.

The same derivation can be repeated in the presence of the
sources � and Ci (see Sec. V). Starting from Eq. (79), we once
again obtain Eq. (A4) with

X = Dtθ − gij

2
DiθDjθ, (A5)

where the modified covariant derivatives are

Dtθ ≡ e�Dt θ, Diθ ≡ Diθ + CiDt θ. (A6)

In Newton-Cartan space-time the general coordinate invariant
(A5) can be conveniently written as

X = V μD̃μθ − 1
2eaμD̃μθeaνD̃νθ

= V μD̃μθ − 1
2gμν

nc D̃μθD̃νθ, (A7)

where D̃μθ ≡ Dμθ − Ãμ with Ãμ defined by Eqs. (72). This
form was also found in [16].

APPENDIX B: LINEARIZED HYDRODYNAMICS IN DUAL
LANGUAGE

Consider small phonon fluctuations around the homoge-
neous superfluid ground state in flat space with Aμ = 0. In
the dual picture, the vacuum of this theory has bGS = ρGS and
eGS = 0, which follows from Eq. (7). By expanding Eq. (8) to
the quadratic order in fluctuations δb = b − bGS and e we find

Lsf = 1

2ρGS
e2 − εGS − ε′

GSδb − 1

2
ε′′

GSδb
2

→ 1

2ρGS
e2 − ε′′

GS

2
δb2, (B1)

where in the second line we dropped the constant and
linear terms. The linearized approximation of Eq. (8) thus
gives rise to the linear relativistic electrodynamics, where
the effective speed of light is fixed by the speed of sound
cs = √

dP/dρ|ρ=ρGS = √
ε′′

GSρGS.

APPENDIX C: FROM VIELBEINS TO METRIC

Here, we express the gravitomagnetic field Bω and grav-
itoelectric field Eωi solely in terms of the spatial metric gij .
First, using Eq. (22) and the orthonormality of the vielbein, it
is straightforward to show that

Bω = εij ∂iωj = R/2, (C1)

where the Ricci scalar R = gijRij with

Rij = ∂k�
k
ij − ∂i�

k
jk + �k

ij�
l
kl − �k

il�
l
jk,

�i
jk = 1

2gil(∂jglk + ∂kglj − ∂lgjk).
(C2)

On the other hand, using Eq. (22) the gravitoelectric field can
be written as

Eωi = 1
2

[
εab

(
∂te

aj ∂ie
b
j − ∂ie

aj ∂t e
b
j

)︸ ︷︷ ︸
Mi

−∂t (ε
jk∂jgik) − ∂iB

]
.

(C3)

It is convenient to express Mi as

Mi = εab
{
∂te

aj
[∇ie

b
j + �k

ij e
b
k

] − [∇ie
aj − �

j

ike
ak

]
∂te

b
j

}
.

(C4)

Using ∇ie
b
j = −ωiε

bcec
j , it is now easy to show that the terms

with covariant derivatives cancel and we end up with

Mi = �k
ij ∂t (ε

jlglk). (C5)

The electric field thus reads as

Eωi = 1
2

[
�k

ij ∂t (ε
jlgkl) − ∂t (ε

jl∂jgil) − ∂iB
]
, (C6)

which using

εjl∇j gil = εjl∂jgil − εjl�k
jigkl = 0 (C7)

can be simplified to

Eωi = 1
2

[−∂t

(
�k

ij

)
εjlgkl − ∂iB

]
. (C8)
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APPENDIX D: NONRELATIVISTIC LIMIT OF EULER
CURRENT

Here, we provide some details on the calculation of the
nonrelativistic limit of the Euler current Jμ. First we note that
since

∇iuj ∼ 1

c
, ∇0ui ∼ ∇iu0 ∼ 1

c2
, ∇0u0 ∼ 1

c3
, (D1)

we can neglect in the Euler current (51) the terms depending
on the velocities. In addition, since

εαβγ uαRνλβγ � −εijRνλij − 2εij vi

c
Rνλ0j , (D2)

the second term is O(1/c2) compared with the first one and
can thus be neglected. Hence, we find

8πJμ � 1
2εμνλεijRνλij . (D3)

As a result, the time component of the Euler current equals to
the spatial scalar curvature

8πJ0 = 1
2εklεijRklij = 1

2 (gkigjl − gkjgil)Rklij

= R = 2Bω. (D4)

The spatial part Jk can be expressed using the mixed
components of the Ricci tensor

8πJk � −εklεijR0lij = −(gkigjl − gkjgil)R0lij . (D5)

We can now use that in three dimensions

Rμνρλ = 2(gμ[ρRλ]ν − gν[ρRλ]μ) − Rgμ[ρgλ]ν (D6)

and up to the relativistic corrections

Rij � 1
2Rgij , (D7)

which leads to

R0lij � gljR0i − gliR0j . (D8)

This implies

8πJk � −2gikR0i . (D9)

The Ricci tensor is given by

R0i � ∂k�
k
i0 − ∂i�

k
0k + �k

kl�
l
0i − �l

ik�
k
0l

= ∇k�
k
0i − ∂i�

k
0k, (D10)

where the covariant derivative is defined with respect to the
spatial metric only. Using the metric (54), one finds in the
nonrelativistic limit [9]

�i
0j � 1

2c
(gikġkj + gikFkj ). (D11)

With the help of the last equation, the Ricci tensor (D10) can
alternatively be written as

R0i � 1

2c
∇k

(
gklġli + εk

iB
) − 1

2c
∂i(g

klġkl)

= 1

2c
∇k

(
gklġli + εk

iB
) − 1

2c
∇i(g

klġkl)

= 1

2c

(
gkl∇kġli + εk

i∂kB
) − 1

2c
gkl∇i ġkl . (D12)

Putting this into (D9) and using

∇i ġjk = �̇l
ij glk + �̇l

ikgjl, (D13)

we find

8πJk � −1

c
[εnk∂nB + gjkgnl(∇nġlj − ∇j ġnl)]

= −1

c

[
εnk∂nB + gjkgnl

(
�̇s

nlgsj − �̇s
j lgns

)]
= −1

c

[
εnk∂nB + (gnlgkj − gklgnj )gsj �̇

s
nl

]
= −1

c
εnk

[
∂nB + εlj gsj �̇

s
nl

]
= −2

c
εkn[Eω n + ∂nB/2], (D14)

where B = εij ∂iAj .

APPENDIX E: ENERGY CURRENT CALCULATION

In this Appendix, we present how to compute the energy current J l
ε . First, using Eqs. (98) and (99) we find

J l
ε = 1√

g

δS

δCl

= ρDt θvl + s

2
(∂tρεlj vj + εlj ∂i(ρvivj ) − εjk∂j (ρvl)vk + εlkρvi∂tgik). (E1)

Given the equation of motion (83), we can eliminate Dt θ with the result

J l
ε = J l

ε,ideal − s

2
vlviε

ij ∂jρ + s

2
(∂tρεlj vj + εlj ∂i(ρvivj ) − εjk∂j (ρvl)vk + εlkρvi∂tgik)

= J l
ε,ideal + s

2
(∂tρεlj vj + εlj ∂i(ρvivj ) − εjkρ∂jv

lvk + εlkρvi∂tgik)

= J l
ε,ideal + s

2
([∂tρ + ∂i(ρvi)]εlj vj + εljρvi∂ivj − εjkρ∂jv

lvk + εlkρvi∂tgik)

= J l
ε,ideal + s

2

[
1√
g

∂t (
√

gρ) + ∇i(ρvi)

]
εlj vj + �J l

ε (E2)

with

�J l
ε = sρ

2

(
εlj vi∂ivj − εjkgln∂j vnvk − εjk∂jg

lnvnvk − 1

2
vmgij ∂mgij ε

lkvk + εlkvi∂tgik − 1

2
gij ∂tgij ε

lkvk

)
. (E3)
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One can check that �J l
ε agrees with the covariant expression

�J l
ε = s

4
ρ(εlrgms + εmrgls)(∇rvs + ∇svr + ∂tgrs)vm = T lm

Hallvm. (E4)

This can be achieved either by a direct comparison14 or by the following calculation: First, pick from the bracket of Eq. (E3)
only the terms depending on derivatives of the velocity:

εlj vi∂ivj − εjkgln∂j vnvk = [εlj gni + εniglj ]∂ivjvn = 1

2
[εlj gni + εniglj ]σij vn

= 1

2
[εlj gni + εnjgli]σij vn

= 1

2
[εlj gni + εnjgli]

(
[∇ivj + ∇j vi − δij∇kv

k + ∂tgij ]vn + 2�k
ij vkvn − ∂tgij vn

)
= 2

sρ
T ln

Hallvn + 1

2
[εlj gni + εnjgli]

(
2�k

ij vkvn − ∂tgij vn

)
, (E5)

where we took advantage of the decomposition

∂ivj = 1
2σij + 1

2ωεij + 1
2θδij , (E6)

where

σij = ∂ivj + ∂jvi − δij ∂kv
k, ω = εij ∂ivj , θ = ∂kv

k. (E7)

Now, substitute Eq. (E5) into (E3) and consider the difference between Eqs. (E3) and (E4). If we collect the terms depending on
the time derivatives, we find

− 1
2 [εlj gni + εniglj ]∂tgij vn + εlkvi∂tgik − 1

2gij ∂tgij ε
lkvk = − 1

2 [εlj gni + εniglj − 2εlj gin + gij εln]∂tgij vn

= − 1
2 [−εlj gni + εniglj + gij εln]∂tgij vn

= − 1
2 [−εlignj + εniglj + gij εln]∂tgij vn

= − 1
2 [εnlgij + gij εln]∂tgij vn = 0. (E8)

Finally, the terms depending on spatial derivatives of the metric vanish as well:

vnvk

[
(εlj gni + εnjgli)�k

ij + εjk
(
gin�l

ij + �n
ijg

il
) − �

j

ij ε
lkgin

] = vnvk

[
gni

(
εlj�k

ij − εkj�l
ij

) + gli
(
εnj�k

ij + εjn�k
ij

) − �
j

ij ε
lkgin

]
= vnvk

[
gniεlk�

j

ji − �
j

ij ε
lkgin

] = 0. (E9)

This proves that Eqs. (E3) and (E4) are equivalent.

14Since every two-dimensional Riemannian manifold is conformally flat, it is especially convenient for the purpose of the comparison to use
the coordinates, where gij = √

gδij .
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