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Creation of quantum error correcting codes in the ultrastrong coupling regime
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We propose to construct large quantum graph codes by means of superconducting circuits working at the
ultrastrong coupling regime. In this physical scenario, we are able to create a cluster state between any pair of
qubits within a fraction of a nanosecond. To exemplify our proposal, creation of the five-qubit and Steane codes is
numerically simulated. We also provide optimal operating conditions with which the graph codes can be realized
with state-of-the-art superconducting technologies.

DOI: 10.1103/PhysRevB.91.064503 PACS number(s): 03.67.Pp, 03.67.Lx, 42.50.Ct, 85.25.Cp

I. INTRODUCTION

Quantum computers promise speedup and robust computa-
tional power over their classical counterparts [1,2]. However,
their practical realization is still challenging because of
susceptibility to errors. Thanks to quantum error correcting
codes (QECCs) [3,4] and the theory of fault-tolerant quantum
computation [5], these errors can, in principle, be suppressed
and corrected in efficient manners. Nowadays, simple quan-
tum error correcting codes that have been experimentally
demonstrated are the three-qubit [6,7] and four-qubit codes
[8,9]. Notice that the smallest QECCs capable of correcting
both bit-flip and phase errors are the five-qubit and the
seven-qubit codes, respectively. With recent advancements
in trapped ions [10] and superconducting circuits [11] to
achieve simultaneous detection of multiple errors, the aim of
large-scale quantum error correcting codes comes close to
reality.

On the road towards realizing quantum graph codes
and other complex codes, circuit quantum electrodynamics
(cQED) [12–14] is a prime candidate for implementing QECCs
due to their high level of controllability [15–17] and scalability
[18,19]. Furthermore, it has been shown both theoretically
[20] and experimentally [21–23] that a flux qubit galvanically
coupled to a coplanar waveguide resonator reaches the ultra-
strong coupling (USC) regime [24] of light-matter interaction,
where the qubit-resonator coupling strength g is comparable to
the resonator frequency ω; i.e., 0.1 �g/ω �1. This coupling
regime enables direct application of ultrafast two-qubit gates
[25] between a pair of qubits inside the resonator. We aim to
realize the USC gate in between any pair of qubits within a
resonator, to realize complex quantum codes for quantum error
correction schemes in a scalable manner.

Here, we show how to construct two QECCs, the five-
qubit code [2] and the Steane code [4], in a cQED archi-
tecture operating at the USC regime. We construct them
by sequentially performing ultrafast controlled phase gates
[UCZ = diag(1,1,1,−1)] between any two physical qubits to
encode one logical qubit. Ultrafast gate time and high-fidelity
response of the superconducting circuit might ensure very
low errors incurred at the logical qubit level (see “Errors and

decoherence model” section). We believe our scheme could
be used to mediate interactions between logical qubits and
perform protected quantum computations in a measurement-
based manner [26]. In addition, our proposal may pave a way
to construct various types of QECC applications [27,28].

II. SUPERCONDUCTING CIRCUIT DESIGN

In order to achieve ultrafast quantum gate operations in
between any two physical qubits, we consider a supercon-
ducting flux qubit [29] (see Fig. 1), which consists of six
Josephson junctions (JJs). Each JJ is denoted with a cross, and
it is galvanically coupled [21,22] to a coplanar waveguide
resonator (CWR) by means of the coupling junction, JJ6.
This qubit configuration provides a tunable qubit-resonator
coupling strength [25,30], where the flux qubit potential energy
is defined by junctions 1, 2, and 3:

Uq

EJ

=−{cos ϕ1+ cos ϕ2+α cos(ϕ2−ϕ1+2πf1)+2β cos(πf3)

× cos[ϕ2−ϕ1 + 2π (f1 − f2 + f3/2) + ϕx]}. (1)

In the configuration of Fig. 1(a), each JJ contributes an energy
E(ϕi) = −EJi

cos(ϕi), where EJi
and ϕi are the Josephson en-

ergy and the gauge-invariant superconducting phase difference
across the ith junction. We assume EJ1 = EJ2 = EJ , EJ3 =
αEJ , EJ4 = EJ5 = βEJ , and the quantization rule for each
closed loop, i.e.,

∑
j ϕj = 2πfi + 2πn, where fi = φi/�0 is

the frustration parameter; �0 = h/2e is the flux quantum. In
addition, ϕx is the phase slip shared by the resonator and the
f2 loop (see Appendix), and n is an integer multiple. Near
the symmetry point, i.e., φ1 ≈ �0/2, the flux qubit potential
(1) can be effectively truncated to a two-level system with
frequency ωq = √

	2 + ε2/�. Here, 	 is the qubit energy
gap and ε = 2Ip(φ1 − �0/2) with Ip being the persistent
current.

We propose to construct two QECCs, the five-qubit code
and the Steane code, by considering the cQED architecture
shown in Fig. 1(c), where the tunable flux qubits are uniformly
distributed along a CWR [31]. In this configuration, we assume
that each flux qubit acts as a small perturbation to the resonator
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FIG. 1. (Color online) (a) Schematic of a flux qubit, denoted
by the Josephson junctions 1, 2, and 3. By varying the frustration
parameter f3, attained by an applied magnetic flux passing through
the loop composed of the JJ4 and JJ5, the coupling between the qubit
and the resonator can be tuned at will. This is a crucial aspect of
our superconducting qubits design in order to realize cluster states
in an ultrafast time scale. (b) A five-qubit cluster state. Each black
bond represents the pairwise cluster state generation mechanism U

ij

CZ
between ith and j th physical qubits (green circles) that are initially
prepared in the |+〉 = (|g〉 + |e〉)/√2 state. (c) An array of five USC
qubits embedded in a resonator to obtain the five-qubit quantum error
correcting code.

due to the presence of JJ6’s. This condition is satisfied when
the inductance of the JJ6’s is much smaller than the sum of
inductances belonging to the loop threaded by the external
flux φ2 [see Fig. 1(a)]. In this case, most of the current will
flow along the microwave resonator [20], a condition that
has already been achieved in experiments for implementing
the USC regime [21,23]. In addition, each JJ6 will introduce
extra boundary conditions on the resonator that together with
open boundary conditions at the resonator edges will allow
us to define an eigenmode structure (see Appendices). A case
of interest occurs when JJ6’s operate in the linear response
regime where the Josephson energy EJ is much larger than
the capacitive energy EC . This leads to a nonlinear resonator
spectrum where each harmonic presents a manifold M,
whose number of bosonic modes corresponds to the number
of qubits embedded across the resonator [32]. Under the
aforementioned conditions, we are led to an effective system
Hamiltonian (see Appendices for detailed derivations) which
reads

H = �

2

N∑
j=1

ωj
qσ

j
z + �

∑
�∈M

ω�a
†
�a�

+ �

N∑
j=1

∑
�∈M

gjl

(
cj
xσ

j
x + cj

z σ
j
z

)
(a� + a

†
�), (2)

where ω
j
q is the j th qubit frequency, σ j

z,x are the Pauli matrices,
ω� is the frequency of the �th resonator mode belonging to the
manifold M, a

†
� (a�) is the creation (annihilation) operator of

�th resonator mode, and the coefficients c
j
x and c

j
z are functions

(a) (b)

(c) (d)

FIG. 2. (Color online) Coupling coefficients (a) cx and (b) cz

in Eq. (2) as a function α, that is the size of junction JJ3, and
the frustration parameter f1 = φ1/�0. In this simulation we have
considered EJ /h = 221 GHz and the capacitive energy of junctions
as EC = EJ /32. (c) Fidelity of achieving the desired controlled-phase
gate UCZ , in the presence of nonzero transversal coupling strength cx ,
while the red solid line, the black solid line, the dot-dashed line, the
dashed line, and the dotted line represent the case when the resonator
field is a thermal state at 15 mK, a vacuum state, a coherent state with
amplitude γ = 0.25, a coherent state with γ = 0.5, and a coherent
state with γ = 1, respectively. (d) The enlarged figure of (c) shows
the red and black solid lines overlap each other, indicating that the
vacuum and the thermal states behave the same when considering
two bosonic modes.

of the system parameters α,β,f1, and f2 [25], satisfying
the condition |cj

x |2 + |cj
z |2 = 1 for ∀j . The coupling strength

gj ∝ 2EJ β cos(πf3)/� depends on the external magnetic flux
φ3, and N is the total number of qubits present in the
resonator. We note that different coupling strengths appear
due to the spatial dependence of the distribution of flux qubits
along the resonator [31]. Moreover, it has been shown that
different frequencies belonging to a specific manifold M
become degenerate (ω� = ω) [32] for a specific value of
the plasma frequency ωp = 1/

√
CJ LJ associated with the

coupling junctions JJ6, where CJ is the Josephson capacitance,
LJ = ϕ2

0/EJ is the Josephson inductance, and ϕ0 = �0/2π is
the reduced flux quantum.

It is noteworthy that coefficients c
j
x and c

j
z can be manipu-

lated by means of the external flux φ
j

1 as shown in Figs. 2(a)
and 2(b) for a given junction size α = EJ3/EJ . Here, it might
be possible to tune the transversal coupling where cx → 1
and cz → 0, or the longitudinal coupling where cx → 0
and cz → 1. The latter becomes an essential condition for
generating pairwise cluster states. The numerical simulation of
coefficients cx and cz in Figs. 2(a) and 2(b) has been performed
by diagonalizing the flux qubit potential, Eq. (1), and truncat-
ing it to the two lowest energy levels [25]. This allows us to
evaluate numerically matrix elements of the persistent-current
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operator Ijk ∝ 〈j | sin[ϕj

2 − ϕ
j

1 + 2π (f j

1 − f
j

2 + f
j

3 /2)]|k〉 in
the basis of the effective two-level system to obtain
sin[ϕj

2 − ϕ
j

1 + 2π (f j

1 − f
j

2 + f
j

3 /2)]=∑
ν=0,x,y,z cνσν , with

σ0 = 1 being the identity operator (see Appendices).

III. PAIRWISE CLUSTER STATE GENERATION

A cluster state between any ith and j th qubits can be readily
generated in four steps. First, the system is cooled down
to reach its ground state in the USC regime. Second, both
qubits are adiabatically addressed with external fluxes that
vary linearly in time φk

3 = φ̄0 + (	φ)t/T where k ∈ {i,j},
with φ̄0 an offset flux, 	φ a small flux amplitude, and T

the total evolution time. In this case, the coupling strength
of each qubit reaches the strong coupling regime described
by the Jaynes-Cummings model [33] such that the system is
prepared in the state |ψG〉 = |g〉⊗N ⊗ |0〉⊗N , where |g〉 and
|0〉 stand for the ground state of the qubit and the vacuum
state for each mode in M, respectively. The validity of this
initialization process can be proven numerically (see Sec. IV).
Third, each qubit is then addressed with a classical microwave
signal, sent through the cavity, to be prepared in the state |+〉 =
(|g〉 + |e〉)/√2 which is an eigenstate of σx , while all the
remaining N − 2 qubits are far off-resonant with respect to the
driving frequency. At this stage all qubits should dispersively
interact with the modes within the manifold M such that there
is no exchange of excitations. This task might be carried out at
a degenerate regime of the bosonic manifold, ω� = ω [32]. At
last, the external magnetic fluxes φk

3 are swiftly tuned to reach
the USC coupling strength within a subnanosecond time scale.
During these four steps, the magnetic fluxes φk

1 should be
tuned to reach the longitudinal qubit-resonator coupling. After
interacting with the collective resonator modes, the system
evolution operator takes the form [31,34]

U (t) = U0(t)eiξ 2M[ωt−sin(ωt)]
∏

�

e−iωta
†
�a�D�[κ(t)], (3)

where D�[κ(t)] = exp[κ(t)a†
� − κ∗(t)a�] is the displacement

operator associated with the �th bosonic mode within the
manifold M. In addition, ξ = ∑N

j=1 κjσ
j
z with κj = gj/ω,

M stands for the number of degenerate bosonic modes b�, and

the unitary U0(t) = exp(−it
∑N

j=1
ω

j
q

2 σ
j
z ). After the evolution

time T = 2πn/ω, we have performed the desired controlled
phase gate operation between the qubits

UCZ = U × exp

[
− iπ

4

(
σ i

z + σ j
z

)]
× exp

[
4πiM

((
κ2

i + κ2
j

)1
2

+ κiκjσ
i
zσ

j
z

)]
, (4)

where U = exp{−iπ
4 [(

4ωi
q−ω

ω
)σ i

z + ( 4ω
j
q−ω

ω
)σ j

z ]}. The resultant
state incurs an extra global phase due to the presence of U ,
which is unavoidable since it is formidable by construction to
tune a desired qubit frequency, via the external flux φ1, without
affecting the longitudinal and transversal coupling strengths
[see Figs. 2(a) and 2(b)]. To achive maximum gate fidelity, we
require both κ2

i + κ2
j = 1

8nM
and κiκj = 1

16nM
. That means the

two coupling strengths need to satisfy κi + κj = 1
2
√

nM
. The

q1
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q3
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FIG. 3. (Color online) A ten-qubit cluster state emerging from
the Steane code after appropriate projective measurements on the
physical qubits q8,q9, and q10 (orange circles). Each black bond
represents the pairwise cluster state generation mechanism U

ij

CZ
between the ith and j th physical qubits (green circles) that are initially
prepared in the |+〉 = (|g〉 + |e〉)/√2 state.

operational gate time is estimated to be T = 2π/ω ∼ 0.2 ns
if the collective mode frequency is ω = 2π × 5 GHz, which
implies a ratio gj/ω = 1/(4

√
2) ≈ 0.17 belonging to the USC

regime. The latter has already been demonstrated in a recent
experiment [23]. As soon as the two qubits are entangled,
they are immediately detuned from the resonant frequency so
that we may repeat the same procedure for other qubit pairs
to arrive at a specific quantum error correcting code, that
being the five-qubit code [see Fig. 1(b)] or the Steane code
(see Fig. 3).

A. Five-qubit code

To demonstrate our ultrafast cluster state generation
scheme, we create the five-qubit code which is the smallest
QECC that protects against an arbitrary error on a single qubit
encoded state [2]. We recall that a cluster state is a common
eigenstate of stabilizer operators Ki = Xi

⊗
j∈nb(i) Zj , where

Xi = σ i
x , Zi = σ i

z , and nb(i) means neighbors of the ith qubit.
Since the stabilizer operators form a group |ψ〉 = Ki |ψ〉 =
KiKj |ψ〉, it is possible to define S ′

i = KiKi+1 mod 5 and
logical operators X̄ = K5 and Z̄ = Z1Z2Z3Z4Z5, from which
it follows that the five-qubit cluster state is equivalent to the
five-qubit code via local unitary transformation U = ⊗

i SiHi ,
where Si (Hi) is the phase (Hadamard) gate (see Ref. [35]).
Therefore, we create the five-qubit cluster state shown in
Fig. 1(b) by applying the pairwise cluster state generation
mechanism U

ij

CZ . The resultant state is

|�5〉 = U 15
CZU 54

CZU 43
CZU 32

CZU 21
CZ |+〉⊗5, (5)

after an evolution time τ5 = 10π/ω. After local operations
acting on individual qubits, we achieve the five-qubit code.

B. Steane code

The Steane code [4] can be constructed in a manner similar
to that of the five-qubit code, but from a cluster state of
ten qubits as shown in Fig. 3. We require seven stabilizer
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operators, among ten possible operators, in the combination
of operators that commute with X8, X9, and X10. It can easily
be checked that measuring the orange colored qubits in the
X basis leaves the remaining seven qubits in the desired code
state [2]. With twelve U

ij

CZ gates followed by three parallel
measurements within an evolution time of τ7 = 24π/ω, we
achieve the Steane code

|�7〉 = 〈+|10〈+|9〈+|8
∏
k∈E

Uk
CZ |+〉⊗10, (6)

with E representing the set of all the black colored bonds in
Fig. 3.

IV. VALIDITY OF THE ROTATING WAVE
APPROXIMATION DURING STATE INITIALIZATION

To initialize our system for the ultrafast cluster state
creation, we intend to cool down the entire system to its
ground state. By design, our qubits are galvanically coupled to
the resonator. Hence, we expect them to reach the ultrastrong
coupling (USC) regime at the end of the cooling process.
Afterwards, the coupling strength g is adiabatically switched
off till it reaches the Jaynes-Cummings (JC) regime. As a
consequence, the ground state of the quantum Rabi model,
|ψG〉, which has just been prepared by cooling, is adiabatically
mapped to the JC ground state, |ψJC〉 = |g〉⊗N ⊗ |0〉⊗N , where
|g〉 is the ground state of a qubit, |0〉 is the bosonic mode
vacuum, and N is the number of qubits and bosonic modes
present in the resonator. At this moment, our system is ready
for the ultrafast cluster state creation process.

To illustrate our protocol, we consider two qubits embedded
in a resonator with two modes and simulate the aforementioned
adiabatic process. Figure 4 shows the fidelity plot of the
JC ground state |ψJC〉 = |gg〉 ⊗ |00〉 and the instantaneous
state |ψ(t)〉 during an adiabatic switch-off process, given the
initial state |ψG〉, that is, the ground state of the quantum
Rabi model. The initialization process via adiabatic switch-

FIG. 4. Fidelity between the desired Jaynes-Cummings ground
state |ψJC〉 = |gg〉 ⊗ |00〉 and the instantaneous state |ψ(t)〉 during
an adiabatic switch-off process, provided that an initial state of the
evolution is |ψG〉, ground state of the quantum Rabi model. In another
words, F = |〈ψJC|ψ(t)〉|2 is plotted against g/ω.

off takes T = 250/ω = 50 ns, if we take the resonator
frequency to be at ω = 2π × 5 GHz. Unit fidelity at the
end of the adiabatic evolution ascertains that the the rotating
wave approximation is consistent in this context, while the
extension to a large number of qubits and bosonic modes is
straightforward.

V. ERRORS AND DECOHERENCE MODEL

The pairwise cluster state generation mechanism assumes
that coupling coefficients c

j
x = 0 in the effective Hamiltonian,

Eq. (2). That means we specifically require the longitudinal
couplings. However, there might be some residual nonzero
transversal couplings in a physical implementation. Whenever
this is the case, i.e., c

j
x �= 0, the performance of the ultrafast

gate UCZ is affected, depending on the amount of residuals.
In order to see the gate performance with presence of the
transversal couplings, we have performed numerical simula-
tions for the dynamics governed by Eq. (2) for the simplest
scenario of two-qubits and two bosonic modes belonging
to the manifold M. In Figs. 2(c) and 2(d), we show the
optimal operating conditions to obtain maximum gate fidelity.
In particular, we plot the fidelity F = |〈ψF |ψ〉|2 between
the expected final two-qubit state |ψF 〉 = 1√

2
(|e,+〉 − |g,−〉),

with |±〉 = (|g〉 ± |e〉)/√2, and the state |ψ〉 after the pairwise

(a)

(b)

FIG. 5. (Color online) Monte Carlo simulation results. Fidelity
of (a) the five-qubit code, where the average fidelity value is taken
over 5000 runs, and (b) the Steane code, where the average fidelity
value is taken over 1000 runs, is plotted against single-qubit gate error
probability p1 and two-qubit gate error probability p2.
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gate operation has been performed with an initial state |ψ0〉 =
| + ,+〉〈+, + | ⊗ ρF along various values of cx . Notice that in
calculating the fidelity F we have traced out the cavity degrees
of freedom. Here, ρF is the cavity field being a thermal state
at 15 mK (red solid line), a vacuum state (black solid line),
a coherent state with amplitude γ = 0.25 (dot-dashed line),
a coherent state with γ = 0.5 (dashed line), and a coherent
state with γ = 1 (dotted line). Even though the presence of
a vacuum, thermal, or coherent state inside the resonator at
near cx � 1 does not affect much of the gate performance,
we note that a coherent state field in the resonator has clear
advantage over the true vacuum field. In particular, we observe
an improvement in the gate fidelity when the coherent state
amplitude approaches unity, i.e., γ → 1.

In addition to imperfection of the cavity initial state and
coupling strengths, we expect our system to be exposed to
thermal noise from the control lines and crosstalks between
physical qubits. We model these effects as uncorrelated
depolarizing noise which follows otherwise perfect gates, and
estimate the fidelity of the final states by performing Monte
Carlo simulations for generation of the two QECCs. Also,
we consider measurement error of pm = 0.01 [19] for the case
of the Steane code. At the end, the collective state of the
logical qubit associated with the graph code can be written
as ρ = F |�ν〉〈�ν | + (1 − F)I/2ν , where F is the fidelity of
attaining the five-qubit code [ν = 5 and see Fig. 5(a)] or the
Steane code [ν = 7 and see Fig. 5(b)].

VI. SUMMARY AND DISCUSSION

To summarize, we have proposed a possible realization
of the five-qubit and the Steane codes in an array of
superconducting circuits galvanically coupled to a coplanar
waveguide resonator that mediates two-qubit interactions. The
system operates in the USC regime, in which two-qubit gates of
subnanosecond time scale are demonstrated. At this time scale,
it is strenuous for the gate errors to be limited by the coherence
time of the qubit and the resonator in the galvanic configuration
[21,22], whose rough estimation is 10–100 ns and 160–500 ns,

respectively [36]. However, recent randomized benchmarking
techniques in circuit QED technologies [16,18] have shown
that the error per gate can be reduced to about 0.5%. This
precedent might encourage the realization of our approach,
in which fidelities in excess of 75% could be achieved. Also,
imperfect measurements are significant sources of errors in
the construction of cluster states. However, extremely fast
measurements with 99% fidelity have been demonstrated in
Ref. [19]. Moreover, in the light of current developments of
large microwave cavity arrays, and following ideas from freely
scalable quantum technologies developed in Ref. [37], one
may think of scaling up our system to a two-dimensional array
with nearest-neighbor coupling between cavities mediated by
superconducting quantum interference devices. As already
established in Ref. [37], the scaling up to large architectures
does not imply increasing the number of physical qubits inside
a unique device; instead, it has been proven that linking cells to
one another via noisy channels is fault tolerant if entanglement
purification is performed with high fidelity. Thus, we believe
our proposal, with all the advanced technologies in the
superconducting circuits, might pave a promising avenue
for implementing large-scale QECCs or topological codes
[38–42] in ultrafast time scales.
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APPENDIX A: A SUPERCONDUCTING COPLANAR
WAVEGUIDE RESONATOR INTERRUPTED BY A SERIES

OF UNIFORMLY SPACED FLUX QUBITS

To arrive at the effective Hamiltonian, Eq. (2) of the main
text, we consider N identical flux qubits labeled as F ’s
that are uniformly distributed across a CWR [see Figs. 6(a)
and 6(b)]. Two ends of the resonator are open-circuited, while

L
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FIG. 6. (a) A coplanar waveguide resonator (CWR) of length L interrupted by N identical and uniformly distributed flux qubits. (b)
Lumped-element circuit model for a portion of the CWR, encompassing flux qubit F j . (c) Schematic of the flux qubit. Numbers 1–6 with
a cross sign label Josephson junctions, arrows refer to voltage drop between any two nodes, and �1,2,3 are external magnetic fluxes passing
through each loop. Here, φ means a node variable and φ̃ means a branch variable.
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the CWR supports one-dimensional current-charge waves with
phase velocity v = 1/

√
lc and wave impedance Z0 = √

l/c,
where l and c are inductance and capacitance per unit length,
respectively. In this lumped-element circuit treatment, states
of the CWR and the flux qubits can be completely encom-
passed in terms of the flux function φ(x,t) = ∫ t

−∞ V (x,t ′)dt ′,
where V (x,t) is an electrical potential of the CWR at position
x with respect to the surrounding ground line. The Lagrangian
of the overall setup shown in Fig. 6(a) is then given by

L =
N+1∑
j=1

LCWR
j +

N∑
j=1

Lflux qubit
j , (A1)

with

LCWR
j =

n∑
k=0

c	x

2

(
φ̇

j

k

)2 −
n−1∑
k=0

(
φ

j

k − φ
j

k+1

)2

2l	x
, (A2)

Lflux qubit
j =

6∑
�=1

CJ�

2

( ˙̃
φ

j

�

)2 + EJ�
cos

(
φ̃

j

�

ϕ0

)
. (A3)

Here, CJ�
and EJ�

are Josephson capacitance and energy
of Josephson junction (JJ)� within the j th flux qubit [see
Fig. 6(c)]. We assume that EJ1 = EJ2 = EJ , EJ3 = αEJ ,
EJ4 = EJ5 = βEJ , and EJ6 = γEJ , where α,β,γ < 1. In
addition, ϕ0 = �/2e is the reduced flux quantum, φ̃� is flux
difference across JJ�, for example, φ̃6 = φ

j+1
0 − φ

j
n , and 	x is

the lattice spacing of the lumped circuit element description.
With these system parameters and the flux quantization rule,
we arrive at

Lflux qubit
j = CJ

2

[( ˙̃
φ

j

1

)2 + ( ˙̃
φ

j

2

)2] + αCJ

2

( ˙̃
φ

j

2 − ˙̃
φ

j

1

)2

+βCJ

( ˙̃
φ

j
x + ˙̃

φ
j

2 − ˙̃
φ

j

1

)2 + γCJ

2

( ˙̃
φ

j
x

)2

−Uj
q

(
ϕ

j

1 ,ϕ
j

2 ,ϕj
x

)
, (A4)

where the phase slip φ̃
j
x = φ

j
n − φ

j+1
0 , [see Fig. 6(c)], and

U
j
q

EJ

=−{
cos ϕ

j

1 + cos ϕ
j

2 + α cos
(
ϕ

j

2 − ϕ
j

1 + 2πf
j

1

) + 2β cos
(
πf

j

3

)
cos

[
ϕ

j

2 − ϕ
j

1 + 2π
(
f

j

1 − f
j

2 + f
j

3 /2
) + ϕj

x

]}
, (A5)

where ϕk = φ̃k/ϕ0 is a phase drop across JJk , ϕ0 = �/2e is the
reduced flux quantum, and fk = �k/(2πϕ0) is a frustration
parameter.

When we consider the Kirchhoff’s law at the node φ
j
n , the

equation of motion is given by

caφ̈j
n + (γ + 2β)CJ

(
φ̈j

n − φ̈
j+1
0

) + 2βCJ

( ¨̃
φ

j

2 − ¨̃
φ

j

1

)
= 1

l	x

(
φ

j

n−1 − φj
n

) − γ Ic sin ϕj
x

−βIc

{
sin

[
ϕj

x + ϕ
j

2 − ϕ
j

1 + 2π
(
f

j

1 − f
j

2

)]
+ sin

[
ϕj

x + ϕ
j

2 − ϕ
j

1 + 2π
(
f

j

1 − f
j

2 + f
j

3

)]}
, (A6)

with Ic = EJ /ϕ0. From here onwards, we assume that the
Josephson inductance of JJ6 in each flux qubit F j is much
smaller than the total inductance of each qubit loop, so that
most of the current flows through the resonator. As a result,
the qubit acts as a small perturbation to the CWR. With this
assumption, we arrive at a simplified equation of motion

caφ̈j
n + (γ + 2β)CJ

(
φ̈j

n − φ̈
j+1
0

)
= 1

l	x

(
φ

j

n−1 − φj
n

) − γ Ic sin ϕj
x , (A7)

which is nothing but the conservation of currents at the node
φ

j
n . This scenario has been thoroughly analyzed in Refs.

[32,43]. We thus decompose the Lagragian of JJ6 into linear
(LJJ lin

j ) and nonlinear (LJJ nonlin
j ) components as

LJJ lin
j = (γ + 2β)

CJ

2

(
φ̇j

n − φ̇
j+1
0

)2 − 1

2LJ

(
φj

n − φ
j+1
0

)2
,

(A8)

LJJ nonlin
j = γEJ cos

(
φ

j
n − φ

j+1
0

ϕ0

)
+ 1

2LJ

(
φj

n − φ
j+1
0

)2
.

(A9)

In the continuum limit 	x → 0, we arrive at

LCWR
j =

∫ ja

(j−1)a

{
ca

2
[∂tφ(x,t)]2 − 1

2la
[∂xφ(x,t)]2

}
dx,

(A10)

where a = L/(N + 1) is the lattice spacing between junctions
JJ6, that also corresponds to the whole resonator length,

LJJ lin
j = (γ + 2β)

CJ

2
δφ̇2

j − 1

2LJ

δφ2
j , (A11)

LJJ nonlin
j = γEJ cos δϕj + 1

2LJ

δφ2
j , (A12)

where δφj = φ|x→ja− − φ|x→ja+ = φ̃
j
x is the flux drop in-

troduced by JJ6 of the j th flux qubit, in the limits of
the flux approaching the JJ6 from its left side (φ|x→ja− )
and from the right (φ|x→ja+ ). By considering the boundary
conditions of vanishing currents at the two CWR ends,
∂xφ|x=0 = ∂xφ|x=L = 0, the conservation of currents at each
JJ6, ∂xφ|x→ja− = ∂xφ|x→ja+ , and the JJ6 current-flux relation-
ship, −∂xφ|x=ja/ l = (γ + 2β)CJ δφ̈j + δφj/LJ , we arrive at
a well-defined eigenvalue problem [32]. With solutions of
the eigenmode functions, we can transform the linear part
of the JJ6’s doped CWR into independent harmonic oscillators
[32,43]. After performing a Legendre transfrom, we arrive at
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the full Hamiltonian

HCWR =
∞∑
i

1

2mi

π2
i + 1

2
m2

i ω
2
i τ

2
i + HNL, (A13)

where mi = c
∫ L

0 r2
i dx + (γ + 2β)CJ

∑N
j=1(ri |x→ja− −

ri |x→ja+ )2 is the effective mass of the ith eigenmode [43],
πi = miτ̇i is the canonical conjugate momentum of τi , and

HNL = −ϕ2
0

LJ

∑N
j=1[γ cos( δφj

ϕ0
) + δφ2

j

2ϕ2
0
] is the nonlinear part of

the Hamiltonian [cf. Eq. (A12)]. Here, we have assumed
an ansatz for the flux function φ(x,t) = ∑

i τi(t)ri(x). By
imposing canonical commutation relations [πn,τm] = −iδnm,
we quantize the theory with annihilation (creation) operators

ai = √
miωi/(2�)[τi + iπi/(miωi)] (a†

i ). Therefore, we fi-
nally arrive at HCWR = ∑

i �ωia
†
i ai + HNL, where ωi =

(πv/L)(N + 1)m with m ∈ N, and ν = 1/
√

lc. We further
impose that each JJ6 operates in a linear approximation of
Josephson inductance [20] such that HNL ≈ 0.

In a single-band approximation or a plasma frequency
ωp = ω̄ with ω̄ = πv(N + 1)/L, when a set ofM eigenmodes
become degenerate [32], we have HCWR = ∑

i �ωia
†
i ai . In

order to obtain the j th flux qubit energy and the qubit-resonator
coupling, we expand the qubit potential term, Eq. (A5), up to
the first order in ϕ

j
x [25]. This leads us to the approximated

potential energy

U
j
q

EJ

≈ −{
cos ϕ

j

1 + cos ϕ
j

2 + α cos
(
ϕ

j

2 − ϕ
j

1 + 2πf
j

1

) + 2β cos
(
πf

j

3

)
cos

[
ϕ

j

2 − ϕ
j

1 + 2π
(
f

j

1 − f
j

2 + f
j

3 /2
)]}

+ 2β cos
(
πf

j

3

)
sin

[
ϕ

j

2 − ϕ
j

1 + 2π
(
f

j

1 − f
j

2 + f
j

3 /2
)]

ϕj
x . (A14)

First line defines the flux qubit potential, while the second
line stands for the qubit-resonator coupling. The next step is
to consider the numerical diagonalization of the flux qubit
Hamiltonian. The latter is obtained by including the kinetic
energy terms appearing in Eq. (A4) and the first line of
Eq. (A14), and performing a Legendre transformation. The
numerical diagonalization allows us to obtain the two lowest
energy levels, defining the qubit. The qubit-resonator coupling
is obtained by projecting the operator sin[ϕj

2 − ϕ
j

1 + 2π (f j

1 −
f

j

2 + f
j

3 /2)] into the qubit basis, that is

sin
[
ϕ

j

2 − ϕ
j

1 + 2π
(
f

j

1 − f
j

2 + f
j

3 /2
)] =

∑
ν=0,x,y,z

cνσν,

(A15)

with σ0 = 1 being the identity operator, and cν are c-numbers
obtained numerically. Hence, the Hamiltonian of the overall
setup H = HCWR + Hflux qubits + Hinteraction [cf. Eq. (A1)]
becomes

H = �

2

N∑
j=1

ωj
qσ

j
z + �

∑
�∈M

ω�a
†
�a�

+ �

N∑
j=1

∑
�∈M

gjl

(
cj
xσ

j
x + cj

z σ
j
z

)(
a� + a

†
�

)
,

which is the starting point of the main text, Eq. (2). Here, gj =
2βEJ cos(f3)δφj are the effective coupling strengths between
the flux qubits and the CWR at the degeneracy point with
δφj ∝ √

2/(N + 1) sin(pj ) with pj = πj/(N + 1) [32].

APPENDIX B: DERIVATION OF THE EVOLUTION
OPERATOR

It has been shown that magnetic fluxes φ
j

1 can tune the
coefficients c

j
x and c

j
z (see Figs. 2(a) and 2(b) of the main

text and Ref. [25]) to arrive at the longitudinal coupling with
c
j
x ≈ 0 and c

j
z ≈ 1 [25,30], which is an ideal condition for the

pairwise cluster state generation in an ultrafast time scale. For

each mode �, we define a displacement operator

D�

⎛⎝∑
j

κjσ
j
z

⎞⎠=exp

⎡⎣⎛⎝∑
j

κjσ
j
z

⎞⎠ a
†
�−

⎛⎝∑
j

κjσ
j
z

⎞⎠ a�

⎤⎦ ,

(B1)

with κj = gj/ω and ω� = ω since we consider a collective
resonator mode at a degeneracy point [32]. In addition, for all
the modes within the manifold M, we define a collective
displacement operator D(ξ ) = ∏

�∈M eξa
†
�−ξ∗a� , where ξ =

(
∑

j κjσ
j
z ). By transforming the original Hamiltonian, Eq. (2),

with the above operator, we obtain

H = D†(ξ )D(ξ )HD†(ξ )D(ξ )

= D†(ξ )

(
ω

∑
�

a
†
�a� − ωMξ 2

)
D(ξ ), (B2)

where M is the dimension of M. The associated evolution
operator is given by

U (t) = U0(t)eiωtMξ 2
e−iωtD†(ξ )(

∑
� a

†
�a�)D(ξ )

= U0(t)eiξ 2M[ωt−sin(ωt)]
∏

�

e−iωta
†
�a�D�[ξ (t)], (B3)

with U0(t) = exp[−it
∑

j

ω
j
q

2 σ
j
z ] and D�[ξ (t)] = D�[(1 −

eiωt )ξ ]. After an evolution time t = 2πn/ω,

U (2πn/ω) = U0(2πn/ω)eiξ 2M(2πn)
∏

�

e−2πnia
†
�a� , (B4)

where n is an integer multiple. Since our protocol constitutes
pairwise qubits,

U (2π/ω) ≈ exp

[−iπ

ω

(
ωi

qσ
i
z + ωj

qσ
j
z

)]
× exp

{
i4πnM

[(
κ2

i + κ2
j

)1
2

+ κiκjσ
i
zσ

j
z

]}
.

(B5)
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Thus, we have

UCZ = U × exp

[−iπ

4

(
σ i

z + σ j
z

)]
× exp

{
4πiM

[(
κ2

i + κ2
j

)1
2

+ κiκjσ
i
zσ

j
z

]}
, (B6)

where U = exp{−iπ
4 [(

4ωi
q−ω

ω
)σ i

z + ( 4ω
j
q−ω

ω
)σ j

z ]} and n = 1. To
perform the controlled phase gate operation with a maximum
fidelity, we require that both κ2

i + κ2
j = 1

8nM
and κiκj = 1

16nM

are satisfied. In other words, we need κi + κj = 1
2
√

nM
.
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