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Generalized mean-field description of entanglement in dimerized spin systems
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We discuss a generalized self-consistent mean-field (MF) treatment, based on the selection of an arbitrary
subset of operators for representing the system density matrix, and its application to the problem of entanglement
evaluation in composite quantum systems. As a specific example, we examine in detail a pair MF approach to the
ground state (GS) of dimerized spin-1/2 systems with anisotropic ferromagnetic-type XY and XY Z couplings in
a transverse field, including chains and arrays with first neighbor and also longer range couplings. The approach
is fully analytic and able to capture the main features of the GS of these systems, in contrast with the conventional
single-spin MF. Its phase diagram differs significantly from that of the latter, exhibiting (S,) parity breaking just
in a finite field window if the coupling between pairs is sufficiently weak, together with a fully dimerized phase
below this window and a partially aligned phase above it. It is then shown that through symmetry restoration,
the approach is able to correctly predict not only the concurrence of a pair, but also its entanglement with the
rest of the chain, which shows a pronounced peak in the parity breaking window. Perturbative corrections allow
to reproduce more subtle observables like the entanglement between weakly coupled spins and the low lying

energy spectrum. All predictions are tested against exact results for finite systems.
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I. INTRODUCTION

The analysis of correlations and entanglement in interacting
quantum many-body systems has attracted strong attention
in recent years [1,2], motivated by their deep implications
for quantum information processing and transmission [3],
the impressive advances in techniques for controlling and
measuring quantum systems [4], and the new perspective they
provide for the analysis of quantum phase transitions [1,2,5].
While the conventional mean-field (MF) approximations [6]
provide a basic starting point for studying such systems over
a broad range of the pertinent control parameters, they are
not directly suitable for the description of entanglement,
since they are based on completely factorized states. More
sophisticated treatments have been developed to include and
compute quantum correlations, like, for instance, density ma-
trix renormalization group (DMRG) techniques [7,8], matrix
product states, and tensor network methods [8—10], variational
valence bond based approximations [11,12], quantum Monte
Carlo calculations [13], and inclusion of static and quantum
fluctuations around MF [14,15]. In addition, nonconventional
MF approaches, able to intrinsically include some essential
correlations, have also been proposed and recently improved
and revisited [16—18], which start from the so-called cluster
MF approach, also known as Bethe-Peierls-Weiss (BPW)
approximation [19]. The essential point in these schemes is
the consideration of composite sites containing more than
one “body” as the basic independent units. Their application
to specific spin systems [16,18] has shown their capability
for determining phase diagrams and critical temperatures, as
well as for describing the main features of observables such
as magnetization and susceptibility. Their ability to predict
entanglement measures has so far not been investigated.

The aim of this work is to investigate a general self-
consistent variational MF treatment, based on the selection of
an arbitrary subset of operators for representing the system
density matrix [20], and its potential for describing basic
entanglement measures in spin systems. The approach can
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be applied at both zero or finite temperatures and contains as
particular cases the conventional as well as the cluster-type
MF approaches. In contrast with other variational treatments,
the generalized MF scheme does not require an explicit
ansatz for the approximate GS, as the latter is naturally
determined by the self-consistency relations according to the
chosen set of operators. The scheme may be also used as a
convenient starting point for more sophisticated treatments.
We will examine, in particular, its capability for describing
entanglement, both within the defined units as well as between
them, the latter emerging through symmetry restoration or
perturbative corrections.

As a specific example, we will consider a pair MF
approximation to the ground state (GS) of dimerized spin-1/2
systems with anisotropic XY or XY Z couplings in a transverse
field. In order to test its accuracy, we first examine the
case of dimerized XY chains with first neighbor couplings,
where the exact results for any size [21-26] can be obtained
through the Jordan-Wigner fermionization [27]. We then
examine dimerized chains with longer range couplings, dimer
lattices and dimerized XY Z systems, where exact results for
finite samples were obtained by numerical diagonalization.
Dimerized systems are of great interest in both condensed
matter physics and quantum information [21-26,28-33], and
can be realized in different ways, including recently cold atoms
trapped in optical lattices [34]. Spin-1/2 systems have the
additional advantage of permitting a direct computation of the
pairwise entanglement through the concurrence [35].

While conserving the conceptual simplicity of the conven-
tional MF scheme, we will show that in contrast with the latter,
the pair MF approach is able to provide a reliable yet still
analytic and simple description of dimerized arrays. Its phase
diagram differs significantly from that of the conventional MF,
and clearly identifies, for a wide range of systems, a fully
dimerized phase for weak fields, a partially aligned phase for
strong fields and an intermediate S,-parity breaking degenerate
phase. It then predicts, in particular, the two transitions exhib-
ited by the GS of the dimerized XY chain for increasing fields

©2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.91.064428

A. BOETTE, R. ROSSIGNOLIL N. CANOSA, AND J. M. MATERA

[21], providing a clear approximate picture of the GS in each
phase. The approach also leads to a reduced pair density which
correctly describes not only the internal entanglement of the
pair, but also (through symmetry restoration) its entanglement
with the rest of the system, which shows a prominent peak
precisely in the parity breaking sector. By means of simple
perturbative corrections, the approach can predict the tails of
this entanglement outside the parity breaking sector, as well as
the entanglement between weakly coupled spins and the low
lying energy spectrum. The formalism is described in Sec. II,
while the application to dimerized XY and XY Z systems is
developed in Sec. III, with the exact analytic solution for the
dimerized XY chain discussed in the Appendix. Conclusions
are given in Sec. IV.

II. FORMALISM

A. General self-consistent approximation

The mixed state p of a system at temperature 7 = 1/kf
described by a Hamiltonian H, minimizes the free energy
functional F(p) = (H), — T S(p), where (H), = Tr pH and
S(p) = —kTr pln p is the entropy. One can then formulate a
general variational approximation to p based on the trial mixed
state [20]

pn = exp(—Bh)/Zy, h=) 10, ()

where Z;, = Trexp(—ph) and {O;, i = 1,...,m} is an arbi-
trary set of linearly independent operators, with A; parameters
determined through the minimization of F(p;). Considering
the averages (O;) = Trp;, O;, functions of the A;’s, as the
independent parameters, the equations 90 — () Jead to

9(0;)
A= % and hence, to the self-consistent approximate

Hamiltonian
d(H)

h=2ij—8<0i>0,-, @

where (H) = Tr p, H. If the O;’s form a complete set, H is
a linear combination of them and Eq. (2) leads to h = H
Otherwise, (H) will in general be a nonlinear function of the
(0;)'s and (1) and (2) lead to a nonlinear set of equations for the
A;s. While the basic MF approximations [6] are obtained when
the O;’s are restricted to one-body operators and traces are
taken in the grand canonical ensemble (with H — H — uN),
Eq. (2) holds for any restricted set, which may include some
two-body (or in general n-body) operators, and for traces taken
in any subspace S invariant under H and all O/s [20].

Here we will apply this general scheme to a composite
system formed by N distinguishable subsystems, such as an
array of spins s; located at different sites, where the total
Hilbert space is ® | S;, with S; that of subsystem i. We will
consider Hamiltonians containing local terms and two-body
couplings,

H= ZB’ 0“——21”;0{‘0;, 3)
i#]

where O!° are local operators pertaining to subsystem
i([Oi",O}?] =0 if i # j) and sum over repeated labels u,v
is implied. The standard MF arises when the O;’s in (1) and
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(2) are restricted to local operators Ol‘ , 1.e., when a “site”
is identified with a single subsystem i. The present scheme
enables, however, to consider as well composite sites Cy,
such as pairs or clusters of spins in a spin system, where
products O/* 0}’ for sites i,j in the same cluster are also
included within the operators O; of (1) and (2). This is
convenient when such pairs or clusters are internally strongly
coupled but interact only weakly between them. The ensuing
self-consistent scheme will treat the internal couplings exactly,
leaving the MF for the weak couplings.

In this approach, h = )", hy, with hy local in Cy, such that

Pn = Q Pk, With o, = exp(—phy)/Z, . Hence

(H)= Y | Bi(0}')— = Z Ji(olo
k,ieCy JECk
——ZJ” (o oy |. )
J¢Ck

and Eq. (2) leads to

he=" - > Jiifoy)] ot

i€eCy J¢Cx

1 .
i " v
-3 3 ooy, ®

J€Cx

which contains the exact internal two-body terms, as opposed
to the standard MF. Equation (5) implies the self-consistent
conditions
(0f)=Trp 0, i€Cy, (6)
to be fulfilled for all Cy, which can be solved, for instance,
iteratively, after starting from an initial guess for the (0!'ysor
the associated parameters A;,. We will denote this approach as
generalized MF (GMF). Equation (3) can now be rewritten as

- H)+Z|:hk—
> (o}

ieCy, j¢Cy

—{or) (o7 =(oj) |.

N =

where the last term is the residual interaction.
For T — 0, pr — |0¢) (0|, with [O;) the GS of h;. The
present scheme will then lead in this limit to the state

104) = ®x10), ®)

which minimizes (H) = (V|H|V) among all cluster product
states | W) = ®; | ). Let us remark that an explicit ansatz for
the states |Ox) is not required, since they can be obtained as
the GS of &, Eq. (5), in each iteration. Nonetheless, in certain
cases (see Sec. III) the explicit form of |0;) may become
apparent from the form of /; and a direct minimization of (H)
becomes feasible.
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B. Perturbative corrections and symmetry restoration

While in-cluster correlations are already described by oy
or |0g), those between clusters can in principle be estimated
through perturbative corrections. At 7 = 0, it follows from
Eq. (7) that H will connect |0;) just with two-cluster excita-
tions |ngny.), k # k', nn’ # 0, where |n) are the eigenstates
of hy (hi|nk) = en,|nk)). Consequently, first-order (in the
residual interaction) corrections will lead to the perturbed GS:

> hnsewning), ©)

k<k',n,n'>1

. (n |Ol-”|0 (1 10" |0x)
akn,k’n’ — Z ]l(] k k k Jj k

)
En, — & Ey — €0,
ieCy,jeCy L o, + Y O

|0},) oc 105) +

. (10)

which contains just two-cluster excitations.
For instance, the reduced state of cluster k£ derived from (9)
is (k denotes the complementary system)

pr = Trg |07 )0}y | o< 106) Okl + D (@ar e o i) (e

n,m

an

which is a mixed state. Its entropy S(pi) represents the
entanglement of the cluster with the rest of the system.

Beyond the weak coupling limit, the actual potential of
the GMF lies in the possibility of breaking some essential
symmetry of H, which will enable it to describe nonpertur-
bative coupling effects between the composite sites. We will
be here concerned with a discrete broken symmetry, namely
spin-parity symmetry P, (see next section), such that GMF
will yield in some sectors a pair of parity breaking degenerate
solutions Ay, with h_ = P,h P,. We can then construct from
the parity breaking GS |05, ) = ®«|0x4) and |0,_) = P;|04,),
the definite parity states

_ |0h+> +10,.)
V2T £ Re({(05, 0, DT’

10+) (12)

which will normally be not strictly degenerate in finite
systems and which lead to a nonperturbative entanglement be-
tween composite sites: neglecting the complementary overlap
[T 2 (Ok410p—), typically small, the ensuing reduced state of
the cluster k£ will be the same for |0) and given by

or = Trg|02) (0= ] 2 3(10ct) Ocy | + [0k} (O D), (13)
which is a rank-2 mixed state with eigenvalues
pe = 5(1 £ [0 10)D, (14)

and nonzero entropy S(px). A parity breaking GMF is then
a signature of a nonperturbative entanglement S(p;) between
the composite site and the rest of the system in the exact
(definite parity) GS. Similar considerations hold for a group G
of clusters, for which the reduced state will again be a similar
rank-2 mixed state with pL = %(1 %+ [T 1{Ok+10x—)]). For a
large group, p+ — 1/2 and S(pg) — In 2. Such contribution
is analogous to a “topological” entropy [36].
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FIG. 1. (Color online) Schematic plot of the dimerized cyclic
chain.

III. APPLICATION TO DIMERIZED SPIN SYSTEMS
A. Dimerized XY spin chain

We first consider a cyclic spin-1/2 chain of N = 2n spins in
a transverse uniform field B, coupled through alternating first-
neighbor anisotropic XY couplings [21,22,24-26], such that
the system can be viewed, at least for weak fields, as strongly
coupled pairs weakly interacting with their neighboring pairs
(Fig. 1). The Hamiltonian can be written as

n
H = Z |:B(s5i—1 +53) — Z Ju (85155 +0‘usg‘sgi+1)j| ,
i=1

U=x,y

15)

where s/ denotes the (dimensionless) spin component at site i .
We will focus on the case o, = @, = o (common anisotropy).
We can suppose, without loss of generality, |o| < 1 and,
moreover, « > 0, both in a cyclic chain (s, = s{) with
an even number n of pairs or in an open chain with n pairs,
as its sign can be changed by a rotation of angle v around the
z axis at even pairs (sites 2i — 1,2i, i even) [26]. A similar
rotation at all even sites changes the sign of J, and J,, so
that we can also assume J, > 0, with |J,| < J;. We set here
|Jy| < Ji.Finally, we set B > 0, as its sign can be changed by
a global rotation of angle & around the x axis, which leaves the
couplings unchanged. These arguments also hold for arbitrary
spin s.
Equation (15) commutes with the total S, parity

P, = exp[—in(S; + 2ns)], (16)

where S, = leil s7. This implies (s/) = Ofor . = x,y inany
nondegenerate eigenstate. Breaking of this symmetry ({s/*) #
0 for u = x or y) is, however, essential in MF descriptions, at
least within some field intervals.

The conventional MF is based on a product state

on = @M, 0i, p;i = expl—Bhil/Zn,, (17)

where, for the chosen signs of couplings, we may assume
all p; identical in the cyclic case, such that (sl." y = (s*) and
(H) = n2B(s*) — (1 + @) 3, Ju(s")?], with

hi=X-s;i=Bsi—(l+a) Y Js")s!  (18)

p=xy
Considering now T = 0, the GS |0;) of h; will be a state
with maximum spin along —A, leading to (s?) = —scos6,
(s¥) = ssinf cos @, (s¥) = s sin 6 sin ¢. Minimization of (H)
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FIG. 2. (Color online) Phase diagram of the dimerized spin-1/2
chain according to the conventional (top panel) and pair (bottom
panel) mean-field approaches, for J, >0 and J, = J,/2. The
corresponding states for the unit cell are indicated. While in the
conventional MF the S, parity breaking phase arises below a critical
field BY, in the pair MF it occurs within a field window B <
B < B if o < o, [Eq. (33)]. For B < B}, a dimerized state with
maximally entangled pairs is preferred. The dashed lines denote the
factorizing field B¢ where both MF approaches coincide and are
exact.

for |J,| < J, leads then to ¢ = 0({s”) = 0) and
0=0, B>B=J(l+ws,
(19)
cos® = B/BY, B < BY,
with parity broken for B < BY, where the solution is degen-
erate (0 = %|0|). For s = 1/2, we then obtain

B B > B?

C

0,1H|0) = — , 20
(0n[H05) n%(g_;Jng) B < B (20)
where |0;,) = ®%il |0;) with (Fig. 2)
0 .0
0;) = cos §|¢)+Sln 5IT>- (21

This simple approach ignores the dimerized structure of the
chain [it is the same as that for a chain with uniform coupling
J(1 + «)/2], and is also blind to the weaker J, coupling. Yet,
it is remarkable that if J, > 0, |0;,) does become an exact GS
at the separability field [25,26,37-39]

B* =./J,Ji(1 +a)s = \/J,/J, BY, (22)

where cos@ = ,/J,/J,. At this field, the system exhibits
a degenerate GS, with the GS subspace spanned by the
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pair of degenerate MF product states [26,38]. No traces of
dimerization are left at this point in the exact GS.

B. Pair mean-field approximation

In order to improve the conventional MF picture for B #
BY, we now examine a generalized MF approach based on
independent spin pairs, such that

pn=&_ipl. o =exp(=Bhf)[Zyy.  (23)
with p! a pair state. Equation (23) is exact in the fully
dimerized limit @ — 0, and can then be expected to provide a
good approximation at least for small . For the chosen signs

of couplings, we may again assume all p! identical in the
cyclic case, with (s/) = (s*), implying

(H)=n [23(&) — Z J#(<sfS§L)+Oé(S”)2):| (24

u=x,y

and
h;y = B(Séi—l + S;i)

— D Julsh sk (s sk + sl (25)

w=x,y

For |J,| < J,, minimization of (H) leads again to (s”) = 0.

In the case of arbitrary spin and temperature, one should
start from an initial seed for (s*), diagonalize i/ and then
recalculate (s*) until convergence is reached. Considering now
T =0and s = 1/2, it is apparent from (25) that the GS of h!
will be of the form

|0ip> = cos g(cos (gNl«) + Sin%MT))

O )

2 V2 ’
which is just the most general symmetric pair state real in the
standard basis. Equation (24) becomes

+ s (26)

P P : 2 20
(0h|H|Oh):—n (Bcos¢ + J_sin¢) cos §+J+sm 5

1
+ gaJx sin®0(1 + sin ¢)}, 27

where |07) = ®"_,|07) and J = L 5 0. Minimization of
(H) with respect to 6,¢ can then be directly done, leading to
J_
6 =0, tang = 3 B > BY, (28a)
__ A Bcos¢+J_sing—J.
cost = 2= I itsne)
aJe(1=cos B}, < B < By, (28b)
tan g = el 04 1 2
0 = m (¢ arbitrary), B < BY (28¢)
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where the critical fields are given by

PHYSICAL REVIEW B 91, 064428 (2015)

B = 50 (Jy —2aly), 29)

B = (s + %0+
2= 3 27

as obtained from (28b) for & — 0 and & — . The solution of
system (28b) for 6 and ¢ can in fact be determined analytically
(it leads to a quartic equation for cos ¢).

In contrast with the standard MF, it is first seen that a parity
breaking solution (6 € (0,7/2)) will now arise just within a
field window BY, < B < B, if « is sufficiently small and
Jy > 0, as depicted in Fig. 2 (bottom panel). For B < By,
the pair MF leads to a fully dimerized phase, where the
strongly coupled pairs are in a P, = —1 Bell statew
and hence maximally entangled. On the other hand, for
B > BY,, the approach leads to an entangled P, = 1 pair state
cos ”—;Ni,) + sin %lTT), which is only partially aligned. The
intermediate parity breaking phase (28b) is then a transition
region between the previous opposite parity phases, in which
the pair is in a combination of the previous states. In this
region, the pair MF GS is twofold degenerate (6 = £|6]).
It is verified that the actual exact GS obtained from the
Jordan-Wigner fermionization also exhibits two transitions
for increasing positive fields [21] if « is sufficiently small,
becoming in a finite chain nearly two-fold degenerate in the
intermediate sector [25,26] and leading as well to almost
maximally entangled pairs for low fields (see the Appendix
and next section).

In the parity preserving phases, the pair MF GS energy
obtained from (27) is just

<oz|Hro:;>=—"{VBz”z’ B2Bh g
J+s B < Bgl

which is, of course, lower than the conventional MF energy
(20) in these intervals.

The factorizing field (22) lies within the parity breaking
phase Vo > 0: BY, < BY < BY,. Itis verified that at B = By,
Eq. (28b) leads to cos8 = J,/J; and tan¢p =2J_/,/J J,,
implying

tan’ 0/2 = sin ¢, 32)

which is precisely the condition ensuring that the pair state
(26) reduces to a product of single-spin states.

On the other hand, for « — 0 (where the pair MF becomes
exact), BY, and BY, merge (Fig. 2), approaching both the
o = 0 factorizing field B? =/ J:/2 (B}, ~ B‘?(l F a%)
for small «): the exact GS of an isolated pair undergoes, for
Jy > 0, a sharp parity transition at B = BY, from the Bell state
% for B < B, with energy —J, [Eq. (31)] to the state
cos ”—;NL) + sin %lTT) for B > B?, with energy —v' B% + J2.
At B = B? , these states become degenerate and coincide with

the definite parity combinations (12) of the MF product states
®,2:1 |0i > .

2

2 2
J++g]x> +2onXJ> —4J2, (30)

It is also seen from Eq. (29) that BY, vanishes for

5 (33)
o=, = .
2J,

If @ > a (or J, < 0) parity is broken for all B < BY, as in
the standard MF. Nonetheless, important differences with the
latter persist: B, remains lower than the MF critical field BZ,
even for o = 1, and strongly coupled pairs remain entangled
even for strong fields B > BY; full alignment occurs only for
B — oo, with ¢ ~ J_/B for B > J_. The pair MF depends
also on Jy, which affects the critical fields and the values
of 6,¢.

If J, <0 (with |Jy| < Jy), B also vanishes at o =
—ZJ—J"X > 0, entailing no parity breaking phase in the pair MF
if o < —217‘) This is in qualitative agreement with the exact
result (see Appendix), but differs from the standard MF, where
parity breaking still occurs V .

If J, > 0 but o < 0, the pair MF state can be obtained by
rotation of angle & around the z axis at even pairs of the @ > 0
pair state, which implies (ignoring in what follows overall
phases) an alternating angle 6 in (26) (8; = (—1)'6) in the
parity breaking phase. If @ > 0 but J, < 0 (with |J,| < [J]),
such rotation should be applied to all even sites, entailing

1)+ 141) = 111) = [11) and cos £[}]) +sin |1 1) —
cos 24 ) —sin £[11) in (26).

C. Entanglement predictions and comparison with exact results

We first show in Figs. 3 and 4 typical GS results for
different entanglement observables related with spin pairs and
single spins in a finite chain with n = 50 pairs, according
to conventional and pair MF as well as exact results (see
Appendix). The latter correspond to the exact GS of the finite
chain (having then a definite S, parity).

For a pair of strongly coupled neighboring spins (1-2 in
Fig. 1), the pair MF approach (23) leads, after the symmetry
restoration (12) and (13), to the reduced state

cos? % sin® "—25 0 0 % cos? % sin ¢
126 128
el I 0 § it B
2 22 2
lcos?fsing 0 0  cos®4cos? %

(34)

(expressed in the standard basis) after neglecting the overlap
[{07(©)|07(—6))|"~" in the parity breaking phase. In this
phase, it is a rank-2 mixed state (and is pure otherwise), with
eigenvalues (sin? §, cos® §) [Eq. (14)]. It then leads within
this phase to a nonzero entanglement entropy E» = S(p12)
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FIG. 3. (Color online) Exact and approximate results for the GS
entanglement entropy of a strongly coupled spin pair (top), a single
spin (center), and a weakly coupled neighboring pair (bottom), with
the rest of the chain, for « = 0.1 and J,/J, = 1/2, as a function of
the (scaled) magnetic field. MF denotes the conventional single-spin
MEF treatment (17)—(21), while GMF the pair MF approach (23)—(26),
both with symmetry restoration [Eq. (13)], and GMF+-P the perturbed
pair MF approach (9)—(11).

between the pair and the rest of the chain. As seen in the
top panel of Fig. 3, this is in agreement with the exact result,
which also exhibits a pronounced peak in this interval [we
use S(p) = —Trplog, p in all panels]. Parity breaking in the
pair MF is then a signature of a nonnegligible entanglement
between this pair and the rest of the chain. The exact result
presents as well small nonzero tails outside the parity breaking
interval, which can be correctly predicted by the perturbed pair
MF reduced state (11).

Note that the entropy S(p;2) does not vanish as B ap-
proaches the factorizing field BY (~0.39J, in Fig. 3), since
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EXACT
0.1F GMF — — 4
§ GMF+P ===
O
0.05F

0 0.25

FIG. 4. (Color online) The concurrence of a strongly (top) and
weakly (center) coupled pair of neighboring spins, as a function of
the scaled magnetic field for the chain of Fig. 5, according to exact and
approximate results. The bottom panel depicts the concurrence of a
strongly coupled pair as a function of the weak coupling parameter o,
atfixed field B = 0.3J,.. The standard MF result vanishes in all panels.

the exact GS remains with a definite parity (and hence
entangled) in its immediate vicinity. In fact, for B — By,
the result obtained from (34) becomes exact (except for the
small neglected overlap), as the parity restored pair MF GS is
exact in this limit. Actually, as stated before, at B = BY, the
exact GS is degenerate, so that GS entanglement will depend
at this point on the choice of GS. The result obtained from
(34) corresponds to the definite parity GS’s (12), which are the
actual side limits [38] of the exact GS for B — B;"i.
The single-spin state derived from (34) is just

ovr _ | P+ 0 _1 29
o —(0 p_>, P+ = (1:FCOS 2608¢), (35

2
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which is of the form %(,01+ + p; ) in the parity breaking phase,
with ,01jE the single-spin reduced states derived from the pair
state (26) before parity restoration. Its entropy, quantifying
its entanglement with the rest of the chain, is nonzero for all
fields and seen to be almost coincident with the exact result
(center panel). It is obviously maximum in the dimerized phase
B < B}, but decreases rapidly in the parity breaking phase
(when the pair becomes entangled with the rest of the chain)
and slowly in the partially aligned phase B > B, (where p,. ~
¢?/4 = J2/(4B?)). The result derived from (35) is again fully
exact for B — BY.

The entanglement entropy S(p,3) of a weakly coupled pair
with the rest of the chain can again be correctly described
by the pair MF approach, as seen in the bottom panel. Note

GMF 1

that p53" = E(pfr ®,01+ +p; ®py), so that in the parity
preserving phases (o, = p;), S(p53) is just twice the single-
spin entropy S(p7™). This relation no longer holds, however,
in the parity breaking phase.

In contrast, it is verified in all panels that the conventional
MF (17) does not lead to a proper picture of any of these
measures, even after symmetry restoration. The ensuing

reduced pair state is the same for any pair,

sin* § 0 0 1sin?6
| ) 1 1.2
p?“{ _ 0 7 sIn 0 7 sin 0 0 . (36)
0 psin?6  ;sin’6 0
‘lT sin? 0 0 cos? %

which is a rank-2 state for 6 € (0,m) with eigenvalues

_lic;sze [0 is here the MF angle (19)]. Its entropy does not

reflect the exact entanglement of the strongly nor the weakly
coupled pair. The associated single-spin reduced state is of the
form (35) but with p1 = (1 F cos0)/2, and cannot correctly
reproduce either its entanglement with the rest of the chain
(center panel in Fig. 3). It is seen, however, that there is one
point where the conventional MF result is exact for all three
quantities (i.e., where the MF curve crosses the exact curve),
which is the factorizing field B¢. Here, the reduced states (36)
and (34) become identical and, moreover, exact.

Figure 4 depicts the concurrence [35], a measure of the
entanglement between the spins of a pair, for both strongly
(1-2) and weakly (2-3) coupled pairs. In the first case, the pair
MF state (34) leads to the concurrence

0
C(pf) = | cos” 5 (1 +sing) — 1, (37)

which is parallel (as that in a state |11) 4 || ])) if the term
within the bars is positive, i.e., B > B, and antiparallel (as
that in |} 1) + 1)) if this term is negative, i.e., B < BY,
vanishing at the factorizing field BY (see below). As seen
in the top panel, the pair MF result shows again a very
good agreement with the exact result for all fields, correctly
predicting a maximally entangled pair for low fields B < BY;.
Note that for B < B, and B > BY,, the state (34) is pure,
implying that the pair MF concurrence is just a function of
S(p™), and given by

1 , B < B}
COoMF — 7 o« (38)
” N
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decreasing as J_/B for strong fields B > J_. However, in
the parity breaking phase, the state (34) is mixed and the
concurrence (37) is no longer a function of S(p™"). In fact,
and as opposed to the previous entropies, it vanishes at the
factorizing field BY, as can be verified from Eqs. (32) and (37),
since state (34) becomes separable (a convex combination
of product states [40]) at this point. Here the single spin
ceases to be entangled with its partner (except for tiny overlap
corrections) even though it remains entangled with the rest
of the chain [S(p{™") # 0], indicating again that no traces of
dimerization remain.

We also mention that the fidelity [3] of the state (34) with
the exact pi2, F = Tr,/\/p12p3" /P12, is very high (20.99
for « = 0.1 in all phases). In contrast, the conventional MF
state (36) has a low fidelity, especially for B < B, and leads
to a zero concurrence V B, since it is a separable state even
after parity restoration (o} = 1(5; ® p + | ® p;), with
/; the MF single-spin state before parity restoration).

The concurrence of a weakly coupled neighboring pair is
plotted in the central panel of Fig. 4. This quantity cannot be
reproduced by the standard nor the pair MF, since even after
parity restoration they lead to a separable state p,3. However, it
can be correctly described by the reduced state p53" " derived
from the perturbed pair MF state (9). This concurrence is small
and starts to be nonzero just before the factorizing field By,
having peaks at both sides of B¥. We should actually recall
that at the immediate vicinity of B* (i.e., B — B®*), the
concurrence between any two spins acquires in a finite chain
a common tiny yet nonzero value in the definite parity GS,
which can be exactly predicted by both the conventional or
pair MF after parity restoration if the overlap [{(¥g¢|V/—_g¢) |1
is conserved [26,38].

While the general accuracy of the pair MF approach will
decrease as « increases, it will still improve the conventional
MF results, even in the uniformly coupled case o = 1. In the
bottom panel of Fig. 4, we depict the pair MF concurrence of
a strongly coupled pair for increasing « at a fixed field, which
is seen to remain accurate for all « < 1. The conventional MF
result vanishes Vo.

D. Energy predictions

We plot in Fig. 5 some basic energy level predictions, in
order to provide a general view of the pair MF approach. As
seen in the top panel, the pair MF GS energy significantly
improves the conventional MF result, especially for B < BY.
In the bottom panel, we depict for clarity the first four
excitation energies in a small chain of 8 spins (n =4).
According to the pair MF approach, the lowest levels are single
pair excitations, of energies EO, = ¢,, — & [using the notation
of Eq. (9)], which in the present case will be independent of the
site and hence n-fold degenerate. It is verified that for small
«a, this is approximately the case. Moreover, the splitting of
these levels due to the residual interaction can be correctly
described by simple first order perturbative treatment. In the
present cyclic case with a uniform pair MF, this leads to the
perturbed pair excitation energies

2rk
Eyf = em—e0—20 Y Ju(Ols}'|m)(mls} |0) cos ==, (39)

H=x,y
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FIG. 5. (Color online) Top: The difference AEy/n = (Egpp —
E§*)/n between the approximate and exact GS energies per pair,
according to conventional and pair MF approaches, for the chain of
Fig. 4. The inset depicts for reference the corresponding intensive GS
energies. (Bottom) The first excitation energies of a small chain with
8 spins with the same parameters, according to pair MF and exact
results. The inset depicts a blow up of the exact first excitation energy
in the parity breaking region.

where ¢, are the eigenvalues of the single pair Hamiltonian
(25) (h?|m) = g, |m)), with g its GS energy,andk = 1, ... ,n.
These energies are those of the (discrete) Fourier transformed
states |ri;) = Ln > e'?™i/"|m ), where |m ) denotes the
state with pair j at excited level m. As seen in the bottom
panel, the result obtained from (39) is practically exact in the

parity preserving phases, where the energies ¢, are £J; and
++v/ B% + J2, and the lowest energies (39) become

J2
Ef =+, — /B> + J?) —oz<J+ + —‘)
B2+ J?

X COS —, (40)
n

with 4 for B < BY; and — for B > BY,. For n =4, E111 =
E]* = EY, so that just three levels are seen. In contrast,
the conventional MF leads to a single-spin excitation energy
EY" = B for B > BY and J.(1 + «)/2if B < BY, which lies
well above the previous levels.

The parity-breaking phase of the pair MF approach is seen
(bottom panel) to coincide approximately with the region
where the exact GS of the finite chain becomes nearly

PHYSICAL REVIEW B 91, 064428 (2015)

degenerate [21,22,25,26]. The exact lowest energy levels of
each parity sector become very close in this interval, actually
crossing at n fields (as seen in the inset), with the last
crossing taking place exactly at the factorizing field BY. This
interval is enclosed by the fields Bf} and BZ where the
lowest quasiparticle energy of the Jordan-Wigner fermionized
Hamiltonian vanishes (see Appendix).

E. Longer range couplings and lattices

The pair MF approach remains directly applicable to more
complex situations where exact analytic results are no longer
available. For instance, if adjacent dimers in Fig. 1 are
further connected by second- and third-neighbor couplings
—aJys)' sl (for spins like 1-3 and 2-4) and —a3J,.5%;_5h;. 5
(for spins like 1-4), such that

n
B(Séi—l +s§i) - Z Ju |:sgi—lsgi

i=1 p=x.y

o woou
+ Z (ajSZis2i+j +0‘j+152i—152i+j) . (4D

j=12

the Jordan-Wigner transformation will no longer lead to a
quadratic (and hence analytically solvable) fermionic Hamil-
tonian. However, it is seen from Egs. (4) and (5) that the
previous MF and pair MF expressions and phase diagram
(Fig. 2) remain valid with the replacement

o =a + 20 + a3z, 42)

provided o and o3 are also positive (as o) or sufficiently
small. The system of Eq. (41) is equivalent to a ladder-type
dimer chain (Fig. 6, left). A uniform factorizing field will still
exist in this system for common anisotropy [26,38] [ajf =
a;V j, as considered in (41)], which will be again given by
Eq. (22) with the previous value of «. Similar considerations
hold for longer range XY couplings.

The phase diagram of Fig. 2 also applies, at the pair MF
level, to ferromagnetic-type XY dimer lattices like that of
Fig. 6, right, described by the Hamiltonian

H = Z !B(séi_l’j +S§,-,j) - Z Ju[sgi—l,jsgi,j
iJ

H=x,y
T " " T
T 18y Sy, T aZ(SZifl,jSZifl,j+1 + SZi,jSZi,jJrl)]} .

(43)

FIG. 6. (Color online) The dimerized systems corresponding to
Hamiltonians (41) (left) and (43) (right).
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FIG. 7. (Color online) Results for the spin ladder and lattice of
Fig. 6 [Egs. (41) and (43)]. The entanglement of strongly coupled
pairs with the rest of the system S(p;2) (top), and their concurrence
C(p12) (center), are plotted for increasing fields for a common value
o = 0.2 [Egs. (42)—(44)]. Results for both systems are very close
and almost coincident with those for the cyclic chain of Fig. 1, also
depicted, in agreement with the common pair MF prediction (GMF).
The bottom panel depicts the concurrence for increasing values of the
total coupling parameter «, for two fixed values of the field.

where we assumed first neighbor couplings. For oy > 0, ot >
0, we should just replace

o =a; + 2a,, (44)

in the MF and pair MF approaches. Similar considerations
hold for 3D lattices or longer range couplings.

Figure 7 depicts illustrative results for a finite spin lad-
der and lattice with cyclic conditions [# + 1 =n in (41),
n;+1=n; for i =1,2 in (43)]. We have computed the
exact results by exact diagonalization for a total of 2n = 16
spins (2 x 8 ladder, 4 x 4 lattice). We have set a fixed value

PHYSICAL REVIEW B 91, 064428 (2015)

a =0.2 in Egs. (42) and (44), with o) = ap = a3 in (42)
and o] = ay in (44). For comparison, results for the chain
of Eq. (15) with the same o and spin number are also
depicted.

It is verified that for a common total «, these systems
do exhibit almost coincident values of the entanglement of
a strongly coupled pair with the rest of the system, and of
its concurrence, confirming the pair MF prediction. Moreover,
the exact results are in very good agreement with the pair MF
results. Those for the ladder are in fact almost indistinguishable
from those of the chain, while those for the lattice are slightly
closer to the pair MF result due to the larger connectivity, in
agreement with the perturbative corrections of Eq. (11) [which
can again predict the tails of S(p;2) in the parity preserving
phases]. Conventional MF results, not shown, are similar to
those of Figs. 3 and 4. The concurrence C(p;,) remains close
in the three systems also for higher values of the total «, as
seen in the bottom panel.

F. XY Z coupling

Let us now examine the effects of an additional J, coupling
in (3), i.e.,

n
H = 23(555—1 +s5;) — Z (55 ysh + apushishi ).

i=l1 H=X,Y,2

(45)

As is well known, this model is no longer analytically solvable
in the general anisotropic case (the added term does not
lead to a quadratic fermionic operator in the Jordan-Wigner
fermionization). We again assume J, > O and |J,| < J,, with
a common anisotropy o, = o > 0.

For small values of J,, the phase diagram of Fig. 2 remains
essentially valid, with adequate shifts in the critical values of
the field and «. At the conventional MF level, Eq. (19) applies
with B replaced by the critical field

B = (Jy = J)(1 + a)s,
with no parity breaking phase if J, > J,. And a uniform

factorizing field still exists for common anisotropy if J, < J,,
given by

B = /(I = Ty — J)(1 + s . (46)

For B = B, the uniform parity breaking MF state (17)-
(21) becomes again an exact degenerate GS [26], with

cosf = ,/% (and 0 = |0]).If J, > J, > J,, afactorized
eigenstate still exists at B = B¢*, but will not be a GS [26].
At the pair MF level, we may still use the same state (26),

which leads to

(0F|H|07) = (O£|ny|05)—glz (cos@ + & cos? ¢ cos? g) :

47)

064428-9



A. BOETTE, R. ROSSIGNOLIL N. CANOSA, AND J. M. MATERA

where (07| H,,|0}) denotes Eq. (27). Hence, Eq. (28) are to be
replaced by

J_
=0, tang=———, B>=BY, (48a)
B+ laJ.cos¢ e
2(Bcos p+J_ singp—J )+ J; (1+%o¢ cos? ¢)
cosf = - . . )
oz(./x(l-ksmqb)—ilf cos? ¢ B?12<B<Bgzzf
_ J_+}ati(1—cosh)
tan = B+1al; cos¢(1+cos0)’
(48b)
6 = 7 (¢ arbitrary), B < BY (48c)

where the critical fields depend now on J,. The first critical
field, which delimits the maximally entangled dimerized
phase, has still a simple exact expression, given by

B =1y — 1)Uy — J. = 2a ).

(49)

Equation (49) implies that for J. < J,, this dimerized phase
will exist for o < .., with

y D
cz 27, .

Ifa > o, (or J, > Jy), parity will be broken for all B < BJ5.
B> will also vanish for sufficiently large J,.

A positive J, in Eq. (45) obviously increases the energy of
the dimerized state [0 = m in Eq. (47)]. Hence its effect will be
to decrease the critical fields, narrowing the dimerized phase as
appreciated in Fig. 8. This phase will in fact disappear for J, >
Jy — 20 J; [Eq. (49)], as also seen in Fig. 8. On the other hand,
a negative J, has the opposite effect, lowering the energy of
the dimerized state and increasing B_{, favoring dimerization.
This picture will remain valid for sufficiently weak longer
range XY Z couplings, employing the substitutions (42) or
(44).

Results for a finite cyclic XY Z chain are depicted in Fig. 9.
Exact results were again computed by diagonalization for
n = 16 spins. It is verified that the pair MF predictions are
fully confirmed. The addition of a small J, coupling essentially

(50)

)

0.75

B/J

FIG. 8. (Color online) The angle 6 of the pair MF approach for
the XY Z Hamiltonian (45), as a function of the transverse field for
different values of J,/J,. The dimerized phase corresponds to 0 = ,
the partially aligned phase to 6 = 0 and the parity breaking phase
to 0 <6 < m. We have set J,/J, =1/2 and a = 0.1. A positive
(negative) J, in (45) unfavors (favors) the dimerized phase, which
will exist for J, < J, — 2aJ, [Eq. (50)].
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0.75 1

0 0.25 0.5
B/J;

FIG. 9. (Color online) GS results for the XY Z chain of Eq. (45).
The entanglement entropy S(p12) (top) of strongly coupled pairs with
the rest of the chain and their concurrence C(p;2) (bottom) are plotted
for increasing fields at « = 0.1 for J, = +0.2J,.. Exact results (solid
lines) are again in agreement with those of the pair MF (GMF, dashed
lines), which predicts a peak of S(p;2) in a displaced (with respect to
that for J, = 0) parity breaking sector, and a lower (higher) critical
field for the dimerized phase if J, > 0(J, < 0). The concurrence
vanishes at the factorizing field (46).

shifts the results of the XY chain, in agreement with Egs. (46)
and (49). As previously stated, a reduced (extended) dimerized
phase is obtained if J; > 0(J; < 0), together with a displaced
parity breaking phase, which is still clearly visible through the
peak in the dimer entanglement entropy S(0;,) with the rest of
the chain. There is again a good agreement with the pair MF
results, which can also be improved by adding the corrections
of Eq. (11). For strong fields B > BZ;, we mention that
the final effect is the replacement B — By = B + ia]z
[Eq. (48a)], with ¢ &~ J_/Be for B >> B .

IV. CONCLUSIONS

We have investigated a general self-consistent variational
MF approximation, based on the selection of an arbitrary
subset of operators for representing the system density matrix,
and its capability for describing entanglement in the GS of
composite systems. While retaining the conceptual simplicity
of the conventional MF, the generalization allows to signif-
icantly improve it by considering composite cells, such that
couplings within the cell are treated exactly. The approach
is then specially suitable for systems where a partition in
composite cells with strong internal couplings but weak cell-
cell couplings is feasible, although it is not limited to this case.
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In the dimerized systems considered, the approach naturally
leads to a pair MF approximation which is still analytic and
simple, but which goes well beyond the plain single-spin MF.
Its phase diagram clearly identifies a dimerized phase for weak
fields, together with a parity breaking phase in a transitional
region between the latter and the strong field regime. The
approach is thus able to accurately describe the entanglement
of strongly coupled pairs, with parity breaking emerging as
a signature of a non-negligible entanglement between these
pairs and rest of system in the exact definite parity GS. With the
addition of simple perturbative corrections, it is also possible
to predict the concurrence of weakly coupled pairs and to
improve the entanglement predictions, as well as to describe
the main features of the energy spectrum.

The generalized MF can be used as a starting point for
implementing more sophisticated techniques. It is also directly
applicable at finite temperatures, higher spins, etc. These
aspects and their application to more complex systems are
currently under investigation.

ACKNOWLEDGMENT

The authors acknowledge support from CONICET (A.B.,
N.C., J.JM.M.), and CIC (R.R.) of Argentina.

APPENDIX: EXACT SOLUTION OF THE CYCLIC
DIMER CHAIN

By means of the Jordan-Wigner transformation [27], and
for a fixed value P = =+ of the global S, -parity P, [Eq. (16)],
we may exactly rewrite the dimerized Hamiltonian (15) as a
quadratic form in standard fermion creation and annihilation

operators c}, ¢, which in terms of the spin operators read

j-1
T _ §:+—
c;=s; exp /4 sksk>,

k=1

(AD)

where s =s;ti zs . These operators fulfill the fermionic

anticommutat10n relat10ns [c j,c,t]+ =dk,[cj,cxl+ = 0. The
corresponding inverse transformation is

j—1

sh=clexp (in Zc,ick) . (A2)
k=1

We then obtain, setting J1 = %
2n 1
T
HY = ZB(CjCj — 5)
j=1
—ilrj(Jeclein + I clel, + He),  (A3)

1(j odd _ . .
wherer; = {a((’jzve;) andn) =1—28;5,,n; = linthecyclic

case. Through separate parity dependent discrete Fourier
transforms for even and odd sites,

of 1
2] ) _ E 7127‘[kj/n Ck—
9
CZJ ker ¢ k+
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where K+:{%,...,n—%}, K_={0,...,n

rewrite (A3) as [26]

HY =) [Z B<c/,]:(,c/ka -~ %)

keKp =o=%

— 1}, we may

—(Jk ey H IR c’T_,(++H.c.):|

- Y Y <a,wa,w - 1),

keKp v==%

where Ji = J.(1 £ ae?%/"y and —k = n — k. The final
diagonal form (A4) is obtained by means of a Bogoliubov
transformation c/,tg =Y Uk”aa;iv + Vi a_i, determined

through the diagonalization of 4 x 4 blocks:

(A4)

B -—J* o -—Jk
-5 B Jt 0

o J- -B Jb |
-Jc o0 J& -B

Hie = (A5)

whose eigenvalues are +27, +A, , with

Al = \/A + \/AZ —|B2— (JX + JNYJE = TH12 (A6)

and A = B? + |JJ’ﬁ|2 + |J¥|2. Care should be taken to select
the correct signs of A in order that the vacuum of the operators
ax, has the proper S; parity and represents the lowest state for
this parity.

The spin correlations in the lowest states for each parity
can then be obtained from the ensuing basic fermionic
contractions fi; = cTc i) — 181, g1 = (cjc}), which can be
directly obtained from the inverse Fourier transform of
<C/1£ac/k0’) = Zv Vkv(r Vk‘ir” ( /le /—k(r Z Vk‘irU ko'* We
then obtain through the use of chk s theorem, (s7) =
Jiis { f”f], 5+ gl and (s7sT) = jldet(Af) £
det(A )] where A are ( Jj—i)x({— l)matrlces of elements
2(f +g)1+p+0,t+q+(]] with p.q9 = 0 / —i—1

From Eq. (A6), it is seen that for real B # 0 and finite n,
|)L,':| > 0 while A, vanishes just when k = 0 and

B = B3 = 3/(al + T, + aJy), (A7)
ork =n/2and
B = Bce)l( = \/(Jy - ajx)(Jx - aJy)9 (A8)

remaining nonzero for other values of k. These critical fields
coincide with those of Refs. [21,25] for the present situation.
For0 < o < 1and J, > 0,Eq. (A8)isreal only for J, > Oand
a < Jy/J,, while if —J, < J, <0, Eq. (A7) is real for a >
—Jy/ J The pair MF critical fields (29) and (30) correspond
approximately to these fields and satisfy

Bcl < Bf)f < Bsa < Bce)z( < BcZa (A9)
for J, > 0, all approaching the factorizing field B? = —‘—LJZJ

for @ — 0 (where B , ~ B[l F %(3 + ).
The fields (A7) and (A8) enclose the interval where the

finite chain GS will be almost twofold degenerate, i.e., where
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the lowest state with positive S, parity will have nearly the
same energy as the lowest state with negative parity. Actually,
starting at a field slightly above B = B}, the exact GS of

PHYSICAL REVIEW B 91, 064428 (2015)

the finite chain will experience n parity transitions [26,38]

in the interval (B}, BZ), with the last one taking place exactly

at the factorizing field BY.
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