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A unified molecular field theory (MFT) is presented that applies to both collinear and planar noncollinear
Heisenberg antiferromagnets (AFs) on the same footing. The spins in the system are assumed to be identical and
crystallographically equivalent. This formulation allows calculations of the anisotropic magnetic susceptibility χ

versus temperature T below the AF ordering temperature TN to be carried out for arbitrary Heisenberg exchange
interactions Jij between arbitrary neighbors j of a given spin i without recourse to magnetic sublattices. The
Weiss temperature θp in the Curie-Weiss law is written in terms of the Jij values and TN in terms of the Jij values
and an assumed AF structure. Other magnetic and thermal properties are then expressed in terms of quantities
easily accessible from experiment as laws of corresponding states for a given spin S. For collinear ordering these
properties are the reduced temperature t = T/TN, the ratio f = θp/TN, and S. For planar noncollinear helical or
cycloidal ordering, an additional parameter is the wave vector of the helix or cycloid. The MFT is also applicable
to AFs with other AF structures. The MFT predicts that χ (T � TN) of noncollinear 120◦ spin structures on
triangular lattices is isotropic and independent of S and T and thus clarifies the origin of this universally observed
behavior. The high-field magnetization and heat capacity for fields applied perpendicular to the ordering axis
(collinear AFs) and ordering plane (planar noncollinear AFs) are also calculated and expressed for both types of
AF structures as laws of corresponding states for a given S, and the reduced perpendicular field versus reduced
temperature phase diagram is constructed.
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I. INTRODUCTION

The Curie law [1] χ ≡ M/H = C/T for noninteracting
spins and the Curie-Weiss law [2,3]

χ = C

T − θp
(1)

for interacting spins describe the low-field magnetic suscepti-
bility χ in the paramagnetic (PM) regime above any long-range
ordering temperatures. Here M is the magnetization, H is
the applied magnetic field, C is the Curie constant, T is the
absolute temperature, and θp is the Weiss temperature which
is positive for ferromagnets (FMs) and generally negative for
antiferromagnets (AFs). Néel showed that the molecular field
theory (MFT) for FMs developed by Weiss to derive Eq. (1)
allowed collinear AF ordering to occur [4]. The simplest model
of an AF structure has each “up” spin with only “down”
nearest-neighbor spins, and vice versa, called a “bipartite”
AF structure. A magnetically ordered (single-domain) FM in
zero field has a net magnetic moment whereas an AF does not.
The magnetic ordering temperature of a FM is denoted as the
Curie temperature TC and of an AF as the Néel temperature
TN. Van Vleck used the Weiss MFT to calculate for a bipartite
two-sublattice model the anisotropic χ (T ) for T < TN in
small magnetic fields applied parallel (χ‖) and perpendicular
(χ⊥) to the magnetic moment ordering axis (easy axis) of
collinear AF structures for equal Heisenberg nearest-neighbor
interactions [5]. He deduced TN = −θp where θp < 0, but this
equality is rarely observed quantitatively in real AFs. The
subject of collinear AF is usually discussed in terms of Néel’s
two-sublattice MFT model [3,6,7]. Because large deviations
from Van Vleck’s requirement TN = −θp are observed for real
materials, Van Vleck’s theory has not been used much in the
past to fit experimental χ‖(T � TN) data for collinear AFs.

The anisotropic χ (T � TN) and other properties of planar
noncollinear AF ordering were investigated by Yoshimori

based on MFT for the “proper screw” helix magnetic struc-
ture [8,9], as shown in Fig. 1 of Ref. [10]. A proper screw helix
is an AF structure in which planes of magnetic moments that
are ferromagnetically aligned within each plane rotate their
ordered moment directions along the helix axis (z axis here)
with the tips of the magnetic moment vectors tracing out the
ridges on a screw (see Fig. 1 of Ref. [10]). Thus the ordered
moment directions are perpendicular to the screw z axis with
a fixed angle between the ordered moments in adjacent planes
along this axis. On the other hand, when the helix z axis is in
the xy plane of the coplanar magnetic moments, the heads of
the ordered moment vectors along the z axis trace out points on
a cycloid, and hence Yoshimori termed this a “cycloidal” AF
structure [8] as shown in Fig. 1 of Ref. [11]. Like Van Vleck’s
theory, Yoshimori’s predictions were very restrictive and have
been little used by experimentalists to fit their χ (T � TN) data
for helical or cycloidal AFs.

This paper is a followup to our 2012 Letter [10] where
we formulated a generic version of MFT for Heisenberg spin
systems containing identical crystallographically equivalent
spins that improves on previous MFT treatments in ways that
will be discussed. The paper is organized as follows. Our
MFT notation and the definition of the exchange field in MFT
are given in Sec. II. In Sec. III we introduce the Brillouin
function and derive expressions for the exchange field, reduced
ordered moment and other properties versus temperature that
are the same for collinear and noncollinear AFs and for FMs.
The static critical exponents and associated dimensionless
reduced amplitudes are derived in Sec. IV. A Curie-Weiss
law of corresponding states is derived in Sec. V. In Sec. VI
we present our generic MFT formulation of χ (T � TN) of
collinear AFs and in Sec. VII for the anisotropic χ (T ) of planar
noncollinear AFs. In Sec. VII A a generic expression for χ⊥
of collinear AFs and planar noncollinear AFs is derived. Our
MFT calculation of χxy(T � TN) of planar noncollinear AFs
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is presented in Sec. VII B. In Sec. VIII we formulate a generic
minimal and powerful J0-Jz1-Jz2 model for χxy(T ) of helical
or cycloidal AFs that is widely applicable to real materials and
contains as parameters only directly measurable quantities.
The magnetization, internal energy, and magnetic heat capacity
below TN of both collinear AFs and planar noncollinear AFs
in high magnetic fields aligned perpendicular to the ordering
axis or plane of the AF structure, respectively, are derived
for both types of AF structures for which we obtain the same
generic laws of corresponding states, respectively, in Sec. IX.
In concluding Sec. X the MFT predictions are discussed with
respect to non-mean-field behaviors observed for real systems.

II. EXCHANGE FIELD

We consider the Heisenberg model with no anisotropy
terms except that due to an infinitesimal H. The part Hi of
the spin Hamiltonian associated with a particular central spin
Si interacting with its neighbors Sj with respective exchange
constants Jij is

Hi = 1

2
Si ·

∑
j

Jij Sj + gμBSi · H, (2)

where the factor of 1
2 appears in the first term because the

exchange energy is evenly split between the two members of
each pair of interacting spins, g is the spectroscopic splitting
factor (g-factor) of a magnetic moment �μ, and μB is the Bohr
magneton.

In the Weiss MFT, one only considers the thermal-average
directions of Si and Sj when calculating their interaction.
Furthermore, it is the magnetic moment �μ that interacts with
a magnetic field and not the angular momentum S per se. The
relationship between these two quantities for an electronic spin
and magnetic moment is

S = − �μ
gμB

, (3)

where the minus sign arises from the negative sign of the
electron charge. Throughout the remainder of this paper, the
symbol �μ refers to the thermal-average value of the magnetic
moment, as is appropriate in MFT. Then the energy Emag i of
interaction of magnetic moment �μi with its neighbors �μj is
given by Eq. (2) as

Emag i = 1

2g2μ2
B

�μi ·
∑

j

Jij �μj − �μi · H. (4)

In MFT, one replaces the sum of the exchange interactions
acting on �μi in the first term by an effective magnetic field
called the Weiss molecular field or “exchange field” Hexch that
is defined by the usual relationship for the rotational potential
energy of a magnetic moment in a magnetic field, as in the
second term of Eq. (4), as

Eexch i = − 1
2 �μi · Hexch i , (5)

where the factor of 1
2 again arises because in MFT all of the

exchange energy between �μi and �μj is attributed to �μj , thus
canceling out the factor of 1

2 in Eq. (4). From the first term in

Eq. (4) one then obtains

Hexch i = − 1

g2μ2
B

∑
j

Jij �μj . (6)

Using �μj = μj μ̂j where μj = |�μj |, the component of Hexch i

in the direction of �μi is

Hexch i = μ̂i · Hexch i = − 1

g2μ2
B

∑
j

Jijμj μ̂i · μ̂j

= − 1

g2μ2
B

∑
j

Jijμj cos αji, (7)

where αji is the angle between �μj and �μi when H �= 0. If
H = 0 we denote this angle instead by φji .

In the ordered magnetic state at H = 0, the lowest energy of
the spin system occurs when each magnetic moment is in the
same direction as the local exchange field it sees. Therefore
the component of the local Hexch i0 in the direction of �μi , and
also its magnitude, is

Hexch i0 = μ̂i · Hexch i0 = − μ0

g2μ2
B

∑
j

Jij cos φji, (8)

where the subscript 0 in Hexch i0 designates that H = 0 and μ0

is the magnitude of the T -dependent ordered magnetic moment
in H = 0 observed, e.g., by neutron diffraction measurements
which is the same for all spins because of their crystallographic
equivalence.

III. SOME PROPERTIES AT TEMPERATURES BELOW
THE NÉEL TEMPERATURE

A. Brillouin function, Néel temperature, ordered moment, laws
of corresponding states, and magnetic energy

In general, in MFT the equilibrium (thermal-average)
direction of a specific ordered local moment �μi is always in the
direction of its local magnetic induction Bi . The magnitude μi

of �μi in that direction is determined by the Brillouin function
BS(y) according to [10,12]

μi = μsatBS(yi), (9a)

where

yi = gμBBi

kBT
, (9b)

the saturation moment of each spin is

μsat = gSμB, (9c)

and g ≈ 2 for many 3d transition metal ions due to quenching
of the z component of the orbital angular momentum, and also
for spin-only Gd+3 and Eu+2 ions with S = 7/2 and orbital
angular momentum L = 0.

Our unconventional definition of the Brillouin function is

BS(y) = 1

2S

{
(2S + 1) coth

[
(2S + 1)

y

2

]
− coth

(
y

2

)}
,

(10a)
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for which the Taylor series expansion about y = 0 is

BS(y) = (S + 1)y

3
− 1

90
(1 + 3S + 4S2 + 2S3)y3 + O(y5).

(10b)

For y 	 1 and finite S one obtains

BS(y) ≈ 1 − e−y

S
. (10c)

The derivative of BS(y) is

B ′
S(y) ≡ dBS(y)

dy

= 1

4S

{
csch2

(
y

2

)
− (2S + 1)2csch2

[
(2S + 1)

y

2

]}
.

(11)

From Eq. (10b), the lowest-order terms of a Taylor series
expansion of B ′

S(y) about y = 0 are

B ′
S(y) = S + 1

3
− 1 + 3S + 4S2 + 2S3

30
y2 + O(y4). (12)

The magnetic induction in Eq. (9b) is

Bi = Hexch i + H‖i , (13)

where Hexch i is the component of the exchange field parallel
to magnetic moment �μi and H‖i = μ̂i · H is the component of
the applied magnetic field in the direction of �μi . We define the
direction of approach to a transition temperature by superscript
+ and − symbols. Thus on approaching the AF ordering
temperature from below, denoted as T → T −

N , an infinitesimal
nonzero ordered moment develops even in the absence of an
applied magnetic field. One can Taylor expand the Brillouin
function for small arguments using Eq. (10b), and then Eq. (9a)
becomes

μi = g2μ2
BS(S+1)

3kBTN
Bi = g2μ2

BS(S+1)

3kBTN
(Hexch i + H ). (14)

For H = 0 one obtains

μ0 = g2μ2
BS(S + 1)

3kBTN
Hexch i0. (15)

Substituting Eq. (8) for Hexch i0 into (15) gives the most
general expression for the AF ordering temperature in MFT
for a system of identical crystallographically equivalent spins
interacting by Heisenberg exchange as

TN = −S(S + 1)

3kB

∑
j

Jij cos φji . (16)

This equation also predicts the magnetic ordering temperature
(Curie temperature TC) of a ferromagnet where φji = 0 and∑

j Jij < 0. By comparing Eqs. (8) and (16), one can write
the zero-field exchange field Hexch i0 seen by each magnetic
moment �μi0 as

Hexch i0 = TN

C1
�μi0, Hexch 0 = TN

C1
μ0, (17a)

where the magnitude Hexch 0 of the exchange field in H = 0
seen by each spin is the same for all spins because of their

crystallographic equivalence, hence the subscript i is dropped,
and the single-spin Curie constant C1 is defined as [3]

C1 = g2μ2
BS(S + 1)

3kB
. (17b)

Equations (7), (8), and (17a) for the exchange field do not
make any reference to magnetic moments other than the central
magnetic moment �μi and its generic neighbors. In particular,
the exchange field and relative magnetic moment direction in
H = 0 are determined solely by the local interactions of each
magnetic moment with its neighbors. Thus we do not define
or identify distinct magnetic sublattices in our formulation of
MFT, in contrast to traditional approaches.

We define the reduced zero-field ordered moment and
reduced temperature, respectively, as

μ̄0 = μ0

μsat
= μ0

gSμB
, (18a)

t = T

TN
, (18b)

where the saturation moment μsat of spin S is given by Eq. (9c).
The zero-field exchange field in the direction of �μi in Eq. (17a)
becomes

Hexch 0 = 3kBTNμ̄0

(S + 1)gμB
. (19)

Then Eq. (9a) for calculating the ordered moment μ0 versus
T in H = 0 can be compactly written as [12]

μ̄0 = BS(y0), with y0 = 3μ̄0

(S + 1)t
, (20)

and the Brillouin function BS(y0) is given in Eq. (10a). This
zero-field expression is valid within MFT for ferromagnets
and both collinear and noncollinear AFs. Plots of the zero-field
reduced ordered moment μ̄0 versus reduced temperature t for
several spin S values according to Eq. (20) are shown in Fig. 10
of Ref. [12]. The order parameter for an AF transition is the
single-spin ordered moment. From Fig. 10 of Ref. [12], one
sees that the ordered moment increases continuously from zero
on entering the AF state from above. Thus the transition is a
continuous (second-order) transition with no latent heat.

The total temperature derivative dμ̄0/dt is calculated from
Eq. (20) as

dμ̄0

dt
= − μ̄0(t)

t
[ (S+1)t

3B ′
S (y0) − 1

] , (21)

where B ′
S(y0) ≡ dBS(y)/dy|y=y0 and the function B ′

S(y) is
given in Eq. (11).

The expression for μ̄0 versus t in Eq. (20) is an example of
a so-called “law of corresponding states” for a given spin S.
Spin systems are said to be in corresponding states when their
reduced state variables such as t and μ̄0 have the same values,
respectively. Thus when an equation in reduced variables such
as Eq. (20) is a law of corresponding states, the equation applies
equally well to different spin systems with the same S but
with, e.g., different exchange constants and Néel temperatures,
which are implicitly contained in the reduced variables t and
μ̄0. Many other laws of corresponding states for spin systems
with the same S are obtained in later sections because we
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usually write MFT predictions in terms of universal reduced
variables.

Using the Taylor series expansion in Eq. (10b) of the
Brillouin function for small arguments to order y3

0 appropriate
for t → 1− and solving for μ̄0(t) yields the behaviors on
approaching the Néel temperature t = 1 to the lowest two
orders as

μ̄2
0 = 10(1 + S)2

3(1 + 2S + 2S2)
(1 − t) (t → 1−)

+ 25(1 + S)2(3 + 12S + 28S2 + 32S3 + 16S4)

21(1 + 2S + 2S2)3
(1 − t)2,

(22a)

μ̄0 =
√

10
3 (1 + S)

√
1 + 2S + 2S2

(1 − t)1/2 (t → 1−)

+
5
√

5
6 (1 + S)(1 + 2S + 4S2)(3 + 6S + 4S2)

14(1 + 2S + 2S2)5/2
(1 − t)3/2.

(22b)

The leading
√

1 − t temperature dependence of the order
parameter [the ordered moment in Eq. (22b) in this case] is
characteristic of the critical behavior predicted by mean-field
theories of second-order phase transitions on approach to the
ordering temperature from below.

In H = 0, the magnetic energy per spin Emag/N is defined
within MFT by Eq. (5) as

Emag

N
= −1

2
�μi · Hexch i , (23)

where N is the number of spins. Then using the relations
�μi ‖ Hexch i for H = 0 and therefore �μi · Hexch i = μ0Hexch 0

and also using Eqs. (18) and (19) one obtains the magnetic
energy per spin as

Emag

NkB
= − 3STN

2(S + 1)
μ̄2

0. (24)

B. Magnetic heat capacity

Using Eqs. (18b) and (24), the molar magnetic contribution
Cmag(t) to the heat capacity in zero applied magnetic field is
given in MFT by

Cmag(t)

R
= − 3S

2(S + 1)

dμ̄2
0(t)

dt
= − 3S

S + 1
μ̄0(t)

dμ̄0(t)

dt
, (25)

where we have set N = NA, NA is Avogadro’s number and
R = NAkB is the molar gas constant. Substituting dμ̄0/dt from
Eq. (21) into the second equality in Eq. (25) yields

Cmag(t)

R
= 3Sμ̄2

0(t)

(S + 1)t
[ (S+1)t

3B ′
S (y0) − 1

] . (26)

Thus Cmag(t) for H = 0 is determined solely by the spin S and
by the temperature dependence of the reduced ordered moment
and hence is a law of corresponding states for a given S.
Plots of Cmag(t)/R for various values of S from the minimum
quantum value S = 1/2 to the classical limit (S → ∞) are
shown in Fig. 11 of Ref. [12]. The magnetic entropy Smag at TN

calculated from Cmag(T ) for each of the finite S values satisfies
the quantum statistical mechanics prediction Smag(T → ∞) =
R ln(2S + 1).

One can obtain the behavior of Cmag for t → 1− by taking
the temperature derivative of μ̄2

0(t) in Eq. (22a) and inserting
the result into the first equality in Eq. (25), yielding

Cmag

R
= 5S(1 + S)

1 + 2S + 2S2
(t → 1−)

+ 25S(1 + S)(3 + 12S + 28S2 + 32S3 + 16S4)

7(1 + 2S + 2S2)3

× (1 − t). (27a)

Since Cmag = 0 for t > 1 as seen in Fig. 11 of Ref. [12], the
heat capacity jump on cooling below TN in Fig. 11 of Ref. [12]
is given by Eq. (27a) as

�Cmag

R
= 5S(1 + S)

1 + 2S + 2S2
, (27b)

which has the narrow range �Cmag/R = 3/2 for S = 1/2 to
�Cmag/R = 5/2 for S → ∞.

Equations (20), (26), and (27) are generally applicable to
Heisenberg magnets containing identical crystallographically
equivalent spins in H = 0 within MFT including FMs and
both collinear and noncollinear AFs.

C. Staggered magnetization versus staggered
magnetic field isotherms

If one applies a parallel field to a single-domain FM below
the Curie temperature, at zero field the ordered moment is
μi . On increasing the field μi increases because it accrues
a field-induced moment that increases with increasing field.
Similarly, in an AF, one can imagine a staggered magnetic
field H†

i for each ordered moment �μi that is applied in the
direction of each moment in the sample and is therefore also
in the direction of the exchange field Hexch i for each moment.
Thus H†

i does not change the angles of the spins with respect
to each other, irrespective of the magnitude of H†

i . Due to
the assumed crystallographic equivalence of each spin, the
magnitude H

†
i is independent of i and hence we write it as H †.

The expression for the exchange field Hexch i for that moment
is therefore the same as that for Hexch0 i in Eq. (19) but with a
field-dependent μ̄i replacing μ̄0. The magnitude Hexch0 i is the
same for each moment and hence we drop the index i. Within
MFT, the dependence of μi on H in a FM is identical to the
dependence of μi on H † in an AF. This equivalence applies to
both collinear and noncollinear AFs. The calculations in the
present and following section are not usually presented when
the predictions of MFT are discussed.

Here we calculate the ordered plus induced moment μi of
each spin i versus H † for an AF below its TN. From Eqs. (9)
and (13), one has

μ̄i = BS(y), (28a)

where

y = gμB

kBT
(Hexch0 + H †). (28b)
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FIG. 1. (Color online) Reduced ordered plus induced moment
μ̄i ≡ μi/μsat versus reduced staggered magnetic field h† ≡
gμBH †/kBTN at the indicated reduced temperatures t ≡ T/TN for
(a) spin S = 1/2 and (b) spin S = 7/2. The curves were calculated
using Eqs. (28a) and (28d). The temperatures of the curves from
top to bottom are the same as in the figure legends. The behaviors
for a single-domain ferromagnet are identical to those shown, with
the reduced uniform field h ≡ gμBH/(kBTC) replacing the reduced
staggered field h†, where TC is the ferromagnetic ordering (Curie)
temperature.

Using Eq. (19) and defining the reduced staggered field

h† ≡ gμBH †

kBTN
, (28c)

the variable y in Eq. (28b) becomes

y = 3μ̄i

(S + 1)t
+ h†

t
, (28d)

where we have used the definition of the reduced temperature
t in Eq. (18b).

Numerical solutions of Eqs. (28a) and (28d) for μ̄i versus
h† were obtained for spins S = 1/2 and 7/2 and the results
are plotted in Fig. 1 for seven values of t < 1. The values of
μ̄i at h† = 0 are the ordered moments for these spin values
at the respective temperatures as plotted in Fig. 3 below.
The initial slope of μ̄i versus h† increases with increasing
t and diverges to ∞ for t → 1−. This means that the reduced
staggered susceptibility χ † ≡ (μ̄i/h†)|h†→0 increases with
increasing t and diverges for t → 1−, which also means
that χ ≡ (μ̄i/h)|h→0 diverges for a single-domain FM on
approaching its Curie temperature from below. Indeed, the

t-dependent values of χ (t) for a single-domain FM and for
χ †(t) of collinear and noncollinear AFs for t < 1 are identical
within MFT. For a bulk FM χ (t) is difficult to measure in the
FM-ordered state due to formation of multiple FM domains
and their relative size and number dependence on field, which
introduces a contribution to the uniform M(H ) behavior
beyond that predicted by MFT. For AFs, it is usually not
possible to apply a real staggered magnetic field. However, the
staggered susceptibility of an AF can be determined indirectly
from inelastic neutron scattering measurements.

At t = 1, the system is in the PM state since the ordered
moment is zero at that temperature. We define the reduced
uniform magnetic field h for a paramagnet as

h ≡ gμBH

kBTN
. (29)

By expanding Eq. (28a) at t = 1 to third order in μ̄i and
first order in h with y given by Eq. (28d) with h replacing
h† and solving for μ̄i gives the asymptotic isothermal critical
magnetization versus field at the ordering temperature as

μ̄i = (S + 1)

[
10

9(1 + 2S + 2S2)

]1/3

h1/3 (t = 1, h → 0).

(30)

This shows that the initial dependence of μ̄i versus h at t = 1
as in Fig. 4 below has an infinite slope for h → 0.

D. Staggered magnetic susceptibility

As seen from Fig. 1, for t < 1 the initial behavior of μ̄i of
an AF versus h† is

μ̄i(t,h
†) = μ̄0(t) + χ †(t)h†, (31)

where the reduced staggered susceptibility χ † is the initial
slope of [μ̄i(t,h†) − μ̄0(t)] versus h†. Since μ̄i(t,h†) versus h†

is nonanalytic at t < 1 and h† = 0 according to Fig. 1, one
cannot utilize a Taylor series expansion of Eq. (28a) about
h† = 0 to calculate χ †(t). Instead one must obtain numerical
values from the expression

χ †(t) = μ̄i(t,h†) − μ̄0(t)

h† , (32)

where h† has a value sufficiently small to obtain the required
accuracy for χ †(t) at a given t . The zero-field ordered moment
μ̄0 is calculated from Eq. (20) and μ̄i(h†) from Eqs. (28a)
and (28d). Here, we used the fixed value h† = 10−9, which
gave an accuracy for the calculated χ †(t) of better than 0.01%
for t � 0.995.

The results for χ †(t < 1) are shown in Fig. 2(a) for
spins S = 1/2, 3/2, 5/2, and 7/2. The inverse staggered
susceptibilities are shown in Fig. 2(b), where the respective
dashed straight lines are the inverses of the asymptotic Curie-
Weiss-like critical behaviors given in Eq. (45a). The uniform
χ (t < 1) for a single-domain Heisenberg FM containing spins
S is identical to the above result for χ †(t < 1) for the
Heisenberg AF with the same S, with the changes in notation
given in the caption of Fig. 1.
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FIG. 2. (Color online) (a) Reduced staggered magnetic suscep-
tibility χ † and (b) its inverse for Heisenberg antiferromagnets with
spins S = 1/2, 3/2, 5/2, and 7/2 versus reduced temperature t =
T/TN. The straight dashed lines in (b) are extrapolations of the
respective asymptotic Curie-Weiss-like critical behaviors for 1/χ †

at t → 1− in Eq. (45a). These asymptotic critical behaviors are seen
to be followed only at temperatures very close to TN.

IV. STATIC CRITICAL EXPONENTS AND AMPLITUDES

The static critical exponents α, α′, β, γ , γ ′, and δ

and the corresponding dimensionless reduced amplitudes
a, a′, b, g, g′, and d for magnetic systems are defined by
Stanley, where the values obtained in mean-field theory for
the critical exponents are given, together with the critical
amplitudes for spin S = 1/2 [13]. Here we calculate the critical
exponents and amplitudes and give the general dependencies
of the critical amplitudes on the spin S, which upon setting
S = 1/2 are found to agree with the corresponding values
calculated in Ref. [13] for S = 1/2. The described critical
behaviors are the same for collinear and noncollinear AFs.
Furthermore, because the thermodynamic properties at H = 0
in MFT of a single-domain ferromagnet and an antiferro-
magnet are the same, with the reduced uniform field h and
magnetic susceptibility χ and the Curie temperature TC of
a ferromagnet replacing the reduced staggered field h† and
staggered magnetic susceptibility χ † and the Néel temperture
TN of an antiferromagnet, respectively, the static critical
exponents and amplitudes are the same within MFT for FM
and AF ordering.

1. Magnetic heat capacity

The critical behaviors of the molar magnetic heat capacity
are defined by

Cmag

R
= a(t − 1)α (t → 1+), (33a)

Cmag

R
= a′(1 − t)α

′
(t → 1−). (33b)

From Sec. III B, Cmag has the constant value of zero for t →
1+. Therefore one obtains

α = 0, a = 0 (t → 1+). (34)

Equation (27a) shows that Cmag approaches the given finite
value on approaching TN from below, yielding

α′ = 0, a′ = 5S(1 + S)

1 + 2S + 2S2
(t → 1−). (35)

2. Order parameter

The order parameter for a FM is the uniform magnetization
and that for an AF is the staggered magnetization (the ordered
moment per spin). In a finite uniform field there is no
FM phase transition because the order parameter for that
transition (the uniform magnetization) is greater than zero at
all finite temperatures. In either case, for H = 0 and H † = 0,
respectively, and t → 1− one has the same equation defining
the critical exponent and amplitude given by

μ̄0 = b (1 − t)β. (36)

From Eq. (22b), the asymptotic critical behavior for t → 1−
is

μ̄0 =
√

10
3 (1 + S)

√
1 + 2S + 2S2

(1 − t)1/2 (t → 1−). (37)

Comparing Eq. (37) with (36) gives the critical exponent and
amplitude as

β = 1

2
, b =

√
10
3 (1 + S)

√
1 + 2S + 2S2

. (38)

Comparisons of μ̄0 versus t for spins S = 1/2, 3/2, and
∞ (classical) from Fig. 10 of Ref. [12] with the asymptotic
critical behaviors predicted by Eq. (37) are shown in Fig. 3.
One sees that the calculations follow the critical behavior for
t � 0.9. Quantitatively, the critical behavior values are larger
than the calculations by 1% at t ≈ 0.97 (S = 1/2, ∞) and by
5% at t ≈ 0.89 for S = 1/2 and at t ≈ 0.84 for S = ∞.

3. Critical magnetization versus staggered field isotherm

At the critical temperature t = 1, there is no spontaneous
(ordered) moment in zero field but a nonzero moment can
be induced in the direction of an applied field H . The
critical exponent δ and amplitude d for the critical (t = 1)
magnetization versus field isotherm are defined in terms of
our dimensionless reduced units by

h = d |μ̄i |δsgn(μ̄i) (μ̄i → 0, t = 1), (39)
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FIG. 3. (Color online) Comparisons of the normalized ordered
moment μ̄0 ≡ μ0/μsat versus reduced temperature t = T/TN for
spins S = 1/2, 3/2, and ∞ (classical) (solid curves) from Fig. 10 of
Ref. [12] with the respective asymptotic critical behaviors predicted
by Eq. (37) (dashed curves). The asymptotic critical behaviors
describe the calculations rather well for t � 0.9. The order of the
curves from top to bottom is the same as in the figure legend.

where the reduced field h is defined in Eq. (29). If δ is an
integer, this relation becomes

h = d μ̄δ
i (μ̄i → 0, t = 1). (40)

Within MFT, Eq. (30) yields

h =
[

9(1 + 2S + 2S2)

10(1 + S)3

]
μ̄3

i . (41)

Comparing Eq. (41) with (40) gives the critical exponent and
amplitude as

δ = 3, d = 9(1 + 2S + 2S2)

10(1 + S)3
. (42)

Critical magnetization versus field isotherms at t = 1 for spins
S = 1/2, 3/2, and 7/2 calculated with Eqs. (28a) and (28d)
with h replacing h† are compared with the corresponding
asymptotic critical behaviors predicted from Eq. (30) in Fig. 4.
There is no ordered moment at t = 1 and hence the induced
moment is in the PM regime with all induced moments lined up
with the field H. One sees that the asymptotic critical behaviors
are followed by the corresponding μ̄i versus h calculations
only very close to h = 0.

4. Magnetic susceptibility

To obtain the asymptotic magnetic susceptibilities for
t → 1± we follow Stanley’s exposition for a single-domain
ferromagnet [13] and first expand Eq. (28a) using (28d) in a
Taylor series to first order in h† and �t ≡ t − 1 and to third
order in μ̄i and obtain

0 =
(

1 + S

3

)
(1 − �t)h† − �t μ̄i

−
[

3(1 + 2S + 2S2)

10(1 + S)2

]
(1 − 3�t)μ̄3

i . (43)

For t < 1 one has μ̄i > 0 for h = 0. Taking the partial
derivative of both sides with respect to h† and recognizing
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0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

 S = 1/2
 S = 3/2
 S = 7/2

gμ
B
H / k

B
T

N

T = T
N

FIG. 4. (Color online) Comparisons of the critical (t = 1) nor-
malized induced moment μ̄i ≡ μi/μsat versus reduced magnetic field
h ≡ gμBH/kBTN for spins S = 1/2, 3/2, and 7/2 (solid curves)
calculated from Eqs. (28a) and (28d) together with the respective
asymptotic critical behaviors predicted by Eq. (30) (dashed curves).
The order of each set of dashed and solid curves from top to bottom
is the same as in the figure legend.

that ∂μ̄i/∂h† ≡ χ †, where χ † is the dimensionless reduced
staggered susceptibility, gives

0 =
(

1 + S

3

)
(1 − �t) − χ †�t

− χ †
[

9(1 + 2S + 2S2)

10(1 + S)2

]
(1 − 3�t)μ̄2

i . (44)

Inserting the asymptotic critical behavior for μ̄i in Eq. (37)
into (44) one obtains

χ † = (1 + S)/6

1 − t
(t → 1−), (45a)

where we have used the definition �t = −(1 − t). This has
the form of a Curie-Weiss-like law even though it applies to
the ordered state.

In the PM temperature regime t � 1, the third term in
Eq. (43) is negligible compared to the second, and from
Eq. (43) one obtains

χ † ≡ μ̄i

h
= (1 + S)/3

t − 1
(t → 1+), (45b)

which is a Curie-Weiss law where the Curie constant is a factor
of two larger than in Eq. (45a) for the temperature regime t < 1
as noted by Stanley [13].

The critical exponents and amplitudes for the isothermal
staggered susceptibility of an AF are defined by

χ † = g′ (1 − t)−γ ′
(t → 1−), (46a)

χ † = g (t − 1)−γ (t → 1+), (46b)

where the direction of the staggered field for each spin for
t > 1 is the same as for t < 1. Comparing Eqs. (45) with (46)
gives the respective exponents and amplitudes as

γ = 1, γ ′ = 1, (47a)

g = S + 1

3
, g′ = S + 1

6
. (47b)
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The straight dashed lines in Fig. 2(b) are plots of the
asymptotic critical behaviors at t < 1 of the inverse staggered
susceptibility of an AF obtained from Eq. (45a) for spins
S = 1/2, 3/2, 5/2, and 7/2. As seen from the figure, the
asymptotic critical behavior for each spin value is only realized
at temperatures very near TN.

Thus the staggered susceptibility of an AF diverges on
approaching TN both from below and above. For T � TC,
the uniform susceptibility of a FM diverges for T → T +

C ,
whereas as discussed in the following section, the uniform
susceptibility of an AF does not diverge at TN. Another way
of saying this is that a uniform applied magnetic field does
not directly couple to the AF order parameter, which is the
staggered magnetization instead of the uniform magnetization
as for a FM.

V. CURIE-WEISS LAW FOR TEMPERATURES
IN THE PARAMAGNETIC REGIME

In the PM state at temperatures above TN, the thermal
average of each magnetic moment is in the direction of the
applied field. Hence αji = 0 in Eq. (7) and one obtains

Hexch i = − μi

g2μ2
B

∑
j

Jij , (48)

where μi is the thermal-average magnetic moment in the
direction of H, which is the same for all spins and can therefore
be taken out of the sum. Then Eqs. (10b), (28a), (28d) with h

replacing h†, and (48) yield the Curie-Weiss law

χ (T ) = μi

H
= C1

T − θp
(49a)

with

θp = −S(S + 1)

3kB

∑
j

Jij , (49b)

where the single-spin Curie constant C1 is given above in
Eq. (17b) and θp is the Weiss temperature. It is possible for a
system of interacting spins to have a Curie-law susceptibility
(θp = 0). From Eq. (49b), this can happen if the sum of the
exchange constants accidentally satisfies

∑
j Jij = 0.

One can write calculations of χ (T ) for local moment
Heisenberg AFs within MFT in terms of the physically
measurable ratio

f ≡ θp

TN
=

∑
j Jij∑

j Jij cos φji

, (50)

where for the second equality Eqs. (16) and (49b) were used.
For a FM, φji = 0 for all j , and hence f = 1. For AFs, at least
one of the Jij has to be positive (AF interaction) and at least one
of the φji �= 0, leading to f < 1. Thus within MFT, if AF or-
dering is caused solely by exchange interactions, one requires

−∞ < f < 1. (51)

By definition TN > 0, whereas θp for an AF can be either nega-
tive (the usual case) or positive, leading via the first equality in
Eq. (50) to a corresponding negative or positive value of f . The
latter result occurs when the dominant Jij interactions are FM
(negative), but where AF (positive) interactions cause the over-
all magnetic structure to be AF. For AFs, |f | is called the “frus-

tration parameter” for AF ordering [14–16]. A value |f | 	 1
means that TN is suppressed far below the value |θp| expected
from MFT for bipartite AFs with equal nearest-neighbor in-
teractions, which is suggestive of strong frustration effects for
AF ordering that arise from geometric and/or bond frustration.

The Curie-Weiss law in Eq. (49a) can be written as a law
of corresponding states

χ (t)TN

C1
= 1

t − f
(T � TN), (52a)

where the reduced temperature t was previously defined
in Eq. (18b). The right side of Eq. (52a) has no explicit
dependence on S, on the detailed type of spin lattice, or on
the exchange constants in the system. These quantities are
implicitly contained in t and f . At the ordering temperature
T = TN (t = 1), Eq. (52a) gives

χ (TN)TN

C1
= 1

1 − f
(T = TN). (52b)

The ratio of the isotropic χ (T > TN) to χ (T = TN) is given
by Eqs. (52) as

χ (t)

χ (TN)
= 1 − f

t − f
(T � TN). (53)

Since the left-hand side of Eq. (52b) must necessarily be
positive, MFT and the Heisenberg model require the right-hand
side also to be positive. This constrains f to be in the range
already given in Eq. (51). This equality can be violated in
practice if the Heisenberg model and MFT are inadequate to
describe the spin system in the PM state above TN.

From Eqs. (16), (17b), and (49b), one obtains

TN − θp = S(S + 1)

3kB

∑
j

Jij (1 − cos φji), (54)

where φji is the angle between ordered moments j and i in the
ordered AF state with H = 0. Using Eqs. (17b) and (54), the
(isotropic) PM susceptibility at the Néel temperature is given
by the Curie-Weiss law (49a) as

χ (TN) = C1

TN − θp
(55a)

= g2μ2
B∑

j Jij (1 − cos φji)
, (55b)

which, perhaps surprisingly, is independent of S.

A. Van Vleck’s solution for TN and θp

Van Vleck’s solution for TN and θp for the bipartite AF with
identical nearest-neighbor AF interactions J > 0 between
identical spins using the two-sublattice formulation of MFT
theory is [5]

TN = S(S + 1)zJ

3kB
, (56a)

θp = −S(S + 1)zJ

3kB
, (56b)

f = θp

TN
= −1, (56c)
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where z is the nearest-neighbor coordination number of a
magnetic moment by magnetic moments in the opposite
sublattice and f is defined in the first equality in Eq. (50). Thus
TN = −θp, where θp < 0. By comparing Eqs. (56) with (16)
and (49b), one sees that in going from Van Vleck’s theory
to the general formulation of the MFT, one replaces zJ in
Eq. (56a) by −∑

j Jij cos φji and zJ in Eq. (56b) by
∑

j Jij .
Van Vleck’s value f = −1 is very restrictive compared with
the range of values in Eq. (51) allowed by the general
expression (50).

B. Van Vleck’s solution for anisotropic magnetic susceptibility
in the antiferromagnetic state

In this paper we consider Heisenberg spin systems contain-
ing identical crystallographically equivalent spins in which the
magnetic structure contains ordered magnetic moments that
are all aligned within the same plane. Collinear spin systems
and also planar helical and cycloidal noncollinear magnetic
structures all fall into this category, and therefore have either
one axis (for planar noncollinear magnetic structures) or two
axes (for collinear magnetic structures) that are perpendicular
to the plane or axis of the ordered moments, respectively. The
MFT prediction for the perpendicular susceptibility per spin
χ⊥ of such systems for T � TN all have the same behavior,
and as shown in Sec. VII A below is given by

χ⊥(T � TN) = χ (TN) = C1

TN − θp
, (57)

which is the same as has been previously derived for several
special cases [5,8,12], where the second equality is obtained
from the Curie-Weiss law in Eq. (49a).

Van Vleck’s MFT solution [5] for χ‖(T � TN) per spin of a
collinear bipartite AF with only nearest-neighbor interactions
in his Eq. (15) is given in our dimensionless notation as

χ‖(t)TN

C1
= 1

τ ∗(t) + 1
, (58a)

where we define the dimensionless variable τ ∗ containing the
reduced temperature t as

τ ∗(t) = (S + 1)t

3B ′
S(y0)

(58b)

and B ′
S(y0), t and y0 are defined above in Eqs. (11), (18b),

and (20), respectively. Using the first term in the Taylor
series expansion of B ′

S(y0) in Eq. (12), when T = TN (t = 1),
Eq. (58b) becomes

τ ∗(t = 1) = 1 (58c)

and Eq. (58a) yields a value of χ‖(t = 1) that is the same as
predicted at TN by the Curie-Weiss law (52b) using f = −1 in
Eq. (56c), as required. From Eqs. (58a) and (58c) one obtains

χ‖(TN)TN

C1
= 1

2
(T = TN), (59)

which together with Eq. (58a) gives

χ‖(T )

χ‖(TN)
= 2

τ ∗(t) + 1
. (60)

When t → 0, B ′
S(y,t → 0) → 0 exponentially, τ ∗(t → 0) =

∞, and from Eq. (58a) one gets

χ‖(t → 0) = 0. (61)

Plots of χ‖(t)TN/C1 versus t for f = −1 and spins S = 1/2
and 7/2 for t < 1 and t > 1 derived from Eqs. (58a) and (52a),
respectively, are given in Fig. 5 below and corresponding plots
of the ratio χ‖(T )/χ‖(TN) versus t obtained from Eqs. (60)
and (53) are given in Fig. 6 below.

C. Magnetization versus field in the paramagnetic state

The PM state is a state in which there is no long-range
magnetic order induced by interactions between the moments.
Let the applied field be in the +z direction according to
convention. In the PM state, each thermal-average magnetic
moment points in the direction of H, and the exchange field (6)
thus also points in the direction of H with z component

Hexch z = − μz

g2μ2
B

∑
j

Jij , (62)

which is the same for all spins i and hence the subscript i has
been dropped. Defining the reduced magnetic moment

μ̄z ≡ μz

μsat
, (63)

the exchange field can be written

Hexch z = − μ̄zS

gμB

∑
j

Jij . (64)

Using Eq. (49b), Eq. (64) becomes

Hexch z = 3μ̄zkBθp

gμB(S + 1)
(65a)

and we therefore have

gμBHexch z

kBT
= 3μ̄zθp

(S + 1)T
. (65b)

Now Eqs. (9) using Eq. (13) give

μ̄z = BS

[
3μ̄zθp

(S + 1)T
+ gμBH

kBT

]
. (66)

For H → 0, using only the first term in the Taylor series
expansion (10b), Eq. (66) becomes the Curie-Weiss law μz =
C1H/(T − θp) in Eq. (49a).

In terms of the reduced temperature in Eq. (18b) and the
reduced magnetic field in Eq. (29), Eq. (66) becomes

μ̄z = BS

[
3μ̄zf

(S + 1)t
+ h

t

]
(t � 1), (67)

where the measurable ratio f = θp/TN is given in terms of the
exchange constants and the AF structure in Eq. (50). This is the
equation of state in MFT, in the form of a law of corresponding
states for a given value of S, for the PM phase that relates the
measurable reduced state variables μ̄z, t , and h to each other.
Equation (67) must be solved numerically for μ̄z for given
values of S, f , h, and t .
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VI. UNIFORM PARALLEL SUSCEPTIBILITY
OF COLLINEAR ANTIFERROMAGNETS BELOW

THEIR NÉEL TEMPERATURES

Here we generalize Van Vleck’s MFT calculation of χ‖(T )
at T � TN for collinear AF structures [5] to include cases
where the spin lattice can have a discrete distribution of
exchange interactions with its neighbors including possibly
frustrating interactions. As in Van Vleck’s theory, we consider
the spins to be identical and crystallographically equivalent.
Most physical realizations of Heisenberg spin lattices showing
collinear spin ordering are in this general category. In partic-
ular, very few, if any, real collinear AFs exactly satisfy the
Van Vleck theory requirement that f = −1. Indeed, Eq. (51)
shows that a large range of f values is possible.

In order to develop a formulation of MFT that does not use
the concept of magnetic sublattices, one must self-consistently
calculate the exchange field Hexch i seen by a representative
ordered moment �μi , where both �μi and Hexch i are changed
by the applied magnetic field H. When H is applied along
the axis of a collinear magnetic structure at temperatures 0 <

T < TN, the magnetic field increases the magnitudes of the
ordered moments parallel to H and decreases those antiparallel
to H. In the limit of small H , one can express this qualitative
expectation for the magnitude μj of an arbitrary magnetic
moment �μj as

μj = μ0 + δmaxμ̂j · H = μ0 + δmaxH cos φj , (68)

where μ0 is the temperature-dependent magnitude of the
ordered moment in H = 0, δmax is a constant to be determined,
and φj is the angle between �μj and H for H = 0. For a collinear
AF structure one has the two possibilities: φj = 0◦ or 180◦.
In this section, without loss of generality our central magnetic
moment �μi in the collinear AF structure is chosen to be in
the direction of H, i.e., φi = 0. Thus, for the central magnetic
moment �μi one has

μi − μ0 = δmaxH. (69)

Furthermore, the angle φji between magnetic moments �μj and
�μi is the same as φj and Eq. (68) becomes

μj = μ0 + δmaxH cos φji . (70)

Since φji = 0◦ or 180◦, the component of the exchange field
Hexch i in the direction of �μi is given by Eq. (7) with αji = φji

as

Hexch i = − μ0

g2μ2
B

∑
j

Jij cos φji − δmaxH

g2μ2
B

∑
j

Jij cos2 φji

= Hexch i0 − δmaxH

g2μ2
B

∑
j

Jij , (71)

where we have used Eq. (8) for the first term and cos2 φji = 1
in the second.

Using the definition of μ̄ in Eq. (18a), Eq. (69) becomes

δmaxH = gSμB(μ̄i − μ̄0). (72)

Substituting this into Eq. (71) gives

Hexch i = Hexch i0 − S(μ̄i − μ̄0)

gμB

∑
j

Jij . (73)

From Eqs. (49) one has∑
j

Jij = − 3kBθp

S(S + 1)
. (74)

Substituting this into Eq. (73) gives

Hexch i − Hexch i0 = 3kBθp(μ̄i − μ̄0)

(S + 1)gμB
. (75)

Using Eqs. (9) one obtains

μ̄i = BS

[
gμB

kBT
(Hexch i + H )

]
. (76)

Taylor expanding the Brillouin function about H = 0 to first
order in H gives

μ̄i = BS

(
gμB

kBT
Hexch i0

)

+
[
gμB

kBT
(Hexch i − Hexch i0 + H )

]
B ′

S(y0), (77)

where y0 is defined in Eq. (20) and the expression for B ′
S(y0)

is given in Eq. (11). From Eq. (20), the first term is just μ̄0 and
we substitute Eq. (75) into the second term to obtain

μ̄i − μ̄0 =
[

3(μ̄i − μ̄0)θp

(S + 1)T
+ gμBH

kBT

]
B ′

S(y0). (78)

Solving for μ̄i − μ̄0 gives

μ̄i − μ̄0 =
(S+1)gμBH

3kB

(S+1)T
3B ′

S (y0) − θp

. (79)

Utilizing the definition μ̄i − μ̄0 = (μi − μ0)/(gμBS) as in
Eq. (18a), one obtains

μi − μ0 = C1H
(S+1)T
3B ′

S (y0) − θp

, (80)

where the single-spin Curie constant C1 is defined in Eq. (17b).
The parallel susceptibility per spin is obtained from Eq. (80)

as

χ‖(T ) = μi − μ0

H
= C1

(S+1)T
3B ′

S (y0) − θp

. (81)

Multiplying both sides of Eq. (81) by TN and dividing both
sides by C1 gives the dimensionless law of corresponding
states for the parallel susceptibility for a given S as

χ‖(t)TN

C1
= 1

τ ∗(t) − f
, (82a)

where the definition of τ ∗(t) is given in Eq. (58b) and is
a function of S in addition to t . Equation (82a) becomes
identical to Van Vleck’s prediction in Eq. (58a) by setting f

to his value f = −1. Another previous special case described
by Eq. (82a) is the two-sublattice collinear AF with equal
couplings between spins in the same and opposite sublattices,
respectively [see Eq. (4.18) in Ref. [6]].

As noted previously in Eq. (58c), τ ∗(t = 1) = 1, so the
isotropic susceptibility at TN is predicted by Eq. (82a) to be

χ (t = 1)TN

C1
= 1

1 − f
(T = TN). (82b)
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FIG. 5. (Color online) Normalized magnetic susceptibility par-
allel to the easy axis χ‖(T )TN/C versus temperature T divided by
the Néel temperature TN for the listed values of f ≡ θp/TN and for
spins (a) S = 1/2 and (b) S = 7/2. A negative value of f reflects
the dominance of antiferromagnetic interactions, and a positive value
ferromagnetic interactions. All curves shown correspond to collinear
antiferromagnetic ordering at T < TN. The data shown for T/TN � 1
and T/TN � 1 were obtained from Eqs. (52a) and (82a), respectively.
The data in the former range do not depend on the spin S, but in
the latter range they do. The maximum range of f for Heisenberg
antiferromagnets in MFT is given by Eq. (51) as −∞ < f < 1.

Equation (82b) for χ (TN) is identical with the prediction of
the Curie-Weiss law at TN in Eq. (52b), as required. This is an
important consistency check.

The parallel susceptibility normalized by the isotropic value
at TN is obtained by dividing Eq. (82a) by (82b), yielding

χ‖(T )

χ (TN)
= 1 − f

τ ∗(t) − f
, (82c)

which only depends on the experimentally accessible pa-
rameters t , f , and χ (TN), and the spin S that one can
often estimate from chemical or other considerations. The
temperature dependence of χ‖ comes only from τ ∗(t), which
also depends on S. The exchange constants and spin lattice
geometry do not appear explicitly in Eqs. (82a) or (82c) but
are implicit in the values of f and t , so these are laws of
corresponding states for a given S. By expanding Eq. (82c) in
a Taylor series about t = 1 to first order in 1 − t , one obtains

χ‖(t)

χ (TN)
= 1 − 2(1 − t)

1 − f
(t → 1−), (83)
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FIG. 6. (Color online) Normalized magnetic susceptibility paral-
lel to the easy axis χ‖(T )/χ (TN) versus temperature T divided by the
Néel temperature TN for the listed values of f ≡ θp/TN and for spins
(a) S = 1/2 and (b) S = 7/2. The plots shown for T/TN � 1 and
T/TN � 1 were obtained from Eqs. (53) and (82c), respectively.

where again the spin does not appear explicitly in this
expression. The initial slope d[χ‖(t)/χ (TN)]/dt = 2/(1 − f )
near TN increases as f increases, where the allowable range is
−∞ < f < 1 as given in Eq. (51). We also obtain

χ⊥ − χ‖(t) = 2(1 − t)

1 − f
χ (TN) (t → 1−), (84)

where χ (TN) = χ⊥(T � TN) in MFT.
Plots of χ‖(T )TN/C1 versus T/TN for collinear antifer-

romagnets at T/TN � 1 and T/TN � 1 using Eqs. (52a)
and (82a), respectively, for several allowed values of f are
shown in Figs. 5(a) and 5(b) for spins S = 1/2 and 7/2,
respectively. The plots for a given f are the same above TN

for the two spin values, but not below. Plots of normalized
χ‖(T )/χ (TN) versus T/TN for T/TN � 1 and T/TN � 1 using
Eqs. (53) and (82c), respectively, for a large range of f values
are shown in Figs. 6(a) and 6(b) for spins S = 1/2 and 7/2,
respectively. One sees that the plots in Figs. 5 and 6 are not
particularly sensitive to the value of S, but are very sensitive
to the value of f .

VII. MAGNETIC SUSCEPTIBILITY OF PLANAR
NONCOLLINEAR ANTIFERROMAGNETS

In the above-considered single-domain collinear Heisen-
berg AFs, the orientations of the ordered moments all lie
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along a single axis. In the present section we generalize
the MFT treatment to include noncollinear Heisenberg AFs
where the ordered moments lie in a specified plane that we
denote as the xy plane. The z axis is defined in different
ways depending on the type of magnetic structure and is
not necessarily perpendicular to the xy plane. For example,
from Fig. 1 of Ref. [10] and Fig. 1 of Ref. [11], the proper
helix z axis is perpendicular to the xy plane and the cycloidal
z axis is parallel to the xy plane. Because of the different
definitions of the z axis, the out-of-plane direction is defined
here as the “perpendicular” (⊥) direction, where î × ĵ = ⊥̂.
When the theory is applied to specific compounds, the x, y,
z, and ⊥ axes are assigned to the appropriate crystallographic
directions.

We follow Yoshimori [8] and calculate in MFT both the
out-of-plane (χ⊥) and in-plane (χxy) susceptibilities by solving
for the conditions under which the equilibrium torque on a
magnetic moment is zero in the presence of the net sum of the
exchange and applied magnetic fields. Yoshimori calculated
these susceptibilities specifically for a proper helix magnetic
structure for the body-centered tetragonal spin sublattice and
for a specific configuration of exchange interactions. In the
following Secs. VII A and VII B we generalize his treatment
for calculating χ⊥ and χxy , respectively.

A. Magnetic susceptibility perpendicular to the ordering plane

Since a collinear AF is a special case of a planar non-
collinear AF, the generic predictions for the perpendicular
susceptibility χ⊥ of the two types of ordering are identical.
The only assumptions made in this section for planar AF
ordering, in which the ordered moments for H = 0 lie in
the same xy plane, are that the spins are identical and
crystallographically equivalent. The spins themselves do
not have to occupy the same plane. The crystallographic
equivalence assumption means that the spin coordination and
exchange bond environment of every spin are the same. To
calculate the equilibrium conditions on the parameters, we
calculate the conditions under which the net torque �τi on a
representative magnetic moment �μi is zero

�τi = �μi × Bi = 0 (85)

or

�τi = �μi × (Hexch i + H) = 0, (86)

where the magnetic induction seen by �μi is

Bi = Hexch i + H. (87)

The χ⊥ is calculated with the magnetic field applied along the
⊥̂ = î × ĵ direction, i.e.,

H = H ⊥̂.

When calculating magnetic susceptibilities, we consider a
representative central ordered moment �μi that interacts with
its neighboring ordered moments �μj . To calculate χ⊥ we use
cylindrical coordinates for the moment directions where the
⊥ axis is the cylindrical axis and the moments in H = 0 are
aligned within the xy plane. To first order in the deviation

γ
μxy

μ⊥

H μ

FIG. 7. Diagram showing the influence of an infinitesimal mag-
netic field H along the ⊥ axis on each spin originally aligned in the
xy plane. The H induces a tilting of each ordered magnetic moment �μ
towards the magnetic field direction by an angle γ (radian measure),
which results in an induced ⊥-axis component μ⊥ of �μ. The angle γ is
greatly exaggerated for clarity. To first order in γ ∝ H the magnitude
of the ordered moment μ0 in H = 0 is unaffected by H.

angle γ in Fig. 7, one has

�μi = μ0(cos φi î + sin φi ĵ + γ ⊥̂),

�μj = μ0(cos φj î + sin φj ĵ + γ ⊥̂),
(88)

where μ0 is the magnitude of the ordered moment of each spin
in zero field at the particular temperature T < TN of interest
and φi and φj are the respective azimuthal angles of �μi and
�μj with respect to the positive x axis. From Eqs. (88) the
ordered moment is independent of γ to first order in γ (or to
first order in H , since we will find that H ∝ γ ). In this and
the following section we express the azimuthal angle φj of a
neighboring magnetic moment �μj in terms of the azimuthal
angle φi of the central magnetic moment �μi and the azimuthal
angle φji = φj − φi between them. Thus we write

φj = φi + φji,

sin φj = sin φi cos φji + cos φi sin φji,

cos φj = cos φi cos φji − sin φi sin φji .

(89)

Inserting Eqs. (88) and (89) into Eq. (6) for the exchange field
Hexch i and keeping only terms to order γ gives the torque on
�μi due to Hexch i as

�μi × Hexch i

= − γμ2
0

g2μ2
B

⎧⎨
⎩(sin φi î − cos φi ĵ)

⎡
⎣∑

j

Jij (1 − cos φji)

⎤
⎦

− (cos φi î + sin φi ĵ)
∑

j

Jij sin φji

⎫⎬
⎭

− μ2
0

g2μ2
B

⊥̂
∑

j

Jij sin φji . (90)

This equation gives a torque on �μi even in zero field (γ = 0)
unless the last term vanishes:∑

j

Jij sin φji = 0. (91)

This condition must be satisfied by any planar AF structure in
H = 0 so that the structure is stable. Condition (91) is satisfied
identically by collinear AFs since for them φji = 0◦ or 180◦.
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Using Eq. (91), the torque contribution due to the exchange
field in Eq. (90) simplifies to

�μi × Hexch i = − γμ2
0

g2μ2
B

(sin φi î − cos φi ĵ)

×
∑

j

Jij (1 − cos φji). (92a)

Using Eqs. (16) and (49b) one has∑
j

Jij (1 − cos φji) = 3kB

S(S + 1)
(TN − θp).

Inserting this expression into Eq. (92a) and then using
Eqs. (17b) and (55a), Eq. (92a) becomes

�μi × Hexch i = −γμ2
0

TN − θp

C1
(sin φi î − cos φi ĵ)

= − γμ2
0

χ (TN)
(sin φi î − cos φi ĵ). (92b)

The contribution of the applied magnetic field to the torque in
Eq. (86) to first order in H is

�μi × H = μ0H (sin φi î − cos φi ĵ). (93)

Setting the sum of the torque terms (92b) and (93) equal to
zero according to Eq. (86) yields

μ0γ

H
= χ (TN). (94)

The χ⊥ per spin is obtained to first order in γ from Eq. (94)
and Fig. 7 as

χ⊥(T � TN) = μ⊥
H

= μ0γ

H
= χ (TN). (95)

The T -dependent ordered moment μ0(T ) canceled out of the
calculation, so χ⊥ is independent of T below TN. The standard
result (57) for collinear Heisenberg AFs obtained from
MFT [5] is of course identical to this general result (95) for
planar noncollinear AF structures with Heisenberg interactions
since the former is a special case of the latter.

B. Magnetic susceptibility parallel to the plane
of the ordered magnetic moments

1. Introduction

In this section we consider noncollinear ordered magnetic
moments lying in the xy plane as in Fig. 8, with the magnetic
field applied in the azimuthal positive x-axis ( î) direction

H = H î. (96)

As in the previous section, the direction of the third Cartesian
⊥ axis is defined by the right-hand rule as î × ĵ = ⊥̂, which
in Fig. 8 is pointed out of the page. The direction of the
moment �μi in H = 0 is defined by the azimuthal angle φi

with respect to the î direction. In the absence of any anisotropy,
upon application of the infinitesimal H the plane of the ordered
moments would flop to a perpendicular orientation to lower the
magnetic free energy of the system. Therefore, we assume that
there is an infinitesimal XY anisotropy present that prevents
this from happening; this anisotropy has no observable affect

(a)

x

y

μ
μ +  dμ

dμ
μ = constant

γ

φ

(b)

x

y

μ

μ + dμ
dμ

μ = constant

φ

∧

α

FIG. 8. A change d �μ in an ordered magnetic moment �μ due to an
infinitesimal magnetic field H = H î can come about through (a) a
change in direction μ̂ of the moment at constant magnitude μ and/or
by (b) a change in the magnitude μ of the moment at constant direction
μ̂. Positive azimuthal angles are measured in the counterclockwise
direction. Thus in panel (a) γ is negative and φ and α are positive.

on any magnetic behaviors of the spin system predicted from
the Heisenberg model.

On applying the field H, the contribution to the torque on
�μi due to H is �τi = �μi × H with magnitude τi = μiH | sin φi |.
This torque rotates �μi towards the direction of H by an
infinitesimal angle γi , as shown in exaggeration in Fig. 8(a).
The maximum magnitude of the torque occurs for |φi | = π/2
rad, at which |γi | ≡ γmax where γmax > 0. The exchange field
provides the restoring torque. Since all spins are crystallo-
graphically equivalent by definition and the local exchange
field in H = 0 at each spin position is therefore the same, the
restoring torque for each spin with the same value of φ is also
the same. Therefore, the tilt angle for an arbitrary spin i due
to the applied infinitesimal field is given by

γi = −γmax sin φi, (97)

which takes into account the negative sign of γi in Fig. 8(a) and
the angle φi of particular magnetic moment �μi with respect
to H. On the other hand, if sin φi is negative, then γi is
positive. It will turn out that γmax ∝ H , as expected, so we write
Eq. (97) as

γi = −
(γmax

H

)
H sin φi, (98)

where the quantity in parentheses is independent of H . This
gives rise to an in-plane susceptibility component χxy i |μ
arising from the rotation of �μi due to the field at constant
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moment magnitude μ given by Fig. 8(a) and Eq. (98) as

χxy i |μ = dμi |μ sin φi

H
= −μ0γi sin φi

H

= μ0

(γmax

H

)
sin2 φi, (99)

where μ0 is the T -independent ordered moment for H = 0,
from Fig. 8 the change dμi |μ sin φi is the component of d �μi |μ
in the direction of H, and dμi |μ = −μ0γi where the negative
sign comes from the sign convention for γ in Fig. 8. Then
the average susceptibility per spin for the entire spin system is
obtained by averaging over i, yielding

χxy |μ = μ0

(γmax

H

)
〈sin2 φi〉, (100)

where 〈. . .〉 denotes the average of the enclosed quantity over
all magnetic moments �μi .

As shown in Fig. 8(b), the applied field can also change the
magnitude μi of an ordered moment. For infinitesimal applied
fields, we expect that the previous Eq. (68) applies to planar
noncollinear as well as collinear AFs, i.e.,

μi = μ0 + δmaxH cos φi

or

dμi |μ̂ = μi − μ0 = δmaxH cos φi, (101)

where δmaxH is the maximum change in the magnitude of
�μ due to H that occurs when �μ ‖ H. One can now define a
susceptibility contribution at fixed magnetic moment direction
for spin i as

χxy i |μ̂ = dμxy i |μ̂ cos φi

H
= δmaxH cos2 φi

H

= δmax cos2 φi. (102)

Here the component of d �μi |μ̂ parallel to H at fixed φi is
dμxy i |μ̂ cos φi according to Fig. 8(b). Then the average of
the contribution (102) over the whole spin system per spin is

χxy |μ̂ = δmax〈cos2 φi〉. (103)

The total average susceptibility of the system per spin is then
obtained from Eqs. (100) and (103) as

χxy = χxy |μ + χxy |μ̂ (104a)

= μ0

(γmax

H

)
〈sin2 φi〉 + δmax〈cos2 φi〉. (104b)

Equations (97) and (101) are the keys to calculating the
in-plane susceptibility of large classes of planar noncollinear
Heisenberg AFs without needing to define magnetic sublat-
tices. As in the calculation of χ‖(T � TN) for collinear AFs
in Sec. VI, one must self-consistently calculate the exchange

field Hexch i seen by �μi , where Hexch i is itself changed by H.
We solve for the two unknowns γmax and δmax in Eq. (104b)
in the following two sections, respectively. The resulting two
simultaneous equations each contain both γmax and δmax, which
allows us to solve for these two unknowns.

2. Calculation of γmax

In this section we solve for an expression relating γmax and
δmax derived from the condition that in equilibrium, the net
torque on �μi in the presence of both the exchange field and the
applied field at fixed moment magnitude is zero. The magnetic
induction Bi seen by �μi is

Bi = Hexch i + H. (105)

The net torque on �μi is therefore

�τi = �μi × Bi = �μi × Hexch i + �μi × H = 0. (106)

The ordered moments are oriented within the xy plane (the
spatial spin lattice is not specified), and due to the assumed
infinitesimal XY anisotropy, the moments remain in the xy

plane when the infinitesimal H along the x axis in Eq. (96) is
applied.

The cross product �μi × �μj for H > 0 is given from its
definition as

�μi × �μj = μiμj sin αji⊥̂, (107)

where the angle between �μj and �μi in H > 0 is denoted by
αji = αj − αi and αj , αi are the respective azimuthal angles
of �μj and �μi with respect to the positive x axis in H > 0 [see
Fig. 8(a)]. The direction of the cross product is in the direction
of ⊥̂ = i × j for αji > 0 and is in the direction of −⊥̂ for
αji < 0. Using Eq. (107) and the expression in Eq. (6) for
Hexch i , one obtains

�μi × Hexch i = − ⊥̂
g2μ2

B

∑
j

Jijμiμj sin αji . (108)

We now express all angles in terms of the azimuthal angle φi

of the central magnetic moment �μi in H = 0 and the zero-field
angle φji between magnetic moments �μj and �μi . Referring to
Fig. 8(a), for H = 0 one has

φji ≡ φj − φi. (109)

Similarly, when H > 0 we define

αj = φj + γj , αji ≡ αj − αi,
(110)

γji ≡ γj − γi, αji = φji + γji,

where γj and γi are defined in Fig. 8(a) and expressions for
them are given in Eq. (97), yielding

αji = φji − γmax[sin φi cos φji + cos φi sin φji − sin φi].

(111a)

Using trig identities, to first order in γmax one then obtains

sin αji = sin φji − γmax(sin φi cos φji

+ cos φi sin φji − sin φi) cos φji, (111b)

cos αji = cos φji + γmax(sin φi cos φji

+ cos φi sin φji − sin φi) sin φji . (111c)
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Using Eqs. (68) and (109) and a trig identity one obtains to first order in H

μiμj = μ2
0 + δmaxμ0H cos φi + δmaxμ0H (cos φi cos φji − sin φi sin φji), (112)

where μ0(T ) is the ordered moment for H = 0 and δmax � 0 is a variable to be determined that depends on T but not on H (see
below).

Substituting Eq. (111b) for sin αji and (112) for μiμj into Eq. (108), to first order in H one obtains

�μi × Hexch i = − ⊥̂
g2μ2

B

⎧⎨
⎩μ2

0

⎡
⎣∑

j

Jij sin φji − γmax sin φi

∑
j

Jij (cos2 φji − cos φji) − γmax cos φi

∑
j

Jij sin φji cos φji

⎤
⎦

+ μ0δmaxH

⎡
⎣cos φi

⎛
⎝∑

j

Jij sin φji +
∑

j

Jij sin φji cos φji

⎞
⎠ − sin φi

∑
j

Jij sin2 φji

⎤
⎦
⎫⎬
⎭ . (113)

The second term in Eq. (106) for the torque on �μi due to H is,
to first order in H ,

�μi × H = −μ0H sin φi⊥̂. (114)

The net torque on �μi according to Eq. (106) is the sum of the
two torques in Eqs. (113) and (114).

In order for the equilibrium net torque on �μi to be zero
for H = 0 and γmax = 0 (since γmax ∝ H , see below) requires
that the first term in Eq. (113) be zero, which gives∑

j

Jij sin φji = 0. (115)

This condition for the stability of the AF structure is the same
as already given in Eq. (91). Furthermore, we only consider
AF structures for which∑

j

Jij sin φji cos φji =
∑

j

Jij sin(2φji) = 0. (116)

This is a weak constraint. Terms in the sum are zero if φji = 0
(FM alignment of moments �μi and �μj ) or 180◦ (AF alignment
of �μi and �μj ). Therefore, Eq. (116) is satisfied identically for
collinear AFs. More generally, the sum is also zero for AF
structures with inversion symmetry for which the AF structure
consists of pairs of ordered moments �μi and �μj and �μi and
�μk with couplings Jij = Jik and with orientations with respect
to the central moment �μi given by φji = −φki . The latter
situation occurs between moments in neighboring FM-aligned
layers along the axes of helical and cycloidal AF structures
within the J0-Jz1-Jz2 model shown in Fig. 1 of Ref. [10]
and Fig. 1 of Ref. [11], respectively. Equation (116) is also
satisfied by some AF structures and exchange models where
the magnetic and structural unit cells are the same [10].

Setting
∑

j Jij sin φji = ∑
j Jij sin φji cos φji = 0 in

Eq. (113) according to Eqs. (115) and (116) yields a simple
expression for �μi × Hexch i given by

�μi × Hexch i = μ2
0γmax sin φi⊥̂

g2μ2
B

∑
j

Jij (cos2 φji − cos φji)

+ μ0δmaxH sin φi⊥̂
g2μ2

B

∑
j

Jij sin2 φji . (117)

Inserting Eqs. (114) and (117) into (106) and solving for γmax

gives

γmaxμ0

g2μ2
BH

=
1 − δmax

g2μ2
B

∑
j Jij sin2 φji∑

j Jij (cos2 φji − cos φji)
, (118)

which is valid for AF structures and applied magnetic field di-
rections such that the angles between the ordered magnetic mo-
ments and the applied field satisfy 〈sin2 φi〉 �= 0 in Eq. (100).
As expected, we find that γmax ∝ H to lowest order in H .
The maximum tilt angle γmax due to H depends in part on the
maximum change δmaxH of the moment magnitude, and hence
includes a component arising from the changes in magnitudes
of the magnetic moments as they rotate in response to the field.
Since δmax depends on temperature (see below), so does γmax.

In addition to planar noncollinear AF structures, Eq. (118)
also applies to the special case of collinear AFs for an applied
field direction perpendicular to the ordering axis, because in
that case the moment magnitudes do not change as a result of
a small applied field and hence δmax = 0. Then substituting
cos2 φij = 1 into Eq. (118) for a collinear AF and then
substituting Eq. (118) with 〈sin2 φi〉 = 1 into (100) and using
Eq. (55b) gives the expression χ⊥(T � TN) = χ (TN) already
derived in Eq. (95) for the collinear AF and thus provides an
important consistency check.

Equation (118) contains two unknowns γmax and δmax. In the
following section an independent equation is obtained in these
two unknowns, which allows us to solve for both separately in
Sec. VII B 4 and thereby obtain the in-plane susceptibility of
a planar noncollinear AF structure utilizing Eqs. (100), (103),
and (104).

3. Calculation of δmax

Here we obtain an expression for δmax by using the Brillouin
function BS(y) in Eqs. (10) to determine the response of
the magnitudes of the ordered magnetic moments to the
temperature and infinitesimal applied field.

The equilibrium magnetic induction in Eq. (87) seen by
magnetic moment �μi in the presence of H must be parallel to
the equilibrium ordered magnetic moment �μi . Thus one can
obtain the component Hexch i of the local exchange field in the
direction of μ̂i by taking the dot product of the two, yielding
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Eq. (7) which we reproduce here for clarity:

Hexch i = − 1

g2μ2
B

∑
j

Jijμj cos αji . (119)

We need an expression for μj cos αji at infinitesimal H > 0
to insert into Eq. (119). From Eqs. (68) and (89), one has

μj = μ0 + δmaxH (cos φi cos φji − sin φi sin φji). (120)

The expression for cos αji is given in Eq. (111c). Keeping only
terms to first order in γmax and H in the product μj cos αji that
survive the sum in Eq. (119) according to Eqs. (91) and (116),
one obtains

μj cos αji = μ0(cos φji + γmax cos φi sin2 φji)

+ δmaxH cos φi cos2 φji (121)

and therefore Eq. (119) becomes

Hexch i = − 1

g2μ2
B

⎛
⎝μ0

∑
j

Jij cos φji + μ0γmax cos φi

×
∑

j

Jij sin2 φji + δmaxH cos φi

∑
j

Jij cos2 φji

⎞
⎠ .

(122)

Then using Hexch i0 from Eq. (8) to replace the first term in
Eq. (122) one obtains

Hexch i = Hexch i0 − μ0γmax

g2μ2
B

cos φi

∑
j

Jij sin2 φji

− δmaxH

g2μ2
B

cos φi

∑
j

Jij cos2 φji . (123)

Using Eq. (68) and the definition μ̄ ≡ μ/gSμB as in Eq. (18a)
one obtains

μi − μ0 = gSμB(μ̄i − μ̄0) = δmaxH cos φi. (124)

Using the second equality, Eq. (123) becomes

Hexch i = Hexch i0 − μ0γmax

g2μ2
B

cos φi

∑
j

Jij sin2 φji

− (μ̄i − μ̄0)S

gμB

∑
j

Jij cos2 φji . (125)

The magnitude of the reduced ordered moment μ̄i ≡
μi/μsat = μi/(gSμB) is given by the Brillouin function BS(y)
of the magnetic induction Bi in Eqs. (9) as

μ̄i = BS

[
gμB

kBT
(Hexch i + H‖i)

]
, (126)

where only the components of Hexch i and H that are parallel
to �μi are relevant here. To first order in H one has

H‖i = H cos φi. (127)

Inserting Eqs. (125) and (127) into (126) and expanding BS(y)
in a Taylor series about y0 ≡ gμBHexchi i0/kBT to first order

in H (and γmax, which is proportional to H ) gives

μ̄i − μ̄0 = B ′
S(y0)

⎡
⎣− μ0γmax

gμBkBT
cos φi

∑
j

Jij sin2 φji

− S(μ̄i − μ̄0)

kBT

∑
j

Jij cos2 φji + gμB

kBT
H cos φi

⎤
⎦ ,

where we used BS(y0) = μ̄0 from Eq. (20). Solving for
μ̄i − μ̄0 gives

μ̄i − μ̄0 =
gμB

S
H cos φi − μ0γmax

gμBS
cos φi

∑
j Jij sin2 φji

kBT
B ′

S (y0)S + ∑
j Jij cos2 φji

.

(128)

Using Eq. (124) this can be written

μi − μ0 = δmaxH cos φi

= g2μ2
BH cos φi − μ0γmax cos φi

∑
j Jij sin2 φji

kBT
B ′

S (y0)S + ∑
j Jij cos2 φji

.

(129)

Thus, under the condition that 〈cos2 φi〉 �= 0 in Eq. (103),
solving for δmax yields

δmax

g2μ2
B

=
1 − μ0γmax

g2μ2
BH

∑
j Jij sin2 φji

kBT
B ′

S (y0)S + ∑
j Jij cos2 φji

. (130)

Note that γmax in the numerator is proportional to H according
to Eq. (118), and hence H cancels out, leaving δmax a function
of T but not of H . Thus the change in magnitude of a magnetic
moment due to the presence of the magnetic field depends both
on the temperature and on the change in the angle that the spin
makes with the applied magnetic field direction due to the
magnetic field.

One expects Eq. (130) to be applicable for the magnetic field
applied along the easy axis of collinear AFs if one sets γmax =
0, sin2 φji = 0, and cos2 φji = 1, and Eq. (130) becomes

δmax

g2μ2
B

= 1
kBT

B ′
S (y0)S + ∑

j Jij

. (131)

Then Eq. (103) with 〈cos2 φi〉 = 1 gives the parallel suscepti-
bility per spin of a collinear AF as

χ‖ = δmax = g2μ2
B

kBT
B ′

S (y0)S + ∑
j Jij

. (132)

Using the expression for θp in Eq. (49b), one sees that this
expression for χ‖ is identical to that for the collinear AF already
derived in Eq. (82a). This is an important consistency check.

4. Solving for the in-plane susceptibility

The two simultaneous equations (118) and (130) in the two
unknowns γmax and δmax, respectively, allow one to solve for
these two unknowns, yielding

γmaxμ0

g2μ2
BH

= τ + B − A

(τ + B)(B − E) − A2
, (133a)
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δmax

g2μ2
B

= B − A − E

(τ + B)(B − E) − A2
, (133b)

where

τ = kBT

SB ′
S(y0)

(134a)

and

y0 = 3μ̄0

(S + 1)t
, A =

∑
j

Jij sin2 φji,

B =
∑

j

Jij cos2 φji, E =
∑

j

Jij cos φji . (134b)

The in-plane magnetic susceptibility components are obtained
by substituting Eqs. (133) into (104), yielding

χxy |μ
g2μ2

B

= μ0γmax

g2μ2
BH

〈sin2 φi〉

= τ + B − A

(τ + B)(B − E) − A2
〈sin2 φi〉,

χxy |μ̂
g2μ2

B

= δmax

g2μ2
B

〈cos2 φi〉

= B − E − A

(τ + B)(B − E) − A2
〈cos2 φi〉. (135)

These expressions are only valid if 〈sin2 φi〉 �= 0 and
〈cos2 φi〉 �= 0, i.e., for planar noncollinear AF structures. For
commensurate planar noncollinear AF structures in which a
hodograph of the ordered moments within a magnetic unit cell
forms a regular polygon, the averages in Eqs. (135) over one
magnetic unit cell are

〈sin2 φi〉 = 〈cos2 φi〉 = 1
2 . (136)

A magnetic unit cell that is commensurate with the underlying
spin lattice is required in order for the averages in Eq. (136)
to be exact. In practice, one can always consider the magnetic
unit cell to be commensurate for a sufficiently large magnetic
unit cell because the experimental resolution in measuring the
incommensurability is finite.

For 0 � T � TN or equivalently 0 � t � 1, substituting
Eqs. (135) and (136) into (104a) gives

χxy

g2μ2
B

= τ − E + 2B − 2A

2[(τ + B)(B − E) − A2]
. (137)

Using Eqs. (16), (49b), and (134b), one can rewrite A and E

as

A = − 3kBθp

S(S + 1)
− B,

E = − 3kBTN

S(S + 1)
.

(138)

By multiplying both sides of Eq. (137) by 3kBTN
S(S+1) and then

multiplying the numerator and denominator of the right-hand
side of Eq. (137) by [ S(S+1)

3kBTN
]2, Eq. (137) can be written as

a law of corresponding states for a given spin S in terms of
easily measured quantities, which are f = θp/TN, t = T/TN

and additional reduced variables τ ∗ and B∗, as

χxy(T )TN

C1
= 1 + τ ∗ + 2f + 4B∗

2[(τ ∗ + B∗)(1 + B∗) − (f + B∗)2]
, (139)

where

τ ∗ = S(S + 1)τ

3kBTN
= (S + 1)t

3B ′
S(y0)

, (140a)

B∗ = S(S + 1)B

3kBTN
= −

∑
j Jij cos2 φji∑
j Jij cos φji

, (140b)

y0 = 3μ̄0/[(S + 1)t] from Eq. (20) and we used Eq. (16) to
obtain the last equality. At T = TN, according to Eq. (58c) one
has τ ∗ = 1 and Eq. (139) becomes

χ (TN)TN

C1
= 1

1 − f
. (141)

This agrees with the Curie-Weiss law prediction for χ (TN) in
Eq. (82b), an important consistency check.

Using Eqs. (139) and (141), for T � TN one obtains the
ratio

χxy(T )

χ (TN)
= (1 + τ ∗ + 2f + 4B∗)(1 − f )

2[(τ ∗ + B∗)(1 + B∗) − (f + B∗)2]
. (142)

Using τ ∗(t = 0) = ∞ obtained from Eqs. (10c) and (140a),
Eq. (142) yields

χxy(T = 0)

χ (TN)
= 1 − f

2(1 + B∗)
. (143)

Substituting τ ∗(t = 1) = 1 at TN from Eq. (58c) into Eq. (142)
gives the identity

χxy(T = TN)

χ (TN)
= 1 (144)

as required, irrespective of the values of f and B∗.

VIII. GENERIC J0- Jz1- Jz2 MODEL FOR PLANAR
HELICAL AND CYCLOIDAL ANTIFERROMAGNETS

In this section we recast our results for χxy(T � TN) derived
in the previous section in terms of a minimal generic J0-Jz1-Jz2

model [9] that allows the proper helix or cycloidal helix AF
structures in Fig. 1 of Ref. [10] and Fig. 1 of Ref. [11],
respectively, to be the AF ground states. In this model, one
sums all the exchange interactions of a given magnetic moment
with other moments in the same ferromagnetically aligned
layer perpendicular to the helical or cycloidal wave vector
kz and calls that sum J0. One also sums all the exchange
interactions of a moment in a layer with all moments in one of
the two nearest-neighbor layers and calls it Jz1 and similarly
for the exchange interactions of the magnetic moment with
all the magnetic moments in one of the two next-nearest-
neighbor layers and calls it Jz2. Third-nearest-neighbor or even
further interlayer interactions are certainly possible but are not
included in this model. These net exchange interactions are
indicated in Fig. 1 of Ref. [10] and Fig. 1 of Ref. [11]. One main
purpose of synthesizing this model is to express the parameter
B∗ in Eqs. (140) in terms of physically measurable quantities.
This is the only parameter in Eq. (142) for χxy(T � TN)/χ (TN)
that we have not yet expressed this way. The second purpose
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is to synthesize a model for which the generic J0, Jz1,
and Jz2 exchange interactions can be expressed for specific
compounds in terms of specific exchange interactions between
the magnetic moments. This is a powerful generic formulation
that applies to large classes of planar noncollinear AFs.

The competing phases in this model are a FM phase,
a helical or cycloidal AF phase, and a collinear AF phase
with propagation vector (0,0, 1

2 ) r.l.u. The latter phase is an
A-type AF in which each FM-aligned layer is aligned AF with
respect to its nearest-neighbor layers. The helical and cycloidal
phases are equivalent from the point of view of the theory. For
each phase, as in the previous section, the ordered magnetic
moments are confined to a plane, which we designate as the
xy plane. This xy plane can be assigned to a particular crystal
plane in a particular compound, as appropriate.

Within the J0-Jz1-Jz2 model, the classical energy of
interaction Ei of spin Si with its neighboring spins Sj , where
all spins have the same value of S, is given by Eq. (2) with
H = 0 as

Ei = S2

2
[J0 + 2Jz1 cos(kd) + 2Jz2 cos(2kd)], (145)

where d is the interlayer distance in Fig. 1 of Ref. [10] and
Fig. 1 of Ref. [11], k is the magnitude of the wave vector of
the helix or cycloid, and φji = kd is the magnetic moment
turn angle between adjacent FM-aligned layers upon moving
along the positive helix or cycloid z axis. By minimizing Ei

with respect to kd one obtains

Jz1 sin(kd) + 4Jz2 sin(kd) cos(kd) = 0. (146)

Two solutions for kd are obtained by setting kd = 0 or π rad,
which correspond to FM and A-type AF states, respectively.
The third solution is a helical or cycloidal AF state with the
turn angle kd determined by the exchange constants as

cos(kd) = − Jz1

4Jz2
. (147)

Thus in general the helical or cycloidal wave vector is
incommensurate with the underlying crystallographic spin
lattice. However, as discussed in the preceding section, one can
always consider the wave vector to be commensurate to within
experimental resolution with a sufficiently large magnetic unit
cell.

Using Eq. (145) and the above three solutions for kd, the
corresponding classical energies of the three phases are

EFM = S2

2
(J0 + 2Jz1 + 2Jz2),

EA-type AF = S2

2
(J0 − 2Jz1 + 2Jz2),

Ehelix = S2

2

(
J0 − J 2

z1

4Jz2
− 2Jz2

)
,

(148)

where we used Eq. (147) to obtain the last equality. Note that
the net intralayer exchange coupling J0 has no effect on the
relative energies of the three phases, and hence is not relevant
to the magnetic phase diagram. For the helical or cycloidal
phase, the condition −1 � cos(kd) � 1 in Eq. (147) constrains

Jz2

Jz1
ferromagnet collinear 

antiferromagnet

helical
antiferromagnet

kd = π/3

π

π/2
2π/3

0

FIG. 9. (Color online) Classical phase diagram in the Jz1-Jz2

plane for the minimal J0-Jz1-Jz2 model. The three regions are the
ferromagnetic region, the collinear AF region with type-A ordering,
and the helical or cycloidal AF region. In the latter region, the wave
vector of the helix or cycloid times the interlayer distance d is kd ,
which is the turn angle between magnetic moments in adjacent layers
along the helix or cycloid axis. In order to obtain a helical or cycloidal
magnetic structure, the net next-nearest layer interaction must be
antiferromagnetic (Jz2 > 0).

Jz1 and Jz2 to satisfy [8,9]

Jz2 > 0, 0 � |Jz1|
4Jz2

� 1. (149)

The classical T = 0 phase diagram for the J0-Jz1-Jz2 model
determined by finding the minimum energy solutions versus
Jz1 and Jz2 in Eqs. (148) using Eqs. (149) is shown in Fig. 9.
For the helical or cycloidal phase, the nearest-layer interaction
Jz1 can be either positive (AF) or negative (FM), but the
next-nearest-neighbor interaction Jz2 must be positive (AF)
as explicitly noted in Eqs. (149).

A singular solution for the helical or cycloidal phase
occurs when Jz1 = 0, for which the turn angle between planes
would nominally be kd = π/2 rad from Eq. (147) and Fig. 9.
However, this solution physically corresponds to the presence
of two noninteracting sublattices, each of which consists
of next-nearest-neighbor magnetic moment layers that are
mutually associated with exchange interaction Jz2. Hence the
turn angle between ordered moments in adjacent layers along
the helix or cycloid axis is undefined for Jz1 = 0.

A. Alternative expressions for the variables
in the J0- Jz1- Jz2 model

The χxy(T )/χ (TN) of the planar noncollinear phase in
Eq. (142) is expressed in terms of the quantities S, μ̄0 =
μ0/μsat, t = T/TN, f ≡ θp/TN, and B∗. Usually one has
experimental values of the first four quantities, whereas B∗
as defined in Eqs. (140) is not known without knowledge of
the exchange constants, which are not directly measurable, and
of the AF structure. In the following we derive an expression
for B∗ within the J0-Jz1-Jz2 model in terms of the physically
measurable quantities f and kd. To do that, we need explicit
expressions for other variables in terms of the J0-Jz1-Jz2 model
that we now derive.
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In this model, Eqs. (49b) and (16), respectively, become

kBθp = −S(S + 1)

3
(J0 + 2Jz1 + 2Jz2), (150a)

kBTN = −S(S + 1)

3
× [J0 + 2Jz1 cos(kd) + 2Jz2 cos(2kd)]. (150b)

From these expressions, the definitions

j0 = J0

Jz2
, j1 = Jz1

Jz2
, (151a)

and the relation

j1 = −4 cos(kd) (151b)

obtained from Eq. (147), one obtains

f ≡ θp

TN
= j0 − 8 cos(kd) + 2

j0 − 4 cos2(kd) − 2
. (152)

The parameter B∗ in Eq. (142) is given by Eqs. (140) as

B∗ = −j0 + 2j1 cos2(kd) + 2 cos2(2kd)

j0 + 2j1 cos(kd) + 2 cos(2kd)
(153a)

= 2 − 8 cos2(kd)[1 + cos(kd) − cos2(kd)] + j0

2 + 4 cos2(kd) − j0
.

(153b)

By eliminating j0 in the simultaneous Eqs. (152) and (153b),
one obtains the very useful result

B∗ = 2(1 − f ) cos(kd)[1 + cos(kd)] − f, (154)

which only depends on the measurable parameters kd and f .

B. Reformulation of the in-plane magnetic susceptibility
in terms of the J0- Jz1- Jz2 model

Using Eqs. (143) and (154) we obtain the reduced in-plane
T = 0 susceptibility as

χxy(T = 0)

χ (TN)
= 1

2[1 + 2 cos(kd) + 2 cos2(kd)]
. (155)

This general result agrees with Yoshimori’s pioneering cal-
culation of χxy(T = 0)/χ (TN) in his Eq. (50) for the specific
case of the c-axis helix in β-MnO2 with the rutile structure,
assuming a specific set of exchange constants [8], and using
the substitutions θ → kd, cos θ → − cos θ, and A1/(4A2) →
− cos(kd) in his Eq. (50).

Interestingly, the reduced T = 0 in-plane susceptibility in
Eq. (155) is expressed solely in terms of the turn angle kd

where k is the magnitude of the helix or cycloid wave vector
and d is the distance between adjacent planes in the helix
or cycloid. A plot of this dependence is shown in Fig. 2(a)
of Ref. [10]. Lines of constant kd, and hence of constant
normalized zero-temperature susceptibility, are shown above
in Fig. 9. The behavior in Fig. 2(a) of Ref. [10] is unexpected
for two reasons. First, χxy(0)/χ (TN) varies nonmonotonically
with kd. Second, a peak appears in χxy(0)/χ (TN) at the unex-
pected wave vector kd = 2π/3 for which χxy(0)/χ (TN) = 1.
The latter result χxy(0) = χ (TN) suggests that for this wave

vector, χxy is independent of T for T � TN, which is confirmed
below.

When χxy(0)/χ (TN) < 1/2, Fig. 2(a) of Ref. [10] shows
that the turn angle between layers of moments along the
helix or cycloid axis is less than 90◦, which corresponds to a
dominant FM interaction between a moment and the moments
in an adjacent layer. This is because a moment in one layer
has a component in the same direction as the moment in an
adjacent layer. On the other hand, when χxy(0)/χ (TN) > 1/2,
Fig. 2(a) of Ref. [10] shows that the turn angle between layers
of moments along the helix or cycloid axis is greater than 90◦,
which corresponds to a dominant AF interaction between a
moment and the moments in an adjacent layer.

Using Eq. (154), one can express χxy(T )/χ (TN) in Eq. (142)
completely in terms of the measurable parameters S, μ̄0, t ,
f , and now kd. Plots of χxy(T ) versus T/TN obtained using
Eqs. (142) and (154) for spins S = 7/2 (Ref. [10]) and 1/2 and
various helix turn angles kd and f ratios are shown in Fig. 2(b)
of Ref. [10]. The maximum in χxy(T = 0) versus kd that
appears in Fig. 2(a) of Ref. [10] is confirmed. Furthermore, one
sees that χxy is independent of T for a turn angle kd = 2π/3
rad as suspected above.

Instead of using Eq. (154) for B∗, one can use Eq. (153a)
and set j0 = 0 to obtain an expression for χxy(T )/χ (TN) that
only depends on the parameter kd as in Eq. (155). Plots of
χxy(T )/χ (TN) versus kd for J0 = 0 are shown in Figs. 10(a)
and 10(b) for S = 7/2 and 1/2, respectively. These plots are
useful for certain compounds such as noncollinear linear chain
helical or cycloidal AFs where the interchain interactions
are negligible compared to the intrachain ones, and also for
higher-dimensional helical or cycloidal antiferromagnets such
as β-MnO2 with the rutile structure, where J3 = J0/4 ≈ 0 for
the c-axis helix has been estimated [8].

C. Noncollinear 120◦ helical or cycloidal antiferromagnets

The turn angle φji = kd = 2π/3 rad is special since we
found from the above results that

χxy(T � TN)

χ (TN)
= 1 (kd = 2π/3). (156)

To check the generality of this important and unique result,
we go back to the general expression for B∗ in Eq. (154) and
substitute cos(kd = 2π/3) = −1/2, which gives

B∗ = −f + 1

2
. (157)

Substituting this expression for B∗ into the general Eq. (142)
for χxy(T )/χ (TN) and simplifying gives Eq. (156) identically,
irrespective of the value of the spin S.

The perpendicular susceptibility in Eq. (95) also obeys
Eq. (156). Thus we predict that for AFs with a 120◦ helical
or cycloidal magnetic structure, the χ (T � TN) is isotropic
and temperature independent with the value at TN, irrespective
of the value of S. This prediction is strongly confirmed by
experimental data on single crystals of a variety of 120◦
triangular-lattice AFs [10].

For the special case of only the six nearest-neighbor
interactions J in a triangular lattice being nonzero, using
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FIG. 10. (Color online) In-plane magnetic susceptibility χxy(T )
versus temperature T for the helical or cycloidal magnetic structure
in the J0-Jz1-Jz2 model with J0 = 0 and the listed magnitudes of
the helical or cycloidal turn angle kd for spin (a) S = 7/2 and
(b) S = 1/2.

φji = kd = 120◦ one obtains from Eqs. (16) and (49b)

TN = −S(S + 1)

3kB

∑
j

Jij cos φji = S(S + 1)J

kB
,

θp = −S(S + 1)

3kB

∑
j

Jij = −2S(S + 1)J

kB
,

f = θp

TN
= −2,

TN − θp = 3S(S + 1)J

kB
. (158)

Thus from Eqs (17b), (49a), and (158) one obtains

χ⊥ = χ (TN) = C1

TN − θp
= g2μ2

B

9J
, (159)

which is independent of S.
For the classical (S → ∞) isolated triangular layer AF,

one also obtains for the ground state at T = 0 a nontrivial
isotropy in χ (T = 0) with the same value of χ (T = 0) as
we just obtained for finite spin by MFT [17,18]. In addition,
classical Monte Carlo simulations for the single triangular
layer indicated that χ is isotropic and nearly independent of
T at low T [19]. Our MFT results thus significantly extend

the previous calculations for single classical triangular lattice
layers to finite quantum spins S and long-range AF ordering
that occur in real systems.

IX. INTERNAL ENERGY, MAGNETIZATION, PHASE
DIAGRAM, AND HEAT CAPACITY OF COLLINEAR AND
PLANAR NONCOLLINEAR ANTIFERROMAGNETS IN A

HIGH PERPENDICULAR MAGNETIC FIELD

In this section a MFT calculation of the high-field mag-
netization and magnetic heat capacity with fields applied
perpendicular to the zero-field ordered moments is carried
out for generic collinear and planar noncollinear AFs con-
taining identical magnetic moments interacting by Heisenberg
exchange on the same footing. These high-field calculations
are included in this paper because as in the previous sections
we calculate the thermodynamics without the use of magnetic
sublattices and express the results as laws of corresponding
states in terms of measurable parameters.

The influence of magnetocrystalline anisotropy on χ (T ) for
both T > TN and T < TN, on TN itself, and on the high-field
M(H,T ) behaviors and H -T phase diagrams are discussed in
Refs. [20,21] for collinear and noncollinear AFs. When a high
field is applied parallel to the ordering axis of a collinear AF,
where an anisotropy field is present that is sufficiently large to
prevent a spin-flop transition from occurring, one must define
separate up and down moment sublattices because within MFT
the thermal-average magnitudes of the up and down moments
are not the same. In this paper we only consider magnetic
structures and behaviors where the concept of magnetic

Collinear Antiferromagnet

Planar Noncollinear Antiferromagnet

H = 0
H

H
H = 0

FIG. 11. (Color online) Influence on the generic magnetic struc-
ture due to a high magnetic field applied perpendicular to the ordering
axis of a collinear antiferromagnet (AF) (top panel) and to the ordering
plane of a planar noncollinear AF (bottom panel). Hodographs of the
zero-field magnetic moment vectors are shown on the left. In high
fields as shown on the right, the AF structures become canted towards
the field. The ordered moments of the collinear AF are now within
a vertical plane, whereas those of the noncollinear AF now lie on
the surface of a cone with the axis of the cone along the magnetic
field axis as shown. At a sufficiently high field H = Hc⊥ given by
Eq. (183), the moments in either case become parallel to the applied
field and each other and a second-order transition from the canted AF
to the paramagnetic (PM) state occurs at that field.
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FIG. 12. (Color online) The rotation of a representative magnetic
moment �μi out of the xy plane towards the z axis upon applying a
magnetic field H = H k̂. The orientation of �μi for H > 0 is described
by spherical coordinates θi and φi , where θi = θ is the same for all
moments. Each moment was originally in the xy plane for H = 0
with coordinates θ = 90◦ and φ = φi . The azimuthal angle φi is in
general different for different moments.

sublattices is not necessary and hence the discussion is limited
to high perpendicular fields.

The generic responses of collinear and planar noncollinear
AF structures to a high perpendicular magnetic field are
illustrated in Fig. 11. Whereas the tilted moments of a collinear
structure due to the field reside within a vertical plane including
the applied field, a hodograph of the tilted moments of a
planar noncollinear structure lie on the surface of a cone with
the magnetic field direction corresponding to the continuous
rotational axis of the cone. Both cases are treated here within
the same formalism by the use of the spherical coordinates
defined in Fig. 12, where the former AF structure is a special
case of the latter.

A. High-field magnetization perpendicular to the ordering
axis or plane at T = 0

The magnetic field is applied along the polar z axis

H = H k̂, (160)

as shown in Fig. 12. For H = 0 the ordered magnetic moments
lie in the xy plane with polar angle θ = π/2. In the presence
of a high perpendicular field, at T = 0 one has

μsat = gSμB,

φji = φj − φi,

φj = φi + φji,

�μi = μsat[sin θ (cos φi î + sin φi ĵ) + cos θ k̂], (161)

�μj = μsat[sin θ (cos φj î + sin φj ĵ) + cos θ k̂]

= μsat{sin θ [(cos φi cos φji − sin φi sin φji) î

+ (sin φi cos φji + cos φi sin φji) ĵ] + cos θ k̂},
where φi,j are the azimuthal angles of ordered moments �μi,j

with respect to the positive x axis, φji = φj − φi and at T =

0 the magnitude of each magnetic moment is the saturation
magnetic moment μsat = gSμB.

The torque on a particular moment �μi due to the exchange
field in Eq. (6) is obtained using Eqs. (161) as

�μi × Hexch i = μ2
sat

g2μ2
B

sin θ cos θ (− sin φi î + cos φi ĵ)

×
∑

j

Jij (1 − cos φji), (162)

where we have only kept terms that do not contain∑
j Jij sin φji according to Eq. (91). The torque on �μi due

to H is

�μi × H = μsatH sin θ (sin φi î − cos φi ĵ). (163)

In equilibrium, the net torque is

�τ = �μi × Hexch i + �μi × H = 0, (164)

which contains the two terms in Eqs. (162) and (163). Setting
either the x or y component of the net torque equal to zero
gives

cos θ = g2μ2
BH

μsat
∑

j Jij (1 − cos φji)
. (165)

From Eqs. (49b) and (16), one respectively obtains∑
j

Jij = − 3kB

S(S + 1)
θp, (166a)

∑
j

Jij cos φji = − 3kB

S(S + 1)
TN. (166b)

Then using Eqs. (17b), (55), and (166), Eq. (165) can be written

cos θ = χ (TN)H

μsat
. (167)

Referring to Fig. 12, the z component μz of the induced
magnetic moment of each spin is

μz = μsat cos θ. (168)

Inserting Eq. (167) into this expression gives the perpendicular
susceptibility as

χ⊥ = μz

H
= χ (TN) (T = 0, H � Hc⊥). (169)

Thus the induced magnetic moment is proportional to H until
at a critical perpendicular field Hc⊥ one obtains μz = μsat. This
critical field occurs when θ = 0 (cos θ = 1), which Eq. (167)
gives simply as

Hc⊥ = μsat

χ (TN)
(T = 0). (170)

At higher fields, μz cannot increase any further and is constant
at the saturation value μz = μsat = gSμB. Thus a second-order
phase transition occurs at T = 0 with increasing H at H =
Hc⊥ where there is a discontinuity in the slope of μz versus H

[see Fig. 14(a) below].
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B. High-field magnetization perpendicular to the ordering axis
or plane at 0 � T � TN

Because the calculation of the magnetization in a high
perpendicular field at finite temperatures 0 � T � TN within
MFT is more involved than the above calculation at T = 0,
we treat it separately in this section. At each temperature
and field, the magnitude μ(T ) of each ordered moment is the
same for all magnetic moments, because they are all equivalent
with respect to the effect of the applied field. Using Eqs. (6)
and (161), the component of the exchange field in the direction
of the central magnetic moment �μi is

Hexch i = − μ̄S

gμB

∑
j

Jij μ̂i · μ̂j

= − μ̄S

gμB

⎡
⎣cos2 θ

∑
j

Jij + sin2 θ
∑

j

Jij cos φji

⎤
⎦ ,

(171)

where we recall that φi , φj and hence φji = φj − φi are
independent of H , with only θ changing with H (see Fig. 11).
Inserting Eqs. (166) into (171) gives

Hexch i = 3μ̄kB

gμB(S + 1)
(θp cos2 θ + TN sin2 θ )

= 3μ̄kBTN

gμB(S + 1)
[1 − (1 − f ) cos2 θ ], (172)

where we have used f ≡ θp/TN according to Eq. (50).
We define the reduced magnitude of each ordered moment

as

μ̄(T ) ≡ μ(T )

μsat
, (173)

analogous to Eq. (18a) for H = 0. The value of μ̄ of each
magnetic moment versus H and T is governed by the Brillouin
function BS(y). Substituting Eq. (172) into Eq. (126) gives

μ̄ = BS

[(
gμB

kBT

)
(Hexch i + H cos θ )

]

= BS

{
3μ̄

(S + 1)t
[1 − (1 − f ) cos2 θ ] + h cos θ

t

}
, (174)

where H cos θ is the component of H in the direction of each of
the magnetic moments according to Fig. 12, the reduced field is
h ≡ gμBH/kBTN from Eq. (29), and the reduced temperature
is t ≡ T/TN according to Eq. (18b).

However, there are two unknowns, μ̄ and θ , in Eq. (174),
so we need another equation to solve for both. For that, we
set the net torque �τ on �μi to zero according to Eq. (164). The
first term in Eq. (164) is obtained from Eq. (162) with the
substitutions in Eqs. (166) and (173), yielding

�μi × Hexch i = 3μ̄2SkB

S + 1
sin θ cos θ (TN − θp)

× (− sin φi î + cos φi ĵ). (175)

The second term in Eq. (164) is obtained from Eq. (163) with
the substitution μsat → μ = μ̄gμBS, yielding

�μi × H = μ̄gμBSH sin θ (sin φi î − cos φi ĵ). (176)

Substituting Eqs. (175) and (176) into (164) gives

3μ̄kB

S + 1
(TN − θp) cos θ = gμBH. (177)

Dividing each side by kBTN gives

3μ̄ cos2 θ

(S + 1)t
(1 − f ) = h cos θ

t
. (178)

Substituting the left-hand side of Eq. (178) for h cos θ/t into
Eq. (174) yields

μ̄ = BS

[
3μ̄

(S + 1)t

]
. (179)

This expression is identical to Eq. (20) for determining μ̄0(t)
for H = 0. In other words, a perpendicular applied field has
no influence on the magnitude of the T -dependent ordered
moment, as long as the z component of the moment is less
than that magnitude at that T . This general result from MFT
is of course also valid for the special case of collinear AFs in
a perpendicular magnetic field.

From Eq. (177), one obtains

cos θ = g2μ2
BS(S + 1)H

3μkB(TN − θp)
= C1H

μ(TN − θp)
, (180)

where we have used C1 from Eq. (17b) and μ̄ = μ/(gμBS)
from Eq. (173). Then from Fig. 12 one obtains

μz = μ cos θ = g2μ2
BS(S + 1)H

3kB(TN − θp)

= C1H

TN − θp
= χ (TN)H, (181)

where we have used χ (TN) from Eq. (55a). Thus for H �
Hc⊥(T ) in MFT, the perpendicular susceptibility is

χ⊥(T ) = μz

H
= χ (TN) (T � TN, H � Hc⊥), (182)

analogous to Eq. (169) for T = 0. The χ⊥ remains constant
with increasing H at fixed T until the induced magnetic
moment μz becomes equal to the ordered moment at the
particular temperature at the perpendicular critical field Hc⊥,
where

Hc⊥(T ) = μ0(T )

χ (TN)
, (183)

which is analogous to the zero-temperature result in Eq. (170).
Above this field, the system is in the PM state with each
induced moment aligned parallel to H. This generic behavior
of the magnetization versus transverse magnetic field is of
course also found for special cases such as for the simple Néel
antiferromagnet with only nearest-neighbor interactions where
θp = −TN and f = −1.

C. Magnetic phase diagram and magnetization versus field
isotherms for magnetic fields applied perpendicular

to the ordering axis or plane

In the previous section we saw that a perpendicular field
does not affect the magnitude of the reduced ordered moment
μ̄ for H � Hc⊥ and thus μ̄ = μ̄0 where the latter is the value
in H = 0 in Eq. (20). The critical field Hc⊥ is the field at which
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FIG. 13. (Color online) Phase diagram in the magnetic field-
temperature H -T plane for magnetic fields applied perpendicular
to the ordering axis (collinear AF) or plane (planar noncollinear AF)
of a Heisenberg AF with spin S = 5. The phase boundary between
the AF and PM states is the critical field Hc⊥(T ) that was calculated
using Eqs. (20) and (186).

the induced magnetic moment μ̄z equals μ̄ at that temperature.
At that field the ordered moment is pointing in the direction
of H. From Eq. (181), on the critical field curve with μ̄z = μ̄0

one obtains

μ̄0 = (S + 1)

3(TN − θp)

gμBHc⊥
kB

= (S + 1)

3(1 − f )

gμBHc⊥
kBTN

= (S + 1)hc⊥
3(1 − f )

, (184)

where we have used the definition of μ̄0 = μ0/(gμBS) in
Eq. (18a), of f in Eq. (50), and of h in Eq. (29). Thus the
reduced critical field is given from Eq. (184) as

hc⊥(t) ≡ gμBHc⊥(t)

kBTN
= 3(1 − f )

S + 1
μ̄0(t), (185)

which demonstrates the important property that hc⊥(t) ∝
μ̄0(t). Since μ̄0(t = 0) = 1, one obtains

Hc⊥(t)

Hc⊥(0)
= μ̄0(t). (186)

The critical field divides the H -T plane into a (canted) AF
state and the PM state, as shown in Fig. 13 for S = 5. One can
invert the axes in Fig. 13 to obtain the field dependence of the
Néel temperature.

On the critical field curve with h = hc⊥, the ordered
moment has the value μ̄z = μ̄0 given in the PM state by
Eqs. (67) and (185) as

μ̄z = BS

[
3μ̄zf

(S + 1)t
+ hc⊥

t

]
(187a)

= BS

[
3μ̄z

(S + 1)t

]
(h = hc⊥). (187b)

A comparison of Eq. (187b) with Eq. (179) shows explicitly
that μz is continuous on crossing the critical line from the
canted AF state into the PM state and hence the phase transition
is second order.

To summarize, the reduced z-axis magnetic moment μ̄z

versus reduced magnetic field h in the z direction is given for
h � hc⊥ by Eq. (184) with μ̄0 replaced by μ̄z and hc⊥ replaced
by h, and for h � hc⊥ by Eq. (67), i.e.,

μ̄z = S + 1

3(1 − f )
h (h � hc⊥), (188a)

μ̄z = BS

[
3f μ̄z

(S + 1)t
+ h

t

]
(h � hc⊥), (188b)

where BS(y) is given in Eq. (10a), μ̄z(t,h) is calculated from
Eqs. (188) in the relevant field range, and hc⊥(t) is given in
Eq. (185).

The derivative (dμ̄z/dt)h for h � hc⊥ which we will need
later is calculated by taking the total derivative of Eq. (188b)
with respect to t at fixed field and solving for (dμ̄z/dt)h,
yielding (

dμ̄z

dt

)
h

= −
μ̄z + (S+1)h

3f

t
[

(S+1)t
3f B ′

S (y) − 1
] (h � hc⊥), (189a)

where

y = 3f μ̄z

(S + 1)t
+ h

t
(189b)

and B ′
S(y) is given in Eq. (11).

Equation (188b) is applicable to the entire PM region of
the (h,t) phase diagram in Fig. 13, including the part where
T > TN (t > 1), where here TN refers to TN(H = 0), and also
the part where h � hc⊥ and T < TN (t < 1). Several μ̄z versus
h isotherms calculated from Eqs. (188) are plotted in Fig. 14(a)
for 0 � t � 1. The respective differential susceptibilities
dμ̄z/dh are calculated from Eqs. (188) and (189) and plotted
versus h in Fig. 14(b). A discontinuous change in dμ̄z/dh

versus h occurs on crossing the critical curve in Fig. 13,
as emphasized in Fig. 14(b), because μ̄z ∝ h for h < hc⊥
but μ̄z(h) exhibits negative curvature for h > hc⊥ and hence
μ̄z(H ) is nonanalytic at h = hc⊥. This discontinuity in slope is
most apparent for T � TN(H = 0). Theoretical curves similar
to those in Fig. 14(a) were plotted previously as derived from
MFT [22], although the equations used were not given.

D. Magnetic internal energy and heat capacity in the PM phase
and in the AF phase with magnetic fields perpendicular

to the ordering axis or plane

Here we calculate the magnetic heat capacity Cmag(T ) for
the perpendicular field orientation and study the evolution
of Cmag(T ) with increasing field. We expect strong effects
because the TN can be driven to zero with sufficiently high
fields as illustrated in Fig. 13. From Figs. 13 and 14(b), the
discontinuity in slope of μz versus t decreases with increasing
field, so we expect the discontinuity in Cmag at TN(H ) to also
decrease with increasing field. Moreover, the PM phase at
T > TN(H ) must have a nonzero contribution to Cmag because
the induced moment is nonzero for T > TN(H ), in contrast
to the MFT prediction Cmag(T � TN) = 0 for H = 0 (zero
induced moment) in Eq. (26) and Fig. 11 of Ref. [12]. In the
following two Secs. IX D 1 and IX D 2 we derive the magnetic
heat capacity in the AF and PM regimes separately, and then
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FIG. 14. (Color online) (a) Reduced induced perpendicular mag-
netic moment μ̄z = μz/μsat versus reduced perpendicular magnetic
field h = gμBH/(kBTN) at different reduced temperatures t = T/TN

as indicated, where TN refers to TN(H = 0) and μsat = gSμB. The
ordered moments at H = 0 are in the xy plane and a perpendicular
field H is applied along the z axis as shown in Fig. 11. The spin is
arbitrarily chosen to be S = 5 and the ratio of the Weiss temperature to
the Néel temperature is assumed to be f ≡ θp/TN = −1. The curves
were calculated using Eqs. (188). The field region preceding the sharp
change in slope is the AF region, and the higher field region is the PM
region at each T . The second-order phase transition between these
two regimes defines the Néel temperature TN(H ). (b) Differential
susceptibility dμ̄z/dh versus h calculated from Eqs. (188) and (189).

in Sec. IX D 3 combine the results to obtain Cmag(T ) at fixed
H including both the AF and PM regimes.

1. Magnetic internal energy and heat capacity
of the AF-ordered phase

The Cmag(H,T ) in a perpendicular field is calculated in
MFT from the internal energy per moment Ei , which is the
same for each ordered and/or field-induced moment �μi for this
field configuration because they are all equivalent with respect
to the field as shown in Fig. 11. In Sec. IX B we determined
that μ̄i is independent of field within the AF-ordered phase and
is therefore equal to the zero-field value μ̄0. With the applied
field given in Eq. (160) and the axis notation in Fig. 12, one
obtains

Ei = Eexch i + EH, (190a)

where

Eexch i = − 1
2μ0Hexch i = − 1

2gSμBμ̄0Hexch i , (190b)

EH = −μ0H cos θ = −μzH, (190c)

μ0 = gSμBμ̄0 from Eq. (18a), μz = μ0 cos θ , we use the fact
that the magnitude μ0 of the ordered moment is the same for
each �μi , and have defined Hexch i as the component of Hexch i in
the direction of �μi as in Eq. (7). The factor of 1/2 in Eq. (190b)
arises because the exchange energy is equally shared between
each pair of interacting moments, whereas the exchange field
seen by a given moment is assumed to be due only to the
neighbors of the moment that interact with the moment with
no contribution from the moment itself.

From Figs. 7 and 11, all ordered moments have the same
angle θ with respect to the applied field, so for the general
case of a planar noncollinear AF, which of course includes the
collinear case, Hexch i is given by Eq. (172). Inserting Eq. (172)
with μ̄ = μ̄0 into (190b) yields

Eexch i = −3Sμ̄2
0kBTN

2(S + 1)
[1 − (1 − f ) cos2 θ ]. (191)

We normalize the energy by the thermal energy kBTN, yielding
the reduced exchange energy

εexch i ≡ Eexch i

kBTN
= − 3Sμ̄2

0

2(S + 1)
[1 − (1 − f ) cos2 θ ]. (192)

One can write Eq. (180) for cos θ with μ → μ0 as

cos θ = (S + 1)h

3μ̄0(1 − f )
, (193)

where f = θp/TN and h ≡ gμBH/(kBTN) is the reduced
magnetic field in Eq. (29). Substituting Eq. (193) into (192)
gives

εexch i = − 3Sμ̄2
0

2(S + 1)
+ S(S + 1)h2

6(1 − f )
. (194)

Using Eq. (160) for H, the expression for �μi in Eqs. (161), and
the definition of h, the expression μz = μ̄0gμBS cos θ , and
Eq. (193) for cos θ , the contribution of the external field to the
internal energy per moment is

EH = −μzH = −S(S + 1)kBTNh2

3(1 − f )
, (195a)

εH ≡ EH

kBTN
= −S(S + 1)h2

3(1 − f )
. (195b)

The total reduced internal energy per moment in the AF state
with a perpendicular magnetic field applied is obtained from
Eqs. (190a), (194), and (195b) as

εi ≡ Ei

kBTN
= − 3Sμ̄2

0

2(S + 1)
− S(S + 1)h2

6(1 − f )
(h � hc⊥), (196)

where the reduced critical field hc⊥ is given in Eq. (185), which
defines the field boundary between the AF and PM phases.

The magnetic heat capacity per magnetic moment Cmag

versus temperature at constant perpendicular field is obtained
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from Eq. (196) using t ≡ T/TN from Eq. (18b) as

Cmag

kB
=

(
dεi(t)

dt

)
h

= − 3S

(S + 1)
μ̄0(t)

dμ̄0(t)

dt
(h � hc⊥).

(197a)

Substituting Eq. (21) for dμ̄0(t)/dt into (197a) gives Cmag in
the (canted) AF phase as

Cmag

kB
= 3Sμ̄2

0(t)

(S + 1)t
[ (S+1)t

3B ′
S (y0) − 1

] (h � hc⊥). (197b)

Here μ̄0(t) is calculated by numerically solving Eq. (20), the
derivative B ′

S(y) is given in Eq. (11), and hc⊥ is given in
Eq. (185). Equation (197b) is identical to Eq. (26) for H =
0, except that we have now shown that it is also valid for
perpendicular magnetic fields less than the t-dependent hc⊥.
Equation (197b) is valid in the magnetically ordered state of
any collinear or planar noncollinear Heisenberg AF containing
identical crystallographically equivalent spins. At higher fields
h � hc⊥, the Cmag in the PM state derived in the following
section must be used in place of Eq. (197b).

2. Magnetic internal energy and heat capacity
of the paramagnetic phase

In the PM state all magnetic moments μz are field
induced, have the same magnitude, and are all in the same
(perpendicular) direction of the applied field H. Equation (48)
gives the exchange field seen by each induced moment in the
PM state as

Hexch i = −Sμ̄z(t)

gμB

∑
j

Jij , (198a)

where we used the definition μ̄z ≡ μz/μsat = μz/(gSμB) as
in Eq. (18a). Inserting the expression for the sum given in
Eq. (166a) yields

Hexch i = 3μ̄z(t)kBθp

gμB(S + 1)
. (198b)

Then using Eq. (190b) with μ̄0 → μ̄z one obtains the exchange
energy as

Eexch i = −3Sμ̄2
z(t)kBθp

2(S + 1)
. (199a)

From the definition of the reduced exchange energy as in
Eq. (192) one obtains

εexch i = −3μ̄2
z(t)f S

2(S + 1)
, (199b)

where we used the definition f ≡ θp/TN from Eq. (50). The
part of the internal magnetic energy per moment due to the
applied magnetic field is given by Eq. (190c), which we write
in terms of reduced variables as

εH = −Shμ̄z(t). (200)

The total reduced internal magnetic energy per spin in the PM
phase from Eqs. (199b) and (200) is

εi = − 3f S

S + 1

[
μ̄2

z(t)

2
+ (S + 1)hμ̄z(t)

3f

]
. (201)

The Cmag per spin at fixed field is then given by the first equality
in Eq. (197a) as

Cmag

kB
= − 3f S

S + 1

[
μ̄z(t) + (S + 1)h

3f

]
dμ̄z(t)

dt

∣∣∣
h

(h � hc⊥).

(202a)

Substituting dμ̄z/dt from Eq. (189a) into (202a) yields the
Cmag per spin in the PM phase as

Cmag

kB
=

3f S
[
μ̄z(t) + (S+1)h

3f

]2

(S + 1)t
[ (S+1)t

3f B ′
S (y) − 1

] (h � hc⊥), (202b)

where y is given in Eq. (189b), B ′
S(y) is given in Eq. (11),

μ̄z(t) is obtained by numerically solving Eq. (67), and hc⊥ is
given in Eq. (185).

3. Magnetic heat capacity and entropy of the combined
antiferromagnetic and paramagnetic phases

Plots of Cmag versus T for f = −1 and spin S = 7/2
obtained for the AF and PM temperature and field regions using
Eqs. (197b) and (202b), respectively, are shown in Fig. 15(a)
for values of h given by h/hc⊥(t = 0) = 0, 0.5, 0.75, 0.9,
and 1, where

hc⊥(t = 0) = 3(1 − f )

S + 1
(203)

using Eq. (185) with μ̄0(t = 0) = 1. One sees that a jump in
Cmag(t) is present at each tN(h) as given above in Fig. 13, but
the size of the jump decreases as TN(H )/TN(H = 0) decreases
and disappears when h = hc⊥(t = 0). This behavior of the
heat capacity jump with field is reflected in the variation in the
discontinuity in slope at T = TN(H ) in plots of μ̄z versus h

for various t in Fig. 14.
Plots of Cmag/t versus t obtained from the data in Fig. 15(a)

are shown in Fig. 15(b). The magnetic entropy Smag(t) is
obtained by integrating the data in Fig. 15(b) versus t according
to

Smag(t)

kB
=

∫ t

0

Cmag(t)

kBt
dt, (204)

and the results are shown in Fig. 15(c). Interestingly, the Smag

versus t plots at different h are similar in shape to the μz versus
h plots in Fig. 14(a) at different t . In the limit of high t the
entropy for fixed spin S and all values of h must be the same
value Smag(T → ∞) = kB ln(2S + 1) = kB ln(8), as indicated
in Fig. 15(c). However, the approach to this asymptotic value
with increasing t is very slow in the PM phase, especially
when H is large, because the field tends to align the moments
in the direction of H that reduces the magnetic entropy, which
competes with temperature-induced disorder. For example,
when h is sufficiently high to destroy the AF state completely
at h = hc⊥(t = 0) in Fig. 15(c), the integral in Eq. (204)
must be extended for spin S = 7/2 and f = −1 up to t ≡
T/TN ≈ 20 in order for Smag to reach 99.5% of its high-T
asymptotic value per moment of kB ln(8). Because the PM
part of Cmag grows strongly with increasing h for temperatures
T > TN(H ) and is distributed over a large T range, it may
be difficult to experimentally separate this PM contribution
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FIG. 15. (Color online) (a) Magnetic heat capacity Cmag, (b)
Cmag/T , and (c) magnetic entropy Smag versus temperature T for
a spin S = 7/2 Heisenberg antiferromagnet with f = −1 for various
magnetic fields H normalized by the critical field Hc⊥(T = 0). The
discontinuities in the respective figures versus temperature separate
the low-T and/or low-H AF regime from the high-T and/or high-H
PM regime. The curves in (a) and (b) were obtained using Eq. (197b)
for the AF regime and Eq. (202b) for the PM regime and the curves
in (c) were obtained using Eq. (204).

from the phonon contribution in heat capacity measurements of
AF materials.

X. DISCUSSION

In a system of noninteracting spins S with z component of
the magnetic moment μz = −gmSμB, an applied magnetic
field H = H k̂ lifts the degeneracy of the 2S + 1 Zeeman

levels labeled by the spin magnetic quantum number mS =
−S,−S + 1, . . . ,S and splits them in energy according to E =
−μzH = gmSμBH , where the mS = −S state lies lowest in
energy. Within the Weiss MFT, the molecular field (exchange
field Hexch) in the ordered state of a system of interacting
spins in zero applied field is assumed to act like a uniform
applied field in a FM or a staggered field in an AF. This
exchange field therefore results in the same splitting of the
Zeeman levels of a magnetic moment in a FM or AF as happens
due to a uniform field applied to a system of noninteracting
spins. Thus in the ordered state of a FM or AF there is an
energy gap between the ground state and the first excited
state given by Egap = gμBHexch even in zero applied field.
According to Eq. (17a), the exchange field is proportional to
the ordered moment, the T dependence of which is shown in
Fig. 3. This energy gap grows monotonically with decreasing
T and approaches a constant value for T → 0. Thus all
thermodynamic properties of the system approach their T = 0
values exponentially with decreasing temperature, including
Cmag and χ along the easy axis (collinear AFs) or plane (planar
noncollinear AFs).

However, many spin systems do not show such activated
behaviors in the ordered state for T → 0, and this is a failure
of the MFT. Instead, FMs and AFs often show power-law
behaviors in these properties at low T . The reason for this
failure is that MFT does not take into account magnetic
excitations associated with tilting of the individual magnetic
moment directions. These excitations are propagating spin
waves with a linear dispersion relation ω = vk for AFs where
v is the spin-wave velocity, ω is the spin-wave angular
frequency, and k is the magnitude of the wave vector, or
ω = Ak2 for FMs where A is a constant. These dispersion
relations give rise to T 3/2 and T 3 contributions to Cmag at
temperatures low compared to the transition temperature of
three-dimensional (3D) ferromagnets and antiferromagnets,
respectively [7,23–25]. On the other hand, MFT can predict
Cmag over the entire T range below the magnetic ordering
temperature, in contrast to spin-wave theory that is useful only
at temperatures much lower than the ordering temperature.

Whereas spin-wave theory can produce more accurate
predictions for the magnetic and thermal properties of Heisen-
berg spin systems than MFT for temperatures much lower
than the magnetic ordering temperature, quantum mechanical
high-temperature series expansions (HTSEs) of χ and Cmag

of Heisenberg AFs in powers of 1/T yield predictions more
accurate than MFT in the high-T region above the magnetic
ordering temperature. For example, the first two terms in the
HTSE for χ give the Curie-Weiss law. Subsequent terms give
corrections to this behavior that become more important as
T decreases. The minimum T at which accurate descriptions
of the magnetic and thermal properties are obtained using
HTSEs decreases with increasing number of terms in the
HTSE. Depending on the spin lattice, the spin-lattice dimen-
sionality, and the value of S, such HTSEs typically contain
∼10–20 terms.

The MFT prediction in Eq. (16) for the magnetic transition
temperature does not take into account quantum fluctuations
associated with a low dimensionality of the spin lattice,
because the same formula applies to all spin lattices irre-
spective of their dimensionality. The Mermin-Wagner theorem
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states that long-range magnetic order cannot occur at a finite
temperature in 1D or 2D Heisenberg spin lattices [26]. Perhaps
surprisingly, this theorem does not rule out long-range AF
order at T = 0 in 2D, which is actually predicted to occur
in the 2D S = 1/2 square lattice Heisenberg AF [27]. Of
course, from theory and experiment such long-range ordering
does occur in 3D spin lattices. This suppression of magnetic
ordering in low-dimensional spin lattices arising from quantum
fluctuations is related to the reduction in the number of nearest
neighbors of a given spin as the dimensionality of the spin
lattice decreases.

The Weiss MFT predicts that the ordered moment at T = 0
in the magnetically ordered state of a FM or AF in H = 0 is
equal to the saturation moment: μ0(T = 0) = gSμB. Another
manifestation of quantum fluctuations is a reduction in this
T = 0 ordered moment that becomes increasingly pronounced
as the effective dimensionality of the spin lattice and/or

the spin S decrease. For example, in La2CuO4 containing
spins-1/2 on a square lattice, the ordered moment at T → 0
is found experimentally and theoretically to be suppressed
by about 30% compared to the MFT prediction μ0(T =
0) = 1μB/Cu assuming a spectroscopic splitting factor
g = 2 [27].
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