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Nonlinear ferromagnetic resonance shift in submicron Permalloy ellipses
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We report a systematic study of nonlinearity in the ferromagnetic resonance of a series of submicron Permalloy
ellipses with varying aspect ratios. At high excitation powers, the resonances are found to shift to higher or lower
applied field. We focus here on the sign of the shift and its dependence on the applied field and shape-induced
anisotropy of the ellipses. Using ferromagnetic resonance force microscopy, we find that the measured nonlinear
coefficient changes sign as a function of anisotropy field and applied field in qualitative agreement with a
macrospin analysis. This macrospin analysis also points to origins of the nonlinearity in a combination of
hard-axis in-plane anisotropy and precession ellipticity. In comparison of the macrospin predictions with both
experimental and micromagnetic modeling results, we measure/model values of the nonlinear coefficient that are
more positive than predicted by the macrospin model. The results are useful in understanding nonlinear physics
in nanomagnets and applications of spin-torque oscillators.
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From the basic phenomena of hysteresis and switching
to the development of modern magnetic memory chips, the
nonlinear behavior of ferromagnetism has been a key property
that makes magnets useful. Even in conceptually simple
experiments involving only a magnet, a static magnetic field,
and a relatively small transverse oscillating field to drive
dynamics, there is a long and rich history of nonlinear magnetic
phenomena [1–3] that includes premature saturation of mag-
netic resonance, spin wave instabilities [4], auto-oscillations
[5], chaos, solitons, and even Bose-Einstein condensation of
excited magnons [6].

Perhaps the simplest nonlinear effect is a dependence of the
free oscillation frequency ω0 on the oscillation amplitude:

ω0 = ωlin
0 + N |c|2, (1)

were c is a dynamical variable describing the amplitude and
phase of the oscillator, ωlin

0 is the low-amplitude resonance
frequency, and N is the nonlinear frequency shift coefficient.
This change in resonant frequency with amplitude leads
to a foldover phenomenon where the frequency response
of a resonator changes from a symmetric Lorentzian peak
at low excitation to an asymmetric peak shape at high
excitation, possibly also exhibiting instabilities. The foldover
phenomenon is quite general, and it has been studied in systems
ranging from pendulums to on-chip optical resonators.

In this study we focus on the sign of the nonlinear
coefficient of the ferromagnetic resonance in submicron mag-
netic structures where the strong confinement creates discrete
spectra of standing spin wave modes. The power dependent
ferromagnetic resonance is illustrated in Fig. 1 where the
resonance response of a submicron ellipse is plotted for several
values of pumping intensity and for two values of pumping
frequency. For low excitation power, both resonance curves
are nearly symmetric. However, at higher excitation powers,

*feng.guo@cornell.edu
†robert.mcmichael@nist.gov

the resonance curves “lean” in opposite directions, indicating
that the nonlinear coefficient changes sign. In earlier works,
positive [7–10] and negative [10,11] values for the nonlinear
coefficient in ferromagnetic resonance have been reported in a
variety of experimental configurations. The changing sign of
the nonlinear coefficient has been theoretically explained by
Slavin and Tiberkevich using a classical Hamiltonian approach
for the dynamics of a macrospin [12,13]. Using a Holstein-
Primakoff transformation and a Bogoluibov transformation,
the dynamics of the macrospin is described by a pair of
canonical variables through the Hamiltonian formalism. A
key feature of their result is that the nonlinear coefficient
can change sign with increasing applied field when the
magnetization is directed along an anisotropy hard axis.

In this paper we confirm both via experiment and via
micromagnetic modeling that the nonlinear coefficient changes
sign with both the applied field and also the effective
shape anisotropy of the nanostructure. We provide a simple
derivation of the nonlinear coefficient, and we show the
nonlinear resonance shift is determined by a combination of
the anisotropy fields and the applied field through the ellipticity
of the precession orbit. Finally, we discuss an additional
significant resonance shift due to the nonuniformity of the
precession mode in confined structures.

The samples used in this study have a trilayer structure of
Ta (5 nm)/Ni80Fe20 (25 nm)/Ta (5 nm). They are patterned
into elliptical shapes using e-beam lithography, e-beam evap-
oration, and a lift-off process. The samples are deposited
on a 150 nm thick and 2 μm wide gold waveguide which
generates the microwave-frequency pumping field for the
resonance measurements. The ellipses are made with in-plane
length/width aspect ratios (AR) ranging from 0.5 to 2.0,
designed to have areas equivalent to a 500 nm diameter disk.

The spectra are measured using ferromagnetic resonance
force microscopy (FMRFM) [14–20], which has a number
of advantages for these measurements. First, FMRFM has
the ability to measure single structures. By measuring a
single structure, we avoid ensemble averaging and we avoid
inhomogeneous broadening of the resonances, which would
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FIG. 1. (Color online) Power dependent resonance spectra mea-
sured with a 560 nm × 450 nm elliptical sample with an aspect
ratio of 1.25 and with microwave frequencies of (a) 9 GHz and
(b) 12 GHz. The static field is applied in-plane along the long axis
and the microwave field is in-plane, perpendicular to the static field.

obscure the small resonance shifts. Also, because electrical
contacts are not needed, sample fabrication is simplified, and
our measurement focus is easily moved between structures.

In our FMRFM measurements, samples are magnetized
in-plane and a nearby cantilever with a 200 nm diameter
cobalt probe tip [21] deflects in response to magnetostatic
forces between the tip and sample. Precession in the sample is
excited by an in-plane microwave driving field via a coplanar
waveguide. In the absence of heating, the magnetization vector
magnitude remains unchanged in these experiments, so when
the precession is large, tip-sample forces are reduced as the
time-averaged magnetization is slightly diminished. For maxi-
mum cantilever sensitivity, we modulate the microwave power
(and therefore also the tip-sample forces) at the mechanical
resonance frequency of the cantilever. Unfortunately, power
modulation prevents us from observing bistable foldover
effects, but in this work we focus only on the initial indications
of nonlinearity.

Microwave power levels in this paper are given in decibels
relative to 1 mW (i.e., in dBm) measured at the output of our
signal generator. The microwave power levels at the sample
are uncalibrated, but transmission to the sample is known to
be both lossy and frequency dependent.

First we demonstrate the power dependent resonance
shift. Figure 1(a) shows the spectra measured under various
microwave powers with a fixed frequency of 9 GHz. At low
powers (less than 12 dB), the resonance shows a Lorentzian
peak at 93.5 mT. As the power increases the resonance
becomes nonlinear: the resonance peak is no longer symmet-
ric and leans towards low-field direction. Furthermore, the
resonance field depends on the microwave power. At 9 GHz,
the resonance field shifts toward low-field direction (Hres =
92.7 mT at 14 dB). Similiar power dependent behaviors are
observed at 12 GHz, as shown in Fig. 1(b). Asymmetric
spectra at high powers indicate nonlinear response. However,
in contrast to the 9 GHz spectra, the nonlinear coefficient has
a different sign: the resonance field of the 12 GHz spectra
increases with power. The power dependent resonance field
measurement was repeated from 7 GHz (Hres = 54.5 mT) to
13 GHz (Hres = 191.5 mT). In the nonlinear regime we found

that the resonance shifts toward low field when f � 9 GHz
(Hres � 92.8 mT), while the resonance shifts toward high field
when f � 11 GHz (Hres � 139.2 mT).

Consistent with Eq. (1), we define positive values of the
nonlinear frequency coefficient for resonances peaks that
“foldover,” leaning toward low fields and negative values for
resonance peaks that lean toward high fields. If this defini-
tion seems counterintuitive, note that an increased intrinsic
resonance frequency will require a lower applied field to be
in resonance. We point out that the field dependence of the
nonlinear coefficient shown in Fig. 1 is true for all the samples
measured: the nonlinear coefficient is positive (negative) at
low (high) fields.

The nonlinear coefficient of a macrospin can be obtained
via either a classical Hamiltonian formalism [12,13] or the
equation of motion approach. To build in intuition, we derive
the nonlinear coefficient directly from the equation of motion
which allows us to easily describe the mechanisms of the
nonlinearity. We begin with a free energy expression for the
macrospin:

E

μ0
= −MzHappl + H1

2Ms
M2

x + H2

2Ms
M2

y , (2)

where μ0 is the permeability of vacuum and Happl is the ex-
ternal field applied along the z direction. Effective anisotropy
fields H1 and H2 include the effects of magnetostatic interac-
tions and exchange. We take the film normal to be parallel to
the y direction, so H2 will be large and positive, owing to the
thin film character of our samples. The in-plane anisotropy H1

due to the lithographically defined shapes, will generally be
much smaller.

We start with the Landau-Lifshitz equations of motion
neglecting the damping dM/dt = −μ0γ M × Heff (γ is the
gyromagnetic ratio), and convert it to the spherical coordinates
with Mx = Ms sin θ cos φ, My = Ms sin θ sin φ, and Mz =
Ms cos θ , where θ is the polar angle and φ is the azimuthal
angle. In the spherical coordinate system, the equation of
motion for the azimuthal angle is

dφ

dt
= γ

Ms sin θ

∂E

∂θ
. (3)

To lowest order in the precession cone angle θ ,

dφ

dt
= μ0γ (Happl + H1 cos2 φ + H2 sin2 φ)

− μ0γ θ2

2
(H1 cos2 φ + H2 sin2 φ). (4)

In this expression the second term explicitly describes the
nonlinearity that comes from expansion of E(θ,φ) around the
energy minimum to include nonquadratic terms.

The conservation of energy during precession dictates the
relationship between θ and φ. For an energy E = E0 + �E

slightly above the energy minimum E0 = −μ0MsHappl,

θ2 = 2�E

μ0Ms
(Happl + H1 cos2 φ + H2 sin2 φ)−1. (5)
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The precession period T is found by inverting and integrat-
ing (4). Keeping only lowest-order terms in θ , we get

T = 1

μ0γ

∫ 2π

0

dφ

Happl + H1 cos2 φ + H2 sin2 φ

+ �E

μ2
0γMs

∫ 2π

0

dφ(H1 cos2 φ + H2 sin2 φ)

(Happl + H1 cos2 φ + H2 sin2 φ)3

+ · · · . (6)

The integrals in Eq. (6) can be performed, and after inverting
the period we obtain the angular precession frequency ω =
ω0 + �ω, where

ω0 = μ0γ
√

(Happl + H1)(Happl + H2) (7)

is the linear frequency for small precession amplitudes, and

�ω = −μ3
0γ

4�E

2Msω
3
0

[
(H1 + H2)

(
ω0

μ0γ

)2

− 3

4
Happl(H1 − H2)2

]
(8)

is the nonlinear frequency shift. Equation (8) presents a
result consistent with the analysis developed by Slavin and
Tiberkevich [12]. We point out that the macrospin analysis
yields a general result that only depends on the strength of the
anisotropy fields and the applied field, rather than the particular
origins of the anisotropy.

For many thin-film sample shapes, H2 is large and positive,
and it would seem from (4) that the nonlinear term would
generally tend to slow precession, i.e., the nonlinear coefficient
should be negative. If both H1 and H2 are positive, as when
the magnetization aligns along easy axis, the right-hand side
of (4) is positive, so the precession slows down and �ω < 0.

However, when the magnetization lies in the in-plane hard-
axis direction, H1 < 0 and H2 > 0, and the in-plane and out-
of-plane anisotropy terms have oppositely signed contributions
to the nonlinearity. Although |H2| > |H1|, the H2 term is not
necessarily dominant because the ellipticity of the precession
results in unequal sampling of H1 and H2. At low fields, the
precession orbit is highly elliptical. The precession amplitude
in the x direction is much larger than that in the y direction, thus
the H1 term is more important in determining the nonlinearity
and �ω > 0. However, at higher fields, the precession orbit
becomes more circular which means H1 and H2 are sampled
more equally. The H2 term quickly becomes dominant and
�ω < 0.

The boundary between positive and negative nonlinearity
predicted by (8) is plotted in Fig. 2(c) in terms of the in-plane
anisotropy field and applied field. It is clear from this plot
that the nonlinear coefficient is expected to change sign as a
function of Happl when H1 is negative.

So far we have considered only nonlinear mechanisms
that arise from precession dynamics, but thermal mechanisms
may also drive nonlinear effects. Here we briefly consider a
macrospin model for thermal nonlinearity.

Additional microwave power that is absorbed and dissipated
at resonance can be expected to produce a temperature rise δT

along with reductions in both the saturation magnetization
δMs = (dMs/dT )δT and also similarly in the exchange

FIG. 2. (Color online) Calculated precession orbits projected in
the x-y plane with an applied field of (a) Happl/H2 = 0.10 and
(b) Happl/H2 = 0.49. For both (a) and (b), H1/H2 = −0.07. Different
trajectories correspond to θx = 1◦, 2◦, 3◦, 4◦, and 5◦, where θx is the
polar angle as the magnetization sweeps through the x-z plane, i.e.,
θx = sin−1(Mmax

x /Ms). (c) Zero nonlinear coefficient curves predicted
by the macrospin model Eq. (8) (solid line) and thermal nonlinearity
Eq. (11) (dashed line).

stiffness A. To estimate the behavior of the thermal nonlinear-
ity, we recast (7) in terms of shape anisotropies and exchange
fields:

H1 = (Nx − Nz)Ms + Hex, (9)

H2 = (Ny − Nz)Ms + Hex, (10)

where Nx , Ny , and Nz are effective shape demagnetization
factors and Hex ∝ 2A/Ms. We relate thermal changes Hex to
changes in Ms by assuming that the magnetization and the
exchange stiffness follow a scaling relation A ∝ M

β
s . Using

these assumptions, we find the zero-nonlinearity boundary
between thermally induced magnetization shifts by asserting
that a small change in Ms will produce no shift in the resonant
frequency, Eq. (7). Taking the derivative of (7) with respect to
Ms and setting the result to zero yields the estimated boundary
between positive and negative frequency shift by a thermal
mechanism:

H1

H2
= −

Happl

H2

[
1 + 2(β − 2)Hex

H2

]
+ (β − 2)Hex

H2

2 + Happl

H2
+ (β − 2)Hex

H2

. (11)

Note that if the exchange stiffness scales as the square of
the magnetization (β = 2), as is often assumed, the exchange
fields do not play a role. The boundary given by (11) is plotted
for β = 2 as a dashed line in Fig. 2(c). Although the thermal
mechanism and the dynamic mechanism both exhibit the same
overall trend, i.e., changing from positive to negative with
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FIG. 3. (Color online) Frequency as a function of applied field
measured in linear regime for elliptical samples with various aspect
ratios. The microwave power here is typically one order of magnitude
less than in the nonlinear measurements (e.g., Fig. 1). The symbols
represent experimental data and the solid lines are the fits using the
Kittel equation. The insets are the AFM images using the same 200 nm
probe.

increasing applied field, the zero-crossing condition is quite
different for the two mechanisms.

We now present our measurements of the sign of the non-
linear coefficient as a function of applied field and anisotropy
field. We utilize the shape anisotropy to vary the in-plane
anisotropy field. A series of seven elliptical samples with the
same area but different aspect ratios (AR) are fabricated for
this experiment.

In order to characterize the anisotropy fields of these
samples, FMR resonances are first measured at low microwave
powers as shown in Fig. 3. For each sample, the FMR curve
is fitted using the Kittel equation, Eq. (7), with two fitting
parameters H1, the in-plane anisotropy field (or the saturation
field), and H2, the out of plane anisotropy field. The best-fit
values of H1 and H2 are listed in Table I. The measured
in-plane anisotropy field changes systematically with AR as
expected. For AR < 1, the magnetization points along the
hard axis corresponding to a negative H1; while for AR > 1,

H1 becomes positive. The out-of-plane anisotropy field H2 is
dominated by the shape anisotropy of these planar structures
and it is only weakly dependent on aspect ratio.

Next, we measure the nonlinear change in the resonance
line shape, as in Fig. 1, for each sample at various applied
fields. Because we do not know the amplitude of precession,
it was only experimentally feasible to determine the sign of
the nonlinear coefficient. The spectra were fit to a modified
Lorentzian function,

L(Happl) = a

[Happl − H0 + N ′L(Happl)]2/�H 2 + 1

+ c(Happl − H0) + d, (12)

where the small-amplitude resonance field H0, signal ampli-
tude a, nonlinear coeffiecient N ′, background slope c, and
background offset d are all fitting parameters. The sign of N ′ is
plotted in Fig. 4(a). The horizontal rows of points correspond to
measurements made on single ellipses at different frequencies
and resonance fields.

The sign change for the nonlinear coefficient is observed for
all seven samples measured, and the nonlinear coefficient tends
to be positive at lower fields and it becomes negative at high
fields. The nonlinear coefficient is also sensitive to the in-plane
anisotropy field. For a given applied field, the nonlinear
coefficient decreases with increasing H1. The trend of field
dependence on the nonlinear coefficient is consistent with the
prediction from the macrospin model previously discussed.
However, the measured nonlinear coefficient appears to be
more positive than that predicted. In other words, the measured
zero nonlinear coefficients occur at higher fields than the
prediction.

OOMMF [22] micromagnetic modeling is also performed
to investigate the nonlinear resonance shift. Modeled sample
geometries correspond to the designed dimensions of the
experimental samples. Material parameters were chosen to
mimic Permalloy: Ms = 800 kA/m and exchange stiffness
A = 13 pJ/m, yielding an intrinsic exchange length of
5.69 nm. Cell sizes of both 3 nm × 3 nm × 25 nm and 6 nm ×
6 nm × 25 nm were used and no appreciable differences were
encountered in the results. Edge corrections were used to
mitigate the effects of a the square computational grid [23].
Thermal effects were not modeled.

The computational experiments follow closely the lab-
oratory measurements and analysis methods. An efficient

TABLE I. Measured and modeled values of in-plane anisotropy field H1 and effective out-of-plane anisotropy H2 for the elliptical samples.
The values were determined by fitting low power resonance fields to the Kittel FMR equation, Eq. (7). Uncertainties are the standard deviations
of the fit parameters.

Measurement Modeling

Sample μ0H1 (mT) μ0H2 (mT) μ0H1 (mT) μ0H2 (mT)

AR = 0.5 −31.3 ± 0.4 853 ± 4 −44.9 ± 0.2 909 ± 2
AR = 0.625 −19.6 ± 0.2 877 ± 2 −30.5 ± 0.2 910 ± 2
AR = 0.8 −10.2 ± 0.2 870 ± 2 −14.5 ± 0.2 902 ± 1
AR = 1 3.2 ± 0.2 867 ± 2 0.3 ± 0.1 908.4 ± 0.6
AR = 1.25 14.8 ± 0.3 870 ± 2 15.15 ± 0.06 903.5 ± 0.3
AR = 1.6 27.9 ± 0.1 861 ± 1 30.80 ± 0.04 901.3 ± 0.2
AR = 2 36.6 ± 0.3 862 ± 2 46.19 ± 0.05 897.5 ± 0.2
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FIG. 4. (Color online) Measured (a) and modeled (b) sign of nonlinear coefficient as a function of normalized in-plane anisotropy field
(H1/H2) and applied field (Happl/H2). The aspect ratios are labeled for each sample, corresponding to a given anisotropy obtained from
ferromagnetic resonance measurements. The “near zero” open circles indicate that the fit value of N ′ was smaller than its standard deviation.
The solid lines in (a) and (b) are the condition for zero nonlinearity predicted by the macrospin model. The dotted lines are the zero nonlinearity
curves from the macrospin model including the effect of nonuniform magnetization. (c) Modeled precession amplitude profiles (|�Mz|) of the
main mode for the cases where the field is parallel (top, AR = 2) and perpendicular (bottom, AR = 0.5) to the long axis of the ellipses. The
contour lines mark where |�Mz| is half of its maximum value.

pulse-response method was used to calculate the low-power
resonances [24], which were fit to obtain values of the in-plane
and out-of-plane anisotropy fields H1 and H2, respectively. Re-
sults are listed in Table I. For model particles that approximate
the size and shape of the experimental structures, the model
yields a slightly broader range of H1 values and slightly larger
values of H2 than the measurements.

The high-power response was then determined by sub-
jecting the modeling “sample” to an oscillating microwave
field with different combinations of microwave frequency,
microwave power, and static applied field. After integrating
the equations of motion over 10 ns, a limit cycle was
approached and the magnetization was time averaged over
5 ns to determine the quasistatic magnetization reduction. To
trace out each simulated FMRFM response curve, this process
was repeated for different applied fields and the results were
fit in the same way as the measured curves.

The model results are shown in Fig. 4(b). In the measured
and modeled results, a few of the points appear to be missing.
These points correspond to situations where more complex line
shapes were observed, presumably due to nonlinear excitation
of multiple modes. In agreement with the experimental results,
the modeling yields a similar dependence of H1 and Happl.
More importantly, we point out that the micromagnetic
modeling also exhibits an offset in the nonlinear coefficient
compared to the macrospin result. With a given H1, the
modeled applied field for zero nonlinearity is higher than that
predicted by the macrospin theory, Eq. (8).

We now propose a possible origin of the difference
between the macrospin prediction of the zero nonlinearity
condition and the experimental and micromagnetic results.
The offset in the measured nonlinear coefficient can be
understood as a nonlinear magnetostatic mechanism arising
from the nonuniformity of the precession in the excited mode.
FMR precession modes in the confined structures are highly
nonuniform, as exemplified in Fig. 4(c). Thus, the time-average
static magnetization 〈Mz〉 is also nonuniform. For example,

the dark regions at the edges in Fig. 4(c) represent zero
precession where 〈Mz〉 ≈ Ms and in the bright regions near the
structure center the precession amplitude reaches maximum
with reduced 〈Mz〉 < Ms .

As a consequence, the spatial variation of 〈Mz〉 results in
an additional demagnetizing field �Hd , with a component
parallel to the applied field and a spatial dependence that
is related to the precession pattern of the excited mode.
This additional demagnetizing field is the change in the
demagnetizing field due to the precession-induced change in
the quasistatic magnetization �Mz(�r ′):

�Hd (�r) = − 1

4π

∫
d3 �r ′ d

dz′ 〈�Mz(�r ′)〉 �r − �r ′

|�r − �r ′|3 . (13)

With zero precession amplitude, 〈�Mz〉 is zero and hence
�Hd = 0, but �Hd grows with increasing precession am-
plitude. Since �Hd is roughly aligned with Happl, a lower
applied field is required to reach the resonance at a higher
microwave power. This explains why the resonance field tends
to foldover toward low field direction for our nanostructures,
or equivalently, why the nonlinear coefficient measured in the
nanostructures tends to be more positive than that predicted by
the macrospin.

In Eq. (13) we have related a dynamics-induced change
in the magnetization to a change in the magnetostatic field.
We therefore define a nonlinear, mode dependent shift in the
demagnetization parameter,

�Nz = −
∫

d�r�Hd (�r)∫
d�r〈�Mz(�r)〉 . (14)

For nonlinear effects, the nonuniformity essentially shifts the
in-plane anisotropy field H1 by �H1 = −�NzMs , or, since
H2 	 H1,

�H1

H2
≈ −�Nz. (15)
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We use the modeled precession mode profile of AR = 0.5
sample in Fig. 4(c) (bottom) to calculate �Hd , and we compute
�H1/H2 ≈ 0.04. The dotted lines in Fig. 4 include the
estimation of magnetization nonuniformity effect. They show
good agreement with the experimental and micromagnetic
results.

In a separate study, the influence of the shape confinement
on the nonlinear coefficient is also investigated in perpendic-
ularly magnetized structures. de Loubens and colleagues have
experimentally studied the out-of-plane magnetized disks, and
they found the nonuniform magnetization also significantly
enhances the nonlinear coefficient in that configuration [25].
At much higher driving fields where the nonlinear frequency
shifts are on the order of 1 GHz, hybridization of the normal
modes has been observed with qualitative changes in the mode
profiles [26].

In conclusion, we have shown the nonlinear resonance
shift in patterned nanostructures. The measured nonlinear
coefficient can be either positive or negative depending on the
applied field and the anisotropy fields. A classical macrospin

approach has been used to demonstrate the sign of the
nonlinear coefficient is determined by the field configuration
(Happl and H1), through the details of precession orbits. The
nonlinear coefficients measured from a set of elliptical samples
are consistent with the results from the macrospin analysis and
micromagnetic modeling. However, both the measurements
and the modeling of the confined structures indicate nonlinear
coefficients that are more positive than the macrospin analysis.
We explain that this substantial offset in the nonlinear
coefficient is due to the nonuniform precession mode in the
confined structures via a magnetostatic mechanism.
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