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Spin-wave multiple excitations in nanoscale classical Heisenberg antiferromagnets
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Monte Carlo and spin dynamics techniques have been used to perform large-scale simulations of the dynamic
behavior of a nanoscale, classical, Heisenberg antiferromagnet on a simple-cubic lattice with linear sizes L ≤ 40 at
a temperature below the Néel temperature. Nanoparticles are modeled with completely free boundary conditions,
i.e., six free surfaces, and nanofilms are modeled with two free surfaces in the spatial z direction and periodic
boundaries parallel to the surfaces in the xy direction, which are compared to the “infinite” system with periodic
boundary conditions. The temporal evolutions of spin configurations were determined numerically from coupled
equations of motion for individual spins using a fast spin dynamics algorithm with the fourth-order Suzuki-Trotter
decomposition of exponential operators, with initial spin configurations generated by Monte Carlo simulations.
The local dynamic structure factor S(q,ω) was calculated from the local space- and time-displaced spin-spin
correlation function. Multiple excitation peaks for wave vectors within the first Brillouin zone appear in the
spin-wave spectra of the transverse component of dynamic structure factor ST (q,ω) in the nanoscale classical
Heisenberg antiferromagnet, which are lacking if periodic boundary conditions are used. With the assumption
of q-space spin-wave reflections with broken momentum conservation due to free-surface confinements, we
successfully explained those spectra quantitatively in the linear dispersion region. Meanwhile, we also observed
two unexpected quantized spin-wave excitation modes in the spatial z direction in nanofilms for ST (q,ω) not
expected in bulk systems. The results of this study indicate the presence of unexpected forms of spin-wave
excitation behavior that have yet to be observed experimentally but could be directly tested through neutron
scattering experiments on nanoscale RbMnF3 particles or films.
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I. INTRODUCTION

The deterministic time-dependent dynamic behavior of
“infinite” magnetic systems with periodic boundary conditions
has been studied extensively via experiments [1–3] and
spin dynamics simulations [4–9] with classical Heisenberg
models. Early simulations for the transverse component of
the dynamic structure factor, ST (q,ω), on isotropic anti-
ferromagnetic body-centered-cubic systems at temperatures
below the critical temperature Tc, show a single spin-wave
excitation peak of finite intensity with finite width, becoming
narrow and increasing in excitation energy frequency ω as
T decreases, which approaches the predictions of linear
spin-wave theory, and a diffusive central peak increasing in
strength with increasing T at ω = 0. Both are in qualitative
agreement with the experiments [2,3]. Large-scale computer
simulations carried out by Tsai, Bunker, and Landau [6] on
antiferromagnetic, isotropic, simple-cubic systems below Tc

found that by fitting the line shape of ST (q,ω) to a Lorentzian
form [10], in the [100] direction the dispersion curves that
result are approximately linear in wave vector for small q
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within the first Brillouin zone. For increasing T toward Tc

the dispersion curve turns into a power law, reflecting the
crossover from hydrodynamics to critical behavior with the
dynamic critical exponent estimated to be z = 1.43(0.03).
This value is in agreement with the experimental estimate
of the dynamic critical exponent z = 1.43(0.04) [3]. With
larger systems, Tsai and Landau [8] carried simulations to
better probe the asymptotic critical region in momentum, and
they estimated z = 1.49(0.03) in good agreement with the
renormalization-group theory and dynamic scaling predicted
value [11–14] of z = 1.5 for an isotropic three-dimensional
Heisenberg antiferromagnet. The dynamic behavior of the
longitudinal component of the dynamic structure factor,
SL(q,ω), has been studied by Bunker and Landau [15]. For
both the isotropic and anisotropic antiferromagnets, both
annihilation and creation two-spin-wave peaks are observed.
The splitting of the longitudinal spin-wave peak into two
spin-wave peaks with the energy separation of twice the energy
gap at the Brillouin zone center is predicted for all anisotropic
antiferromagnets.

Recent developments in the field of magnetic material
applications brought much attention to the static and dynamic
properties of confined magnetic elements of small dimen-
sions [16]. Recent experiments [17–19] on micron-scale array
elements showed quantized and localized spin-wave excitation
modes as eigenexcitations by the selection rules introduced
by lateral confined boundary conditions of the elements. In
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addition, the intrinsic broken translational invariance caused
by confinement effects in one or more directions in those
small laterally confined magnetic elements leads to the broken
conservation law of the corresponding momentum for a spin
wave, which brings uncertainty into the wave vector for a spe-
cific spin-wave excitation energy. This uncertainty is reported
to be inversely proportional to the confinement length [20].
Therefore, instead of a continuous spin-wave spectrum with
spin-wave excitation energy frequency uniquely determined
by each wave vector, quantized spin-wave excitation modes,
each of them observed within a given wave-vector interval, are
obtained from those experiments.

Extensive Monte Carlo simulations for nanoscale magnetic
systems have been performed by Brown et al. [21,22] on
the study of thermoinduced magnetization (TiM), which is
predicted to lead to ferromagnetic properties in antiferro-
magnetic nanoparticles below the Néel temperature TN . The
Monte Carlo estimates for the magnetization and susceptibility
indicate that TiM is an intrinsic property of the antiferromag-
netic Heisenberg model below the TN , but they do not tell us
anything about the dynamic behavior.

The work presented here followed the previous work done
by Brown et al. [21,22]. To gain further understanding of the
dynamic properties of nanoscale antiferromagnetic systems,
we carried out large-scale spin dynamics simulations of
the dynamic behavior of the nanoscale classical Heisenberg
antiferromagnet on a simple-cubic lattice. This study is not
restricted to the nanoscale antiferromagnetic case, i.e., it
can also be extended to ferromagnetic systems. We focus
mainly on the spin-wave excitation spectra of the transverse
component of the dynamic structure factor ST (q,ω) confined in
the nanoscale isotropic classical Heisenberg antiferromagnets
at a temperature below the Néel temperature. Section II of this
paper contains the definition of the model and introduces the
simulation background. In Sec. III we present and discuss our
simulation results, and a summary is given in Sec. IV.

II. MODEL AND METHODS

A. Model

We propose to study the spin dynamics of antiferromagnetic
nanoparticles and nanofilms with spin interactions described
by a classical Heisenberg Hamiltonian of the form

H = −JAF

∑
〈r,r′〉

Sr · Sr′ , (1)

where Sr is a three-dimensional classical spin of unit length
at site r, and 〈r,r′〉 denotes nearest-neighbor pairs of spins.
JAF < 0 is the antiferromagnetic nearest-neighbor exchange
interaction between Sr and Sr′ .

The model nanoparticles consist of L3 spins on an L ×
L × L simple-cubic lattice with completely free boundary
conditions with six free surfaces. Our model nanofilms consist
of L2

xyLz spins on an Lxy × Lxy × Lz simple-cubic lattice
with partially free boundary conditions with two free surfaces
in the spatial z direction and periodic boundaries parallel to
the surfaces in the xy direction. Lxy and Lz are the linear
dimensions in the xy and z directions, respectively.

B. Local dynamic structure factor S(r0,q,ω)

Fully periodic boundary conditions have been implemented
to preserve the translational invariance and emulate “infinite”
systems. In the modeling of nanofilms and nanoparticles in this
work, we introduced free boundary conditions either partially
in one spatial direction or completely in all spatial directions.
As one of the consequences of introducing free boundary
conditions, the translational invariance of the system is broken
in the directions in which we introduced free boundary
conditions. Accordingly, to express the broken translational
symmetry, the formalism of the space- and time-displaced
spin-spin correlation function has been modified from a
translational invariant one with a form of C(r,t) to a localized
one with a form of C(r0,r,t), where the parameter r0 denotes
a fixed lattice site as the starting point for the calculation of the
local correlation. Based on the specific localization performed,
r0 can be chosen to be fixed at the bulk center or the surface
center of nanofilms and nanoparticles, or even the lattice
corner of nanoparticles, i.e., r0 ⇒ bulk center, surface center,
or lattice corner.

The definition of the local space- and time-displaced spin-
spin correlation function is defined as

Ck(r0,r,t) = 〈Sk(r0,t0)Sk(r0 + r,t0 + t)〉
− 〈Sk(r0,t0)〉〈Sk(r0 + r,t0 + t)〉, (2)

where r0 and t0 denote the spatial and temporal starting points
for the local correlation function, respectively; r and t denote
the spatial and time intervals, respectively; 〈· · · 〉 gives the
ensemble average; k = x, y or z; Sk(r0 + r,t0 + t) stands for
the k component of a spin at the lattice site r + r0 and the time
t0 + t . The displacement r is in units of the lattice unit cell
length a. In the case of antiferromagnets, the wave vectors are
measured with respect to the (π,π,π ) point, which corresponds
to the Brillouin zone center.

The local dynamic structure factor S(r0,q,ω) is the Fourier
transform of the local space- and time-displaced spin-spin
correlation function C(r0,r,t), as given by

Sk(r0,q,ω) = 1

Nspin

∑
r

eiq·r

×
∫ +∞

−∞
e−iωtCk(r0,r,t)

dt√
2π

, (3)

where k = x, y, or z; Nspin is the total number of spins in a
lattice.

The calculation of the local correlation is performed in the
[100] direction, i.e., in momentum space q = (q,0,0). q is
determined for r0 ⇒bulk center as

q =
⎧⎨
⎩

2πnq

L
, nq = 0,1,2, . . . , nqmax ≡ L

2 for even L,

2πnq

L
, nq = 0,1,2, . . . , nqmax ≡ L−1

2 for odd L.

(4)

C. Simulation background

The Heisenberg model has true dynamics with the real-
time evolution of spins governed by the coupled equations of
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motion [23],

d

dt
Sr = ∂H

∂Sr
× Sr, (5)

which can be rewritten as

d

dt
Sr = Heff r × Sr, (6)

where Heff r is the effective field at site r, given by

Hk
eff r = −JAF

∑
〈r,r′〉

Sk
r′ , k = x, y, z, (7)

where the sum is performed over all nearest-neighbor sites
of r. If we denote Sr as

Sr =

⎛
⎜⎜⎜⎝

Sx
r

S
y
r

Sz
r

⎞
⎟⎟⎟⎠, (8)

Eq. (6) can be rewritten as

d

dt
Sr =

⎡
⎢⎢⎢⎣

0 −Hz
eff r H

y

eff r

Hz
eff r 0 −Hx

eff r

−H
y

eff r Hx
eff r 0

⎤
⎥⎥⎥⎦Sr ≡ RSr, (9)

for which the formal solution is

Sr(t + �) = eR�Sr(t), (10)

where � is the time step for the integration of the equations of
motion.

The general recipe of spin dynamics is to generate N equi-
librium spin configurations drawn from a canonical ensemble
at a specific temperature T using a hybrid Monte Carlo (MC)
method, and to use these N equilibrium spin configurations as
starting states for the integration of the coupled equations of
motion using the spin dynamics (SD) method, with the real SD
time evolving from t = 0 to tmax = ntdt , where nt is the total
number of SD time steps and dt is the SD time step [24]. From
those data, C(r0,r,t) is calculated for time displacement t ,
ranging from 0 to a cutoff time tcutoff = ncutoffdt , where ncutoff

is the number of SD time steps for cutoff time displacement.
We take a set of N initial conditions for a fixed lattice
size and average their results for C(r0,r,t). If this set of N

configurations is an equilibrium distribution at the temperature
T , then the average over all the C(r0,r,t) will be a result for
the local space-time correlation function at T for a finite lattice
size.

We simulated the behavior of the simple-cubic classical
Heisenberg antiferromagnetic nanostructures with linear di-
mension less than 40 at a specific temperature T = 0.4TN ,
where TN has been determined to a high degree of accuracy of
TN = 1.442 929(77)|J |/kB , by Chen et al. [4] for the isotropic
Heisenberg system with simple-cubic lattice geometry. We
used the hybrid MC method, in which for isotropic systems a
single hybrid MC step consists of two METROPOLIS steps and
eight overrelaxation steps [25,26] to generate an N equilibrium
distribution of states at T = 0.4TN . Typically, 5000 hybrid MC
steps were used to generate each equilibrium configuration,

and the coupled equations of motion were then integrated
numerically using these states as initial spin configurations.
For nanofilms with the same Lxy = 20, the total number of
equilibrium configurations generated by the hybrid MC is
N = 4000 for Lz = 10; N = 1500 for Lz = 20; N = 1500
for Lz = 30. For nanofilms with the same Lz = 10, N =
5000 for Lxy = 10; N = 4000 for Lxy = 20; N = 2600 for
Lxy = 30. For nanoparticles, N = 5000 for L = 10; N =
5000 for L = 14; N = 4000 for L = 20.

The coupled equations of motion were integrated using an
algorithm based on the fourth-order Suzuki-Trotter decompo-
sition of the exponential operator, by which the magnetization
will be conserved up to terms of the order (dt)4 (global
truncation error) [27,28]. Typically, numerical integrations
were performed to a maximum time tmax = 1000/|J | with
nt = 5000 and SD time step dt = 0.2/|J |. tcutoff = 800/|J |
with ncutoff = 4000 was used as the cutoff time for the
calculation of C(r0,r,t).

In our simulations for antiferromagnetic nanostructures, we
applied component-regrouping on the local dynamic structure
factor in the spin space into a longitudinal component, which is
parallel to the order parameter of the system, i.e., the staggered
magnetization, as

SL(r0,q,ω) = Sz(r0,q,ω), (11)

and a transverse component, which is perpendicular to the
order parameter of the system, as

ST (r0,q,ω) = 1
2 [Sx(r0,q,ω) + Sy(r0,q,ω)]. (12)

For an antiferromagnet, the order parameter, i.e., the stag-
gered magnetization, is not a constant of motion; therefore,
regrouping components of the spin parallel (longitudinal com-
ponent) and perpendicular (transverse component) to the order
parameter is challenging. As we integrate the equations of
motion, the direction of the staggered magnetization changes
slightly because it is not a conserved quantity. Our approach
to overcome this problem is to rotate the coordinate frame of
reference continually after each integration step so that the
z axis is to be realigned to the staggered magnetization and
restored as the longitudinal direction.

III. RESULTS

A. Spectra for ST (r0,q,ω) for isotropic
antiferromagnetic nanofilms

In this section, we give the results for the transverse com-
ponent of the local dynamic structure factor ST (r0,q,ω) with
r0 ⇒ bulk center for isotropic, antiferromagnetic nanofilms
on an Lxy × Lxy × Lz simple-cubic lattice. The results were
obtained in the periodic boundary directions, denoted as the
PBCXY [100] directions, parallel to the free surfaces, as shown
in Fig. 1.

Figure 2 shows the spectra for ST (r0,q,ω) with the same
Lxy = 20 and three different thicknesses, i.e., Lz = 10, 20,
and 30. For convenience, we labeled the y axis of our results
with ST (r0,nq,ω) with nq = 0,1,2, . . . . In the figure, we give
the spectra for nq = 0,1,2, . . . ,5.

The vertical dashed lines in the figure labeled with ω
PBC

show the single spin-wave excitation locations for each
wave vector of the “infinite” system with periodic boundary
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PBCXY [100]

r0

FIG. 1. (Color online) PBCXY [100] directions with r0 ⇒
bulk center for isotropic, antiferromagnetic nanofilms.

conditions. Two major observations can be made pertinent to
the above spectra:

(i) Multiple excitation peaks for wave vectors within the
first Brillouin zone appear in the spin-wave spectra for the
transverse component of the local dynamic structure factor
ST (r0,nq,ω) in the classical Heisenberg isotropic antiferro-
magnetic nanofilms, which are lacking if periodic boundary
conditions are used.

(ii) Negative spin-wave excitation peaks originating from
the negative local correlation between opposite sublattices of
antiferromagnetic systems were observed in spectra for each
wave vector.

In addition to the above two major observations, we also
observed that, as the thickness Lz of nanofilms, i.e., the
distance between the free surfaces, becomes larger, the main
excitation peak for some wave vectors, e.g., nq = 1,2,3, shifts
closer to ω

PBC
. This observation is reasonable considering the
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FIG. 2. (Color online) The spectra for ST (r0,q,ω) obtained from
isotropic, antiferromagnetic nanofilms with the same Lxy = 20 and
three different thicknesses, i.e., Lz = 10, 20, and 30. The results were
obtained in the PBCXY [100] directions, i.e., the directions parallel
to the free surfaces, with r0 ⇒ bulk center at T = 0.4TN with SD
parameters of nt = 5000, ncutoff = 4000, and dt = 0.2/|J |. We give
the spectra for nq = 0,1,2, . . . ,5. N is the total number of initial
configurations.
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FIG. 3. (Color online) The spectra for ST (r0,q,ω) obtained from
isotropic, antiferromagnetic nanofilms with the same Lz = 10 and
three different horizontal dimensions, i.e., Lxy = 10, 20, and 30.
The results were obtained in the PBCXY [100] directions, i.e., the
directions parallel to the free surfaces, with r0 ⇒ bulk center at T =
0.4TN with SD parameters of nt = 5000, ncutoff = 4000, and dt =
0.2/|J |. We give the spectra for nq = 0,1,2, . . . ,5. N is the total
number of initial configurations.

free-surface effects become weaker as the separation between
free surfaces increases, and thus the dynamics behaves more
like that of the “infinite” system with periodic boundary
conditions.

To complete our results, in Fig. 3 we present a further set of
spectra ST (r0,q,ω) for nanofilms having the same thickness
Lz = 10 but with three different horizontal dimensions, i.e.,
Lxy = 10, 20, and 30. Note that we did independent runs with
the identical dimension parameters for the nanofilm shown in
the top panel of Fig. 2 and that in the middle panel of Fig. 3,
i.e., both are Lxy = 20 and Lz = 10, which gave consistent
results within error bars. The larger oscillations in Fig. 3 are
due to larger finite-time cutoff used in the Fourier transform
of the local correlation function.

The spectra in Fig. 3 are very similar to those of Fig. 2. It
should be noted that the bigger oscillations of the spectra for
nq = 1 in Fig. 3 for Lxy = 20 and 30 are due to the finite-time
cutoff ncutoff , which introduces oscillations into the results
of the Fourier transformation. These oscillations, however,
can be smoothed out by convoluting the local correlation
function with a Gaussian resolution function e− 1

2 tδω in the time
Fourier transformation, where δω is a parameter determining
the resolution in frequency and needs to be chosen properly
such that effects of the cutoff in the evolution time can be
neglected [4]. The shifting to the lower energy frequency of
the main excitation peak in Fig. 3 is due to the finite-size effects
in the xy directions with periodic boundary conditions.

The most significant observation of the spectra for
ST (r0,nq,ω) in isotropic, antiferromagnetic nanofilms (Figs. 2
and 3) is the multiple spin-wave excitation peaks with
the intensity decreasing with increasing energy. Given that
the intensity of these peaks decreases so significantly with
increasing energy, it is important to demonstrate that they
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FIG. 4. (Color online) High-resolution plot of the raw simulation
data of multiple spin-wave excitation peaks illustrating the differ-
ences in the magnitude of the multiple spin-wave peaks and the
intrinsic noise in our simulations for nq = 1 of the nanofilm with
Lxy = Lz = 20. Note that the noise is ∼10−4 as big as the single
spin-wave peak.

correspond to real excitations rather than the statistical noise
inherent in the simulations. Figure 4 shows the comparison
between the magnitude of those multiple spin-wave peaks and
the magnitude of the intrinsic noise in our simulations for
nq = 1 of the nanofilm with Lxy = Lz = 20. As shown in
the figure, there is a significant difference in the magnitude,
which indicates that those multiple spin-wave excitations do
not originate from noise fluctuations. Note that the noise is
∼10−4 as big as the single spin-wave peak.

B. q-space spin-wave reflection: Quantitative explanation of
multiple spin-wave excitations in the spectra for ST (r0,q,ω) for

isotropic antiferromagnetic nanofilms

As mentioned in Sec. I, for small laterally confined
magnetic systems such as nanofilms or nanoparticles, there is
intrinsic broken translational invariance caused by free-surface
confinement effects in one or more directions, which leads
to a broken conservation law of the corresponding spin-wave
momentum. The broken conservation law of momentum brings
uncertainty into the wave vector for a specific spin-wave
excitation energy. To explain the multiple spin-wave excitation
peaks, we proposed the assumption of q-space spin-wave
reflection with broken momentum conservation. That is, in the
linear dispersion region with small momentum q, the reflected
spin-wave energy and momentum should satisfy a geometric
relationship defined by

ωrefl

ωbulk
= qrefl

qbulk
, (13)

where qbulk and qrefl are the bulk momentum and reflected
momentum, respectively; ωbulk and ωrefl are the bulk en-
ergy frequency and reflected energy frequency, respectively.
Figure 5 gives an illustration of this assumption.

With the assumption of q-space spin-wave reflection with
broken momentum conservation, we successfully explained
the multiple spin-wave excitation spectra quantitatively in the

FIG. 5. (Color online) An illustration of the assumption of q-
space spin-wave reflection with broken momentum conservation.

linear dispersion region with small momentum q. Figure 6
gives the same spectra shown in Fig. 4. The thick red dashed
line gives the single spin-wave excitation location for the
wave vector of nq = 1 of the system with periodic boundary
conditions; the thick black dashed line labeled with ω = ωbulk

gives the bulk excitation location for the wave vector of nq = 1

0 1 2 3 4 5 6
ω/|J|

-0.1

-0.05

0

0.05

0.1

ST(r0, nq=1,ω)

FIG. 6. (Color online) Determination of multiple spin-wave ex-
citation locations with the assumption of q-space spin-wave reflection
with broken momentum conservation in the linear dispersion region
with small momentum of nq = 1 for an isotropic, antiferromagnetic
nanofilm with a lattice size of Lxy = Lz = 20. The results were
obtained in the PBCXY [100] directions, i.e., the directions parallel
to the free surfaces, with r0 ⇒ bulk center at T = 0.4TN with SD
parameters of nt = 5000, ncutoff = 4000, and dt = 0.2/|J |. The thick
red dashed line gives the single spin-wave excitation location for
the wave vector of nq = 1 of the system with periodic boundary
conditions; the thick black dashed line labeled with ω = ωbulk gives
the bulk excitation location for the wave vector of nq = 1 of the
nanofilm; the thick black downward arrows labeled in the figure
give the locations of excitation peaks disturbed by the unexpected
excitation modes in FBCZ [100] perpendicular directions that will be
discussed in Sec. III E.
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4

SL(r0, nq=1,ω)

17.4 (0.1)
nq=1

FIG. 7. (Color online) The spectra for SL(r0,q,ω) obtained from
isotropic, antiferromagnetic nanofilm with a lattice size of Lxy =
Lz = 20. The results were obtained in the PBCXY [100] directions,
i.e., the directions parallel to the free surfaces, with r0 ⇒ bulk center
at T = 0.4TN with SD parameters of nt = 5000, ncutoff = 4000, and
dt = 0.2/|J |. We give the spectra for the wave vector of nq = 1. The
excitation peaks labeled with thin black dashed lines are the peaks
“contaminated” by the transverse component of the local multiple
spin-wave excitations shown in Fig. 6.

of the nanofilm. To locate multiple spin-wave excitation
locations quantitatively, we took the bulk energy frequency
ω = ωbulk and then multiplied it with all possible ratios of
qrefl

qbulk
, which are illustrated in Fig. 5. The results of those

multiplications are shown by thin black dashed lines with a
ratio multiplying ω labeled on each. The thick black downward
arrows labeled in Fig. 6 give the locations of excitation peaks
disturbed by the unexpected excitation modes in FBCZ [100]
perpendicular directions that will be discussed in Sec. III E.

For completeness, in Fig. 7 we show the spectra for the
longitudinal component of the local dynamic structure factor,
i.e., SL(r0,q,ω), for isotropic, antiferromagnetic nanofilm with
the same lattice size, i.e., Lxy = Lz = 20. We labeled the y axis
of our results with SL(r0,nq,ω) for the wave vector of nq = 1.
The excitation peaks labeled with thin black dashed lines
are the peaks “contaminated” by the transverse component
of the local multiple spin-wave excitations shown in Fig. 6.
Note that the “contamination” of the spin-wave excitations is
caused by imperfect regrouping of longitudinal and transverse
components of spin-wave excitations to the antiferromagnetic
order parameter, as we discussed in Sec. II C.

Similarly, Fig. 8 shows that the multiple spin-wave excita-
tion locations with nq = 2 are also determined quantitatively.

Comparing the results in Figs. 6 and 8, we observed
that, with our assumption of q-space spin-wave reflection,
the proportion of successfully explained multiple excitations
with nq = 1 is larger than that with nq = 2, which means
our assumption works better with nq = 1 than nq = 2, i.e., it
works better with a smaller momentum. This is reasonable
considering that the linear dispersion region with small
momentum q is the region for the assumption to be correctly
applied.

0 1 2 3 4 5 6
ω/|J|

-0.1

-0.05

0

0.05

0.1

ST(r0, nq=2,ω)

FIG. 8. (Color online) Determination of multiple spin-wave ex-
citation locations with the assumption of q-space spin-wave reflection
with broken momentum conservation in the linear dispersion region
with small momentum of nq = 2 for an isotropic, antiferromagnetic
nanofilm with a lattice size of Lxy = Lz = 20. The results were
obtained in the PBCXY [100] directions, i.e., the directions parallel
to the free surfaces, with r0 ⇒ bulk center at T = 0.4TN with SD
parameters of nt = 5000, ncutoff = 4000, and dt = 0.2/|J |. The thick
green dashed line gives the single spin-wave excitation location for
the wave vector of nq = 2 of the system with periodic boundary
conditions; the thick black dashed line labeled with ω = ωbulk gives
the bulk excitation location for the wave vector of nq = 2 of the
nanofilm; the thick black downward arrows labeled in figure give the
locations of excitation peaks disturbed by the unexpected excitation
modes in FBCZ [100] perpendicular directions that will be discussed
in Sec. III E.

C. Spectra for ST (r0,q,ω) for isotropic
antiferromagnetic nanoparticles

In this section, we give the results for the transverse com-
ponent of the local dynamic structure factor ST (r0,q,ω) with
r0 ⇒ bulk center for isotropic, antiferromagnetic nanoparti-
cles on an L × L × L simple-cubic lattice. The results were
obtained in six symmetric [100] directions, as shown in Fig. 9.

Figure 10 shows the spectra for ST (r0,q,ω), obtained from
isotropic, antiferromagnetic nanoparticles with L = 10, 14,
and 20. For convenience of labeling, we labeled the y axis of
our results with ST (r0,nq,ω) with nq = 0,1,2, . . . [defined in
Eq. (4)]. In the figure, we give the spectra for ST (r0,nq,ω)
with nq = 1,2, . . . ,5.

Multiple excitation peaks for wave vectors within the
first Brillouin zone appear in the spin-wave spectra for the
transverse component of the local dynamic structure factor
ST (r0,nq,ω) in the classical Heisenberg isotropic antiferro-
magnetic nanoparticles, which are lacking if periodic boundary
conditions are used.

As noted previously, the bigger oscillations of the spectra
for nq = 1 in Fig. 10 for L = 20 are due to the finite-time
cutoff ncutoff , which introduces oscillations, can be smoothed
out by convoluting the local correlation function with a Gaus-
sian resolution function in the time Fourier transformation.
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FIG. 9. (Color online) [100] directions with r0 ⇒ bulk center for
isotropic, antiferromagnetic nanoparticles.

The shifting to lower energy frequency of the main excitation
peak in the figure is due to the finite-size effects.

D. Quantitative explanation of multiple spin-wave excitations in
the spectra for ST (r0,q,ω) for isotropic antiferromagnetic

nanoparticles with the assumption of q-space
spin-wave reflection

As shown in Fig. 10, the spectra for isotropic, antifer-
romagnetic nanoparticles are even more complicated than
the spectra for isotropic, antiferromagnetic nanofilms given
in Figs. 2 and 3. Not only are there many more multiple
spin-wave excitations for each wave vector, but also the
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FIG. 10. (Color online) The spectra for ST (r0,q,ω) obtained
from isotropic, antiferromagnetic nanoparticles with L = 10, 14,
and 20. The results were obtained in the [100] directions with
r0 ⇒ bulk center at T = 0.4TN with SD parameters of nt = 5000,
ncutoff = 4000, and dt = 0.2/|J |. We give the spectra for nq =
1,2, . . . ,5.

0 1 2 3 4 5 6
ω/|J|

0

0.2

0.4

0.6

0.8

1

ST(r0, nq=1,ω)

nq=1

ω = ω

2 ω

3 ω

2ω

5 ω

6 ω 8 ω
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FIG. 11. (Color online) Determination of multiple spin-wave ex-
citation locations with the assumption of q-space spin-wave reflection
with broken momentum conservation in the linear dispersion region
with small momentum of nq = 1 for an isotropic, antiferromagnetic
nanoparticle with a lattice size of L = 10. The results were obtained
in the [100] directions with r0 ⇒ bulk center at T = 0.4TN with
SD parameters of nt = 5000, ncutoff = 4000, and dt = 0.2/|J |. The
thick red dashed line gives the single spin-wave excitation location
for the wave vector of nq = 1 of the system with periodic boundary
conditions; the thick black dashed line labeled with ω = ωbulk gives
the bulk excitation location for the wave vector of nq = 1 of the
nanoparticle; the thick black downward arrows labeled in the figure
give the locations of excitation peaks disturbed by the unexpected
excitation modes in FBCZ [100] perpendicular directions that will be
discussed in Sec. III E.

excitation patterns themselves become more intricate. Those
observations are due to the fact that the completely laterally
confined nanoparticles have much stronger free-surface effects
on the dynamics than those of nanofilms. However, in the
linear dispersion region with the assumption of q-space spin-
wave reflection, we can still determine the locations of those
excitations quantitatively.

Figure 11 gives the spectra for nq = 1 of the nanoparticle
with a lattice size of L = 10. The thick red dashed line gives
the single spin-wave excitation location for the wave vector
of nq = 1 of the system with periodic boundary conditions;
the thick black dashed line labeled with ω = ωbulk gives
the bulk excitation location for the wave vector of nq = 1
of the nanoparticle; the determination of multiple spin-wave
excitation locations is shown by thin black dashed lines with a
ratio multiplying ω labeled on each; the thick black downward
arrows labeled in the figure give the locations of excitation
peaks disturbed by the unexpected excitation modes in FBCZ
[100] perpendicular directions, to be discussed in Sec. III E.

E. Observation of two unexpected quantized spin-wave
excitation modes for ST (r0,q,ω) for isotropic antiferromagnetic

nanofilms

In this section, we give the results for the transverse com-
ponent of the local dynamic structure factor ST (r0,q,ω) with
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FIG. 12. (Color online) FBCZ [100] directions with r0 ⇒
bulk center for isotropic, antiferromagnetic nanofilms.

r0 ⇒ bulk center for isotropic, antiferromagnetic nanofilms
on an Lxy × Lxy × Lz simple-cubic lattice. The results were
obtained in the free boundary directions, denoted as the FBCZ
[100] directions, perpendicular to the free surfaces, as shown
in Fig. 12.

Figure 13 shows the spectra for ST (r0,q,ω) with Lxy =
Lz = 20. In the figure, we give the spectra for nq =
0,1,2, . . . ,4. As shown in the figure, we observed two unex-
pected quantized spin-wave excitation modes for ST (r0,nq,ω),
i.e., “Excitation Mode I” and “Excitation Mode II,” in the
spatial z direction in isotropic, antiferromagnetic nanofilms.
This unexpected form of spin-wave excitation behavior needs
further study, but at least our results indicate that those
unexpected quantized excitation modes could be potentially
caused by, but are not limited to, the free-surface confinement
effects.

0 1 2 3 4 5 6

ω/|J|

-5

0

5

10

15

20

ST(r0, nq,ω)

nq=0
nq=1
nq=2
nq=3
nq=4

86.9 (4.5)

Excitation Mode I

Excitation Mode II

FIG. 13. (Color online) The spectra for ST (r0,q,ω) obtained
from isotropic, antiferromagnetic nanofilms with Lxy = Lz = 20.
The results were obtained in the FBCZ [100] directions, i.e., the
directions perpendicular to the free surfaces, with r0 ⇒ bulk center
at T = 0.4TN with SD parameters of nt = 5000, ncutoff = 4000, and
dt = 0.2/|J |. We give the spectra for nq = 0,1,2, . . . ,4. N is the
total number of initial configurations.

IV. CONCLUSION

With large-scale Monte Carlo and spin dynamics sim-
ulations, we have investigated the dynamic behavior of
antiferromagnetic nanostructures on a simple-cubic lattice
geometry, using an isotropic, classical Heisenberg model of
classical spins with unit length and with the nearest-neighbor
exchange interactions. Nanoparticles are modeled with com-
pletely free boundary conditions, and nanofilms are modeled
with partially free boundary conditions, i.e., two free surfaces
in the spatial z direction and periodic boundaries parallel to
the surfaces in the x and y directions. Hybrid Monte Carlo
methods are used to obtain the static properties of modeled
nanostructures. The Monte Carlo methods are also used to
generate equilibrium spin configurations as initial states of
the coupled differential equations of motion. A fast spin
dynamics algorithm based on the fourth-order Suzuki-Trotter
decomposition of exponential operators has been applied to
integrate the equations of motion. Our spin dynamics simu-
lations are performed at a low temperature T = 0.4TN . The
integrations are carried to ncutoff = 4000 with an SD time step
dt = 0.2/|J |.

With the time evolution of the spin configurations, the
local space- and time-displaced spin-spin correlation function
C(r0,r,t) is calculated, where r0 denotes the starting point
from which the correlation function is calculated and can be
chosen to be fixed at the bulk center or the surface center of
nanoparticles and nanofilms, or the lattice corner of nanopar-
ticles in the simulations. The local dynamic structure factor
S(r0,q,ω) is the Fourier transformation of C(r0,r,t), which
can be observed in inelastic magnetic neutron scattering. For
the temperature T = 0.4TN , compared to the single spin-wave
excitation spectra for the “infinite” system with fully periodic
boundary conditions, much more complicated excitation spec-
tra for the transverse component of the local dynamic structure
factor ST (r0,q,ω) appear in the nanoscale classical Heisenberg
antiferromagnets. The spectra for ST (r0,q,ω) have multiple
excitation peaks for wave vectors within the first Brillouin
zone, which are lacking if periodic boundary conditions are
used. We were able to simulate these systems with sufficiently
high accuracy such that multiple excitation peaks distinguish
themselves from the intrinsic simulation noise by showing a
significant difference in magnitude between the two signals.
With the assumption of q-space spin-wave reflection with
broken momentum conservation due to lateral free-surface
confinements, we successfully explained the locations of
those excitations quantitatively for isotropic, antiferromag-
netic nanostructures in the linear dispersion region with small
wave vectors.

The results of this study indicate the presence of unexpected
forms of spin-wave excitation behavior that have yet to be
observed experimentally but could be directly tested through
neutron scattering experiments on nanoscale RbMnF3 films or
particles.
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