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Selection of factorizable ground state in a frustrated spin tube: Order by disorder
and hidden ferromagnetism
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The interplay between frustration and quantum fluctuation in magnetic systems is known to be the origin of
many exotic states in condensed matter physics. In this paper, we consider a frustrated four-leg spin tube under
a magnetic field. This system is a prototype to study the emergence of a nonmagnetic ground state factorizable
into local states and the associated order parameter without quantum fluctuation that appears in a wide variety
of frustrated systems. The one-dimensional nature of the system allows us to apply various techniques: a
path-integral formulation based on the notion of order by disorder, strong-coupling analysis where magnetic
excitations are gapped, and density-matrix renormalization group. All methods point toward an interesting
property of the ground state in the magnetization plateaus, namely, a quantized value of relative magnetizations
between different sublattices (spin imbalance). The ground-state properties can be understood in terms of a direct
product of local states on each rung, which is the exact ground state on certain plateaus in the strong-coupling
limit.
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I. INTRODUCTION

Frustrated magnetism is a subject that has attracted much
attention in the last decades. From the quantum-mechanical
perspective, frustration is the key element in the search
of exotics ground states, like spin liquids [1]. Very often,
low-energy effective models, such as quantum dimer models,
are used to get a better understanding of the physics of such
frustrated systems. In nonbipartite lattices, they would provide
the most controllable examples of states that can be assimilated
to spin liquids [2–4] for a finite range of parameters, while for
bipartite lattices only the Rokhsar-Kivelson point displays a
disordered (critical) state [5]. These exotic spin liquid states
have the interesting property of topological degeneracy, which
cannot be identified with a local order parameter. It is related
to a long-range entanglement of the ground state [6,7].

From the classical statistical-mechanical perspective, frus-
trated systems have attracted also a lot of interest because of
the phenomenon of order by disorder (OBD) [8]. It is by now
well understood that OBD is the mechanism that gives rise
to a ground-state selection among a continuously degenerate
manifold in classical frustrated magnets such as the Heisenberg
model on the kagome [9–13] or the pyrochlore [14–17]
lattices. Such systems present “soft modes” in their spin-wave
spectra, and the configurations with the most soft modes
will be favored entropically at low but nonzero temperature,
against configurations with the same energy but less soft
modes [18,19]. The straightforward extension of the ideas of
OBD to quantum mechanics is simply to argue that, among
many configurations with the same classical energy, the one
that has the lowest zero-point-energy quantum correction is
selected, and a wide number of models on different lattices
have been studied in this way [12,18,20–27] or sometimes
going beyond harmonic level if needed [28–31].

In this paper, we are going to argue that the phenomenon of
classical OBD may be revealed in another and more subtle way.
The symptoms of OBD that we discuss here can in some sense
be found in the existing literature although they have not been

enough emphasized in our opinion. More interestingly, they go
somehow in the opposite direction of long-range entanglement
in topological gapped quantum spin liquids [32–35]. Indeed,
high frustration may lead to ground-state wave functions
that are, to a large extent, factorizable into local states (i.e.,
a product state). The work of Schulenburg et al. [36] for
the kagome lattice provides an exact result in which highly
frustrated magnets in the presence of a strong magnetic field
have a factorizable wave function consisting in a collection
of localized magnons when the system is close to saturation.
This was later shown to be also the case for several lattices
like the sawtooth chain, the checkerboard and pyrochlore
lattices [37]. In the zero field case, there are also various
one- and two-dimensional models that have exact factorizable
ground states associated with the formation of singlets, either
at a point in the phase diagram (J1-J2 chain [38,39]) or in
a finite range of parameters (Shastry-Sutherland Heisenberg
model [40] and its variants [41], e.g., the linked-tetrahedra
chain [42] and the orthogonal-dimer chain [43]). Although
there is no exact result, the Heisenberg model on the kagome
lattice at its 1

3 plateau is expected to have a wave function with
a large overlap to a factorizable toy wave function [44,45]. A
consequence of this is the fact that the relative magnetization
between different sites of the lattice, or spin imbalance, is
locked to a fixed value; for example, in the case of the kagome
lattice, the total magnetization of a resonating hexagon is fixed
to an integer value, as compared to the magnetization of the
fully polarized spins surrounding the hexagon.

To provide a better and more concrete understanding of
the statement above, we are going to study a system that is
certainly the simplest prototype to reveal such an interesting
phenomenology: the frustrated four-leg spin tube. A first
argument in favor of this system is its one-dimensional (1D)
nature allowing to use powerful nonperturbative analytical and
numerical techniques. Obviously, the chosen system gives rise
at the classical level to the phenomenon of OBD and, as we
are going to show, produces in a quite explicit way all the
phenomenology we have mentioned above: a mechanism to
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FIG. 1. (Color online) Schematic pictures of (a) a single-rung
tetrahedron and (b) the four-leg spin tube composed of the coupled
tetrahedra.

lead the factorization of the ground state and the quantization
of the order parameter. A second argument is the fact that
it possesses magnetization plateaus, a common consequence
of frustration but not necessary for the point that we want to
make here. Indeed, it is interesting to locate a magnetization
plateau and then focus on the fate of nonmagnetic excitations,
which are going to be the principal actors of the desired
physics. Last but not least, the four-leg tube is somehow
the parent system of the three-leg spin tube, which has been
extensively studied (see, for example, Ref. [46] and references
therein) and is also a frustrated system showing the presence
of magnetization plateaus. However, it does not have classical
OBD and therefore does not give rise to the phenomenology in
which we are interested here. It will play the role of a reference
example to compare our results.

The Hamiltonian of the frustrated four-leg spin tube with
diagonal couplings on the rungs and in a magnetic field is
given by

H = J‖
L∑

i=1

⎡
⎣ 4∑

j=1

�Si,j · �Si+1,j + J⊥
∑
j<j ′

�Si,j · �Si,j ′

+ Jd (�Si,1 · �Si,3 + �Si,2 · �Si,4) − h

4∑
j=1

Sz
i,j

⎤
⎦, (1)

where �Si,j is the spin-1/2 operator on rung i and on leg j , L is
the tube length, J‖, Jd , and J⊥ are positive antiferromagnetic
couplings, and h is a magnetic field along the z axis. In
Fig. 1, we show a single-rung tetrahedron and the four-leg
spin tube composed of the coupled tetrahedra. In this paper, we
focus on the ground-state properties of this model on several
magnetization plateaus with fixed magnetization per site m:

m = 1

4L

L∑
i=1

4∑
j=1

〈
Sz

i,j

〉
, (2)

where 〈· · · 〉 denotes the ground-state expectation value.
At Jd = 0, this model has a tetrahedral point-group

symmetry Td , or equivalently, a permutation symmetry S4

of the four chains. Regarding this symmetry, it may share
some common properties with the three-dimensional (3D)
pyrochlore lattice. Since our model is in 1D and strongly
frustrated, we have a particular interest in its nonmagnetic
properties. Such nonmagnetic features naturally emerge in the
pyrochlore lattice built on coupled tetrahedra, since the triplet

excitations are fully gapped in the decoupled limit. This model
has been originally studied in the theoretical literature [47–53]
but recently proposed experimentally [54,55]. Although our
model is apparently far from the experimental realization, it
is easily tractable and then will be a simplest starting point
to explore those 3D candidates in the presence of a magnetic
field. Another remarkable feature of this model is the exact
macroscopic degeneracy of the disordered ground state at the
quantum level even after introducing tiny couplings between
tetrahedra. In fact, this model can be mapped onto an SU(2)
ferromagnet. By perturbing this “hidden” ferromagnet with
additional couplings, a factorizable nonmagnetic ordered state
is selected, as expected from our discussion about the OBD
mechanism. We finally mention that another model of the
frustrated four-leg spin tube has been studied recently [56,57].

The paper is organized as follows. In Sec. II, we use a large-
S path-integral approach to discuss the OBD phenomenon
with the computation of the zero-point energy. We propose
the emergence of quantized spin-imbalance phases. Then we
consider in Sec. III the strong-coupling limit of the model
in certain magnetization plateaus and analyze the effective
Hamiltonian. In Sec. IV, we compare our predictions to
density-matrix renormalization group (DMRG) simulations.
Section V is devoted to the summary of our results and
conclusion. In Appendix A, several details on the strong-
coupling analysis are supplemented.

II. PATH-INTEGRAL ANALYSIS

In this section, we present a semiclassical analysis of the
model (1) and show the occurrence of a ground-state selection
by an OBD mechanism [8]. Indeed, we will see that the
classical ground state of this model is continuously degenerate
with the presence of a free angle variable. An important
question is then to know which value of this angle is selected
by the quantum fluctuation, or alternatively by the thermal
fluctuations. It turns out that, in our case, these two kinds of
fluctuation seem to act in a different manner. We finally discuss
how the question of the tunneling between the different favored
states arises and its consequences.

A. Method

We follow a method recently developed by Tanaka, Totsuka,
and Hu [58]. They used the Haldane’s path-integral approach
based on the spin coherent state [59]. The Haldane’s analysis
leads to an action comprising two terms [60]. One is the
coherent-state expectation value of the Hamiltonian, or simply
the Hamiltonian for the classical configuration. The other term
is the Berry phase one and corresponds to the surface area
(or the solid angle),

∫
dτ [1 − cos θ (τ )]∂τϕ(τ ) in spherical

coordinates, enclosed by each spin during its imaginary-time
τ evolution.

In order to build a low-energy effective theory from this
starting point, one proceeds by first identifying the classical
solution,

�Si,j = S
(

sin θ
(0)
i,j cos ϕ

(0)
i,j , sin θ

(0)
i,j sin ϕ

(0)
i,j , cos θ

(0)
i,j

)
, (3)
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and then adding the quantum fluctuation on top of it,

θ
(0)
i,j → θi,j = θ

(0)
i,j + δθi,j ,

ϕ
(0)
i,j → ϕ

(0)
i,j + ϕi,j .

(4)

We then expand the spin components up to second order
in δθ . The calculation of the SU(2) commutation relations
[Sz

i,j ,S
±
k,l] = ±S±

i,j δikδjl leads to the new set of variables �i,j ,
defined by

�i,j = −S
[

sin θ
(0)
i,j δθi,j + 1

2 cos θ
(0)
i,j δθ2

i,j

]
, (5)

which are the conjugate momenta to the angular variables,
[ϕi,j ,�k,l] = iδikδjl . It ensures to have the correct commuta-
tors for the spin operators. Then we rewrite these operators as
functions of the conjugate fluctuation variables,

S±
i,j = e±i[ϕ(0)

i,j +ϕi,j ]S

[
sin θ

(0)
i,j − m

S sin θ
(0)
i,j

�i,j ,

− 1

2

S2

S2 − m2

1

S sin θ
(0)
i,j

�2
i,j

]
, (6)

Sz
i,j = S cos θ

(0)
i,j + �i,j .

Inspecting the expression of Sz
i,j , it is clear that �i,j represents

the fluctuation around the classical magnetization per site,
mi,j = S cos θ

(0)
i,j . The action is then rewritten in a function of

these variables at the second order.

B. Classical ground state

From now on, we focus on the regime Jd � 0. For J‖ =
Jd = h = 0, the ground state on a rung is determined by the
unique condition �S� = �0 where S

μ

� =∑4
j=1 S

μ

j , μ = x,y,z.
This leads to a continuous degeneracy of two angles in each
rung. This is the same situation as that for the pyrochlore lattice
since both systems share the same elementary cell [14]. If we
add a magnetic field, there is the additional magnetization
condition Sz

� = m and only one of the two angles remains
free. The ground state is then given by equally canting the four
spins along the field and by making two pairs of antiparallel
spins in the perpendicular xy plane (Fig. 2). The energy is
independent of the angle α between the two spins 1 and 2
projected onto the xy plane, and thus in the decoupled-rung
limit we have one free angle per rung.

Coupling the rungs with a nonzero J‖, only one free angle
remains while we can accommodate a k‖ = π state along

FIG. 2. Classical ground state of the model (1). The four spins
make a total spin zero in the xy plane perpendicular to the field, where
a free angle α is present (left panel), and are equally canted along the
magnetic field in the z direction (right panel).

the chain for the spin components in the xy plane (k‖ is
the momentum along the chain). This angle is nothing but the
continuous degeneracy that we discussed above. Therefore on
top of the usual U(1) symmetry, we end up with an extra
continuous degeneracy for the classical ground state. We want
to emphasize that, because this angle is not associated with
the symmetry of the Hamiltonian, we expect the quantum
and thermal fluctuations to necessarily select, through an
OBD mechanism, some states with the corresponding angles
minimizing the free energy of the system.

We parametrize the classical solution with ϕ
(0)
i,1 = iπ , ϕ(0)

i,2 =
α + iπ , ϕ

(0)
i,3 = (i + 1)π , ϕ

(0)
i,4 = α + (i + 1)π , and cos θ

(0)
i,j =

h/[2S(2J‖ + 2J⊥ + Jd )]. It is important to note that by choos-
ing such a parametrization we have broken a Z3 symmetry.
Indeed, we have an S4 symmetry at the point Jd = 0. Thus,
instead of choosing sites 1 and 3 to be antiparallel as we did
here, we could have chosen any of the three spins 2, 3, or 4 to
be paired with the spin 1, that we consider as fixed. Once this
choice is made, let us comment briefly about some differences
depending on the value of α, which has a periodicity of 2π

and that we define as the angle between spins 1 and 2. From
Fig. 2, we see that the cases α = 0,π and α = π/2,3π/2 lead
both to two distinct states, while for a generic value of α there
are four inequivalent states with values of the angle between
spins 1 and 2 taking the values α,π − α,π + α,2π − α.

To distinguish among those four states, we propose to use
the following couple of operators:

χ1234 =
4∑

j=1

(�Sj × �Sj+1)z,

Q1234 = (�S1 × �S2) · (�S3 × �S4).

(7)

The operator χ1234 is the usual measure of the z-component of
the spin vector chirality, and the operator Q1234 is discussed in
the strong-coupling analysis of Sec. III where these operators
will be of great use. Computing their expectation values in the
four states for a generic α, we get

〈χ1234〉 ∼ (sin(α), sin(α), − sin(α), − sin(α)),
(8)〈Q1234〉 ∼ (q−(α),q+(α),q+(α),q−(α)),

where

q±(α) = (2m2 − S2) sin2(α) + m2(1 ± sin(α))2, (9)

and those are always nonzero.
When Jd > 0, those states remain ground states. The only

difference is that we no longer have the three possibilities
when antialigning a spin with the spin 1, and thus the above
discussion also applies to this regime.

Finally, we discuss the symmetry relations among the
four states when α takes a generic value. As we have
chosen the sites 1 and 3 to be antiparallel, we can con-
sider only the symmetry operations of C4v = {(),(1234),
(13)(24),(1432),(13),(12)(34),(24),(14)(23)}, that is, the sym-
metry group of the tube for Jd > 0 [61]. The states are invariant
under the operation (13)(24). The reflections (13) or (24)
connect the states α and π + α on one side and π − α and
2π − α on the other side. The states α and π − α are related
by cyclic permutations (1234) and (1432), and the same holds
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for states π + α and 2π − α. The reflections (12)(34) and
(14)(23) transform the state α into the state with 2π − α and
π − α into π + α.

C. Low-energy effective action

We plug this ground-state solution in the expressions (6)
and cast these expressions in the action. Up to the second
order in the fields, we obtain in the continuum limit the
following action:

S =
∫

dτdx
∑

j

{
aJ‖
2

(S2 − m2)(∂xϕj )2

+ a

(
2J‖ + J⊥ + Jd

2

S2

S2 − m2

)
�2

j

+ J⊥
2

sin(α)
S2 − m2

a
(−1)j (ϕj − ϕj+1)2

+ J⊥ + Jd

4

S2 − m2

a
(ϕj − ϕj+2)2

+ aJ⊥

[
1 + (−1)j+1 sin(α)

m2

S2 − m2

]
(�j�j+1)

+ a
J⊥ + Jd

2

(
1 − m2

S2 − m2

)
(�j�j+2)

+ aJ⊥ sin(α)mϕj

(
�j−1 − �j+1

)
+ i

(
S − m

a

)
∂τϕj − i�j∂τϕj

}
, (10)

where a denotes the lattice constant. The last two imaginary
terms come from the Berry phase part of the action. We
now diagonalize the momentum part with the transformation
�� = P ��, where

P = 1

2

⎛
⎜⎝

−1 −1 1 1
−1 1 −1 1

1 −1 −1 1
1 1 1 1

⎞
⎟⎠ . (11)

After applying the same transformation to the fields ϕj ,
�φ = P �ϕ, we obtain

S =
∫

dτdx

⎧⎨
⎩
∑

j

[
1

2
λj�

2
j + 1

2
λx(∂xφj )2

]

+ 1

2
m2

1φ
2
1 + 1

2
m2

3φ
2
3 + μ(�1φ3 − �3φ1)

+ i2
S − m

a
∂τφ4 − i

∑
j

�j∂τφj

⎫⎬
⎭ , (12)

where the coefficients are given by

λ1,3 = 4aJ‖ + 2a [Jd + J⊥(1 ± sin(α))]
m2

S2 − m2
,

λ2 = 4aJ‖ + 2aJd,

λ4 = 4aJ‖ + 2a (Jd + 2J⊥) ,

λx = aJ‖(S2 − m2),

m2
1,3 = 2

S2 − m2

a
[Jd + J⊥(1 ± sin(α))] ,

μ = 2mJ⊥ sin(α). (13)

Finally, we can integrate out the massive fields �j and the
action reads

S =
∫

dτdx

⎧⎨
⎩
∑

j

[
1

2λj

(∂τφj )2 + 1

2λx

(∂xφj )2

]

+ 1

2

(
m2

1 − μ2

λ3

)
φ2

1 + 1

2

(
m2

3 − μ2

λ1

)
φ2

3

+ iμ

(
1

λ1
φ3∂τφ1− 1

λ3
φ1∂τφ3

)
+i2

S − m

a
∂τφ4

⎫⎬
⎭ . (14)

An important comment is to be made here about the form
of the action for the field φ2. We want to stress the absence
of a mass term m2

2φ
2
2 and that we simply end up with a free

field action. Coming back to the original variables ϕj , we
see that this field φ2 corresponds to moving together spins 1
and 3 on one hand and spins 2 and 4 on the other hand. We
recover the fact that classically this deformation has no energy
cost. However, as pointed out previously, this free angle does
not arise from the symmetry of the Hamiltonian. The U(1)
symmetry is encoded in the symmetric field φ4, and thus we
do not expect this action to reflect the true behavior of the field
φ2. At higher orders, a localizing potential is thus required
such that the unphysical free-field nature of φ2 appearing in
the action is removed. Its shape, or more precisely its number of
minima, is given by the form of the free energy as a function of
α, with two or four minima (see the discussion of the classical
ground state in Sec. II B).

In addition, inspecting Eq. (14), we point out that some
values of α play a particular role. We remark that, if Jd =
0, for α = 0 (resp. π ), the two fields φ1 and φ3 decouple
as μ = 0 while at the same time the mass term m2

3 − μ2/λ2
1

(m2
1 − μ2/λ2

3) vanishes. Thus we end with the field φ3 (φ1) to
be also massless while the other φ1 (φ3) retains a mass term.
This explanation is the same as that for the field φ2 because,
when and only when Jd = 0, we can make a deformation with
no energy cost by pairing spins 1 and 4 (1 and 2) and spins
2 and 3 (3 and 4). Following exactly the same reasoning as
above, we expect a localizing potential at higher orders.

Another couple of special points is α = π/2,3π/2. Indeed,
in this case, all the coefficients of the fields φ1 and φ3 are equal.
We can then, as for the three-leg spin tube model [62], intro-
duce two conjugate fields � = φ1 + iφ3 and �∗ = φ1 − iφ3,
which represent the chirality degrees of freedom. Despite the
presence of a mass term M2|�|2, the imaginary-time derivative
term has been shown to have strong effects and in particular to
allow the possible appearance of gapless phases for �. How-
ever, we will see below that it does not happen in the present
system as those values are not favored by the fluctuation.

D. Free energy and ground-state selection

In this section, we now compute the free energy and
minimize it with respect to α to see which value is selected by
the quantum fluctuation. We will also consider the classical
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limit to investigate the effect of the thermal fluctuation.
From Eq. (14), the action can be separated into two pieces.
One contains the coupled fields φ1 and φ3 with coefficients
depending on the angle α, and another part is independent on
α for φ2 and φ4. In the following, we are interested only in the
α-dependent part, and thus from now on we drop the part for
the fields φ2 and φ4.

We rewrite the action by the Fourier transformation and we
obtain

S = 1

2

∑
k,ωn

{[
1

λ1
ω2

n + 1

λx

k2 +
(

m2
1 − μ2

λ3

)]
|φ1(k,ωn)|2

+
[

1

λ3
ω2

n + 1

λx

k2 +
(

m2
3 − μ2

λ1

)]
|φ3(k,ωn)|2

+ 2μωn

[
1

λ3
φ1(k,ωn)φ∗

3 (k,ωn) − 1

λ1
φ∗

1 (k,ωn)φ3(k,ωn)

]}

= 1

2

∑
k,ωn

(
φ∗

1

φ∗
3

)T

M
(

φ1

φ3

)
, (15)

where ωn = 2πn/β,n ∈ Z (β being the inverse temperature)
are the bosonic Matsubara frequencies and we have used the
definition,

φj (x,τ ) = 1√
βL

∑
k,ωn

ei(kx−ωnτ )φj (k,ωn), (16)

for the Fourier transformation. We can evaluate the partition
function Z = Tre−S and we find

ln(Z) = N(β) − 1

2

∑
k,ωn

ln(detM), (17)

up to an additional unimportant constant. The N(β) term comes
from the previous integration of the �j fields [63]. After some
manipulations, we can write

ln(Z) = N′(β) − 1

2

∑
k,ωn

ln
(
ω4

n + pω2
n + q

)

= N′(β) − 1

2

∑
k,ωn

[
ln
(
ω2

n + ω2
+
)+ ln

(
ω2

n + ω2
−
)]

, (18)

where ω2
± = (p ± √

�)/2, � = p2 − 4q, and p,q are compli-
cated functions of the coefficients in the action (15) and contain
the α dependence of the partition function. Finally, we perform
the summation over the Mastubara frequencies and obtain the
standard expression for the free energy F = −ln(Z)/β,

F =
∑

k

{
ω+ + ω−

2
+ 1

β
ln[(1 − e−βω+ )(1 − e−βω− )]

}
.

(19)

N′(β) has been canceled during the summation over the
frequencies ωn [63]. The first term is the zero-point energy
and represents the effect of the quantum fluctuation, while the
second term, vanishing in the limit of large β, corresponds to
the thermal fluctuation. Using this expression, we now evaluate
numerically the summation over the momentum and minimize
it with respect to α.

FIG. 3. (Color online) Numerical calculation of the free energy
from Eq. (19), normalized by F(α∗), for S = 1/2 and m = 1/4 in
the classical limit. We display the cases for Jd = 0 (left panel) and
Jd = 0.5 (right panel).

We first begin by examining the effect of the thermal
fluctuation by taking the classical limit. In Fig. 3, we show
the free energy calculated in the classical regime for different
values of J‖ and Jd > 0, in unit of J⊥. We see that the minima
are always located at the colinear configurations α∗ = 0 and
π for all the coupling values.

The quantum limit β → ∞ where only the zero-point
energy contributes is more interesting. We plot in Fig. 4 the
free energy as a function of α for several values of J‖, with
S = 1/2 and a magnetization m = 1/4, corresponding to a
possible magnetization plateau in the quantum system from the
Oshikawa-Yamanaka-Affleck condition 4(S − m) ∈ Z [64].
For both Jd = 0 and Jd > 0, we observe two regimes. First,
at large J‖, we find the same behavior as that for the thermal
fluctuation with two minima at α∗ = 0,π . However, for small
values of J‖, the free energy is minimized at nontrivial values
of α, so that we get four minima at α∗, π − α∗, π + α∗, and
2π − α∗, as discussed in Sec. II B. Notice also the form of the
free energy showing that there are two groups of minima,

FIG. 4. (Color online) Numerical calculation of the free energy
from Eq. (19), normalized by F(α∗), for S = 1/2 and m = 1/4 in the
quantum limit β → ∞. We display the cases for Jd = 0 (left panel)
and Jd = 0.5 (right panel).
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because of the presence of two different energy barriers.
Indeed, a large barrier at α = π/2 separates the two minima at
π − α∗ and π + α∗ from the two others, while the separation
between them at α = π is smaller.

It is surprising at first sight that the two types of fluctuation
act in different directions, contrary to the case of the J1 −
J2 XY model on the square lattice [18] for example. The
thermal and quantum fluctuations play the same role in most
cases, as we said before that for Jd = 0, selecting α∗ = 0
or π implies having another field whose mass vanishes, and
such a state should be favored by the fluctuations in the usual
picture of OBD. However, it is important to note that the
zero-point energy depends on the sum ω+ + ω−, whereas the
thermal part is basically determined by the product ω+ω−
[expand the second term in Eq. (19) when β → 0]. Thus the
two fluctuations can in principle have distinct effects [44] and
select different states. It would be interesting to find a 2D or
3D system exhibiting this property as it would induce a phase
transition when lowering the temperature.

E. Discussion

Beyond the question which value of the angle is selected,
we have previously discussed the fact that this selection is
associated with a localizing potential for the field φ2 in
Eq. (14). This raises the question of the possible tunneling
between the different minima [65].

Let us start with the simplest case of the regime of large
J‖ corresponding to α∗ = 0,π . The double-well form of the
free energy implies the emergence of a Z2 symmetry and two
scenarios are then possible. If the energy barrier between the
two minima is sufficiently small and at the same time the
stiffness of the field φ2 (given by 1/λ2 at this Gaussian order)
is also small enough, the tunneling between the minima of
the potential becomes relevant and therefore the emergent Z2

symmetry is unbroken. This corresponds to a unique ground
state for both Jd = 0 and Jd > 0. In the opposite limit of
a energy barrier too large compare to the field stiffness,
the tunneling between the minima is suppressed and the Z2

symmetry is broken. In that case, we expect the ground state
to be twofold degenerate for Jd > 0 and threefold degenerate
for Jd = 0, because we could have started the calculation
from a classical configuration with spin 2 or 4 antiparallel
with spin 1, and this adds one more distinct state (remind
the initially broken Z3 symmetry). This state corresponds
to a k‖ = 0 ordering of the operator Q1234 since it takes
different values at the two minima (the third state also takes a
different one), and the chirality operator has a zero expectation
value. It is however important to remind that we are working
with a one-dimensional system. Thus in the case of thermal
fluctuation, thermal activation is always possible since the Z2

symmetry cannot be broken at finite temperature, and only in
the quantum case the above discussion is relevant. From our
calculation at the Gaussian order, it is, however, not possible to
give quantitative predictions about wether this Z2 symmetry is
broken, as we do not have access to the value of the potential.

We consider now the case of α∗ �= 0 or π that we found
in the regime of small J‖. Given the existence of four minima
and two different energy barriers, the situation is more complex
and two kinds of tunneling have to be considered. However,

we will see that, in this regime of moderately small J‖, the
situation is actually more complicated as a k‖ = π ordering
appears. In the expansion (6), by keeping the same unit cell of
four spins, we assumed that any ordering would be at k‖ = 0,
and thus such a phase cannot be described in our calculation.
It would require the addition of more degrees of freedom by
doubling of the unit cell and working with eight fluctuation
fields, which will be discussed in Sec. IV C.

We also want to show that the relevance of the tunneling
opens the possibility of observing quantized spin imbalance
phases. By “spin imbalance” we mean a phase with a discrete
symetry breaking and a different magnetization depending on
the chain, as in Ref. [66]. As we will see in Sec. III, for
S = 1/2 and in the strong-coupling limit, the ground state
turns out to be composed of a singlet and two fully polarized
spins on each rung, which makes the use of this term odd,
rather by employing “singlet phase.” However, we still choose
to keep it since, as we will now see, in this first approach using
the path integral, one only has an information on the relative
magnetizations between the chains, thus a spin imbalance, and
not on the individual magnetizations. To begin with, using
the relation Sz

j = m + �j , we see that the way to obtain a
different magnetization depending on the chain is to have
a nonzero value for one or several of the fields �j . In the
following, we are interested in the field �2, for which the
corresponding spin imbalance pattern is, as for φ2, grouping
spins 1 and 3 on one side and spins 2 and 4 on the other
side such that 〈Sz

1 − Sz
2 + Sz

3 − Sz
4〉 = 2〈�2〉 �= 0. Thus as the

effective potential becomes sufficiently flat together with a
value of the stiffness favoring the tunneling, the field becomes
more and more delocalized, i.e., �φ2 becomes very large. As
a consequence the wave function gets closer to a plane wave.
The key point is then to notice that the field �2 is thus strongly
locked to its eigenvalues due to the uncertainty principle
(��2 → 0), since the original �j variables have been defined
to be the conjugate momenta to the angular fluctuations ϕj .
Because these variables are defined between 0 and 2π , the �j

have integer eigenvalues 0, ± 1, ± 2, · · · and this translates
into half-integer eigenvalues for the fields �j according to
transformation (11). Then a spin imbalance phase associated
to �2 would be automatically quantized to an integer value,
namely 〈Sz

1 − Sz
2 + Sz

3 − Sz
4〉 = 0, ± 1, ± 2, · · · . Obviously,

because of the eigenvalue 0, it is also possible to get no
spin imbalance, and this is what the action (12) would predict
with only the kinetic term �2

2. However, even in this case,
the locking mechanism would manifest itself by strongly
suppressing the fluctuation of the spin imbalance observable.
It is worth reminding that in our analysis the spin imbalance
is predicted to be a uniform k‖ = 0 phase. We will elaborate
on those two points after reporting the strong-coupling and
numerical results where we obtain a staggered, thus k‖ = π ,
quantized spin imbalance phase.

We want to emphasize the specificity of such a spin
imbalance phase, whose nature is very distinct from the
spin imbalance phases reported in the Heisenberg model in
a magnetic field on two different three-leg spin tubes (one
uniform phase and one staggered). In both cases, the spin
imbalance magnitude is not constrained to take any specific
value and varies with the longitudinal spin coupling J‖ [62,66].
Here the locking to quantized values also tells us that the
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order parameter measuring the spin imbalance is basically
insensitive to the Hamiltonian parameters. This difference
stems directly from the continuous degeneracy of the classical
ground state and the OBD effect present in this model
while absent for the three-leg tube. We will show analytical
results from perturbation theory and numerical simulations
confirming this robustness.

III. STRONG-COUPLING EXPANSION

We present a strong-coupling analysis of the model (1)
by deriving effective Hamiltonians up to the second order in
the coupling J‖. We first analyze the S = 1/2 case on the
magnetization plateau m = 1/4 and show the appearance of
the spin imbalance phase. Then, we move to the general spin-S
case for which a new phase appears, and we investigate the
nature of the phase transition between the new phase and the
spin imbalance phase.

A. Single tetrahedron for S = 1/2

We consider here a single tetrahedron of S = 1/2 spins with
the Hamiltonian

H0 = J⊥
∑
j<j ′

�Sj · �Sj ′ + Jd (�S1 · �S3 + �S2 · �S4) − h

4∑
i=1

Sz
j .

(20)

At Jd = 0, this Hamiltonian has an S4 symmetry (or equiv-
alently, a tetrahedral Td symmetry) corresponding to any
permutation of the four spins. We note that the S4 symmetry
can be decomposed into its subgroups, such as S4 = Z4 ×
Z3 × Z2, where Z4 = {(),(1234),(13)(24),(1432)}, Z3 =
{(),(123),(132)}, and Z2 = {(),(13)}. This decomposition is
useful to understand the symmetry properties of eigenstates
of a single tetrahedron and the effective Hamiltonians in the
following discussion.

If introducing the diagonal asymmetry Jd �= 0, the S4

symmetry breaks down to a C4v = Z4 × Z2 symmetry. Thus
we can choose eigenstates of H0 as “momentum” eigenstates
|k�〉 to satisfy P�|k�〉 = k�|k�〉, which respect the Z4

symmetry corresponding to the cyclic permutation of four
spins, P�: �Sj → �Sj+1. Then the four eigenstates with Sz

� = 1
are written as

|k� = 0〉 = 1
2 (|↓↑↑↑〉 + |↑↓↑↑〉 + |↑↑↓↑〉 + |↑↑↑↓〉)

(21)

for S� = 2, and

|π/2〉 = 1
2 (|↓↑↑↑〉+ ω|↑↓↑↑〉+ ω2|↑↑↓↑〉+ ω3|↑↑↑↓〉),

|π〉 = 1
2 (|↓↑↑↑〉 − |↑↓↑↑〉 + |↑↑↓↑〉 − |↑↑↑↓〉),

|−π/2〉 = 1
2 (|↓↑↑↑〉+ ω3|↑↓↑↑〉+ ω2|↑↑↓↑〉+ ω|↑↑↑↓〉)

(22)

for S� = 1, where ω = exp(iπ/2) and we denote the basis
vectors as |Sz

1S
z
2S

z
3S

z
4〉. The corresponding energy eigenvalues

are given by Ek�=0 = (3J⊥ + Jd )/2, E±π/2 = (−J⊥ − Jd )/2,
and Eπ = (−J⊥ + Jd )/2, and shown in Fig. 5 as functions of
Jd . Thus we have three regimes: (i) for Jd < 0, the ground

FIG. 5. Plot of the energy eigenvalues of a single tetrahedron as
functions of Jd/J⊥.

state is in the k� = π state and unique, (ii) for Jd > 0, the
ground state is twofold degenerate with a doublet of states
with momentum k� = ±π/2, and (iii) at Jd = 0, these states
form a threefold degenerate ground state since H0 is simply
written in terms of �S�. The state with k� = 0 is always a
higher energy state and neglected in our analysis.

On the other hand, we can also write the eigenstates of H0

as those of an operator Q1324 defined by

Qjklm ≡ (�Sj × �Sk) · (�Sl × �Sm). (23)

Recall that we have already introduced this operator in the
path-integral analysis to distinguish the various classical
states (see Sec. II B). This operator is symmetric under
D2 = {(),(12)(34),(13)(24),(14)(23)}. The three low-energy
states with S� = 1 have 4Q1324 = 1, −1, and 0, and the
corresponding eigenstates are given by

|+〉 = 1
2 (|↓↑↑↑〉 + |↑↓↑↑〉 − |↑↑↓↑〉 − |↑↑↑↓〉),

|−〉 = − 1
2 (|↓↑↑↑〉 − |↑↓↑↑〉 − |↑↑↓↑〉 + |↑↑↑↓〉), (24)

|0〉 = 1
2 (|↓↑↑↑〉 − |↑↓↑↑〉 + |↑↑↓↑〉 − |↑↑↑↓〉),

where their energy eigenvalues are E± = (−J⊥ − Jd )/2 and
E0 = (−J⊥ + Jd )/2. These states are interpreted as linear
combinations of the wave function consisting of one singlet
and two polarized spins,

|�jk〉 = 1√
2

(|↑j↓k〉 − |↓j↑k〉) ⊗ |↑l↑m〉, (25)

where l and m represent positions of the other spins than j

and k [see Fig. 6(a)]. Using this wave function, we can rewrite

FIG. 6. (Color online) Schematic picture of the states (a) |�24〉 in
Eq. (25) and (b) |+〉 in Eq. (26). A blue open circle and a filled black
circle denote the singlet bond and the polarized spin, respectively.
The links on which a singlet resonates are represented by a red thick
line.
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Eq. (24) as

|+〉 = 1√
2

(|�13〉 + |�24〉) or
1√
2

(|�14〉 + |�23〉),

|−〉 = 1√
2

(|�12〉 − |�34〉) or
1√
2

(|�13〉 − |�24〉), (26)

|0〉 = 1√
2

(|�12〉 + |�34〉) or
1√
2

(|�14〉 − |�23〉),

This interpretation of the eigenstates will be convenient to
analyze the ground-state properties of the coupled tetrahedra.
Indeed, an eigenstate of Q1324 is a “tetramer” state in which
a singlet resonance only lives on the four bonds of a certain
plaquette ]see Fig. 6(b)].

We note that two sets of the three eigenstates in Eqs. (22)
and (24) are related by a unitary transformation, vk = UvQ

with

U =

⎛
⎜⎝

1
2 (1 − i) 1

2 (1 + i) 0

0 0 1
1
2 (1 + i) 1

2 (1 − i) 0

⎞
⎟⎠ , (27)

and

vk =
⎛
⎝ |π/2〉

|π〉
|−π/2〉

⎞
⎠ , vQ =

⎛
⎝|+〉

|−〉
|0〉

⎞
⎠ . (28)

In the following, we introduce a leg exchange J‖ between
tetrahedra to form the four-leg tube (1) and derive an effective
Hamiltonian in the strong-coupling limit J‖ � J⊥,Jd . Here-
after, we call the basis vectors vk and vQ as the “momentum
basis” and “Q basis,” respectively.

B. Strong-coupling Hamiltonian

First, we focus on the symmetric point Jd = 0 where the
Hamiltonian (1) has an S4 symmetry corresponding to any
permutation of four legs. Since the ground state of a single
tetrahedron is threefold degenerate, we perform degenerate
perturbation theory in the 3L-dimensional Hilbert space. In
the Q basis, we find

H
(1)
eff = J‖

4

L∑
i=1

(
λ1

i λ
1
i+1 + λ4

i λ
4
i+1 + λ6

i λ
6
i+1

)
, (29)

where λα , α = 1, · · · ,8 are the Gell-Mann matrices (for the
definition, see Appendix A 1). This effective Hamiltonian
obviously has a Z3 symmetry corresponding to the cyclic
permutation of three basis vectors, associated with the cyclic
permutation of three of four legs in the original tube, while
the Z4 symmetry is hidden. The Z3 symmetry is given by the
group elements {1,X ,X 2} with

X =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠ , X 2 =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠ , (30)

and the associated cyclic permutations of three legs are X =
(132) and X 2 = (123).

As we will see in Sec. III D, Eq. (29) has a hidden SU(2)
symmetry leading to a macroscopically degenerate ground
state. To lift this massive degeneracy, it is necessary to
add the second-order perturbation in J‖. In the Q basis, the
second-order effective Hamiltonian is given by

H
(2)
eff =

L∑
i=1

{
q1
(
λ1

i λ
1
i+1 + λ4

i λ
4
i+1 + λ6

i λ
6
i+1

)+ q2
(
λ2

i λ
2
i+1 + λ5

i λ
5
i+1 + λ7

i λ
7
i+1

)+ q3
(
λ3

i λ
3
i+1 + λ8

i λ
8
i+1

)
+ t1

(
λ1

i λ
4
i+1λ

6
i+2 + λ4

i λ
6
i+1λ

1
i+2 + λ6

i λ
1
i+1λ

4
i+2 + λ1

i λ
6
i+1λ

4
i+2 + λ6

i λ
4
i+1λ

1
i+2 + λ4

i λ
1
i+1λ

6
i+2

)
+ t2

[
λ1

i

(
1 −

√
3λ8

i+1

)
λ1

i+2 + λ4
i

(
1 − 3

2
λ3

i+1 +
√

3

2
λ8

i+1

)
λ4

i+2 + λ6
i

(
1 + 3

2
λ3

i+1 +
√

3

2
λ8

i+1

)
λ6

i+2

]}
, (31)

where the coupling constants are

q1 = J‖
4

+ 7J 2
‖

128J⊥
, q2 = − 31J 2

‖
128J⊥

, q3 = − 33J 2
‖

128J⊥
,

t1 = − J 2
‖

32J⊥
, t2 = − J 2

‖
48J⊥

. (32)

Next, we consider the diagonal asymmetry Jd in the four-leg
tube Hamiltonian (1). This introduces a “magnetic field” which
explicitly breaks the Z3 symmetry in the Q basis, and the
first-order Hamiltonian is modified as

H
(1)
eff =

L∑
i=1

[
J‖
4

(
λ1

i λ
1
i+1 + λ4

i λ
4
i+1 + λ6

i λ
6
i+1

)− Jd√
3
λ8

i

]
,

(33)

up to an additive constant. The magnetic field couples with λ8
i

and favors one (respectively, two) of the three states on each
site for Jd < 0 (respectively, Jd > 0), as seen from Fig. 5.

C. Order parameters

We here provide the connection between physical operators
in the original tube (1) and the Gell-Mann matrices appearing
in the effective Hamiltonian. In Table. I, we define several
operators on rung i, which detects spontaneous breaking of
the S4 symmetry. χ

jklm

i measures the z component of the
spin vector chirality on the plaquette (jklm). The momentum
eigenstates defined in Eq. (22) are eigenstates of the operator
χ1234

i . μ
jklm

i measures the rung spin imbalances associated
with the formation of two different dimers on the opposite
bonds (j l) and (km) as in Fig. 6(a). Q

jklm

i measures the
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TABLE I. Several order parameters relevant in this paper. Their symmetry properties in the symmetric group (SG) and the point group
(PG) languages are also displayed.

Symbol Order parameter SG sym. PG sym.

μ
jklm

i Sz
i,j − Sz

i,k + Sz
i,l − Sz

i,m {(),(j l),(km),(j l)(km)} C2v

χ
jklm

i (�Si,j × �Si,k)z + (�Si,k × �Si,l)z + (�Si,l × �Si,m)z + (�Si,m × �Si,j )z {(),(jklm),(j l)(km),(jmlk)} S4
a

Q
jklm

i (�Si,j × �Si,k) · (�Si,l × �Si,m) {(),(jk)(lm),(j l)(km),(jm)(kl)} D2

P
jklm

i (�Si,j + �Si,l) · (�Si,k + �Si,m) − 2(�Si,j · �Si,k + �Si,l · �Si,m) {(),(jklm),(j l)(km),(jmkl)}{(),(j l)} D2d

aHere S4 means the rotatory reflection symmetry.

formation of two different dimers on two pairs of bonds
[(jk),(lm)] and [(kl),(jm)], while P

jklm

i measures the tetramer
formation on the plaquette (jklm) as in Fig. 6(b). We also
define a projection operator onto the subspace spanned by
the three eigenstates (24) at rung i as Pi = vQv

†
Q [see

Eq. (28)]. The above operators are represented by the Gell-
Mann matrices in the truncated space:

Piμ
1234
i Pi = λ1

i , Piχ
1234
i Pi = λ2

i ,

Piμ
3124
i Pi = λ4

i , Piχ
3124
i Pi = −λ5

i ,

Piμ
2314
i Pi = λ6

i , Piχ
2314
i Pi = λ7

i ,

PiQ
1324
i Pi = 1

4λ3
i , PiP

1234
i Pi =

√
3λ8

i .

(34)

One can easily see that the other operators Q are obtained by
the Z3 operations X and X 2,

PiQ
3214
i Pi = 1

4Xλ3
i X−1,

PiQ
2134
i Pi = 1

4X
2λ3

i X−2,
(35)

and P is related to Q by

PiP
1234
i Pi = Pi

(
Q2134

i − Q3214
i

)
Pi . (36)

We note that Q1324
i and P 1234

i form the E representation of
the tetrahedral symmetry group Td . On the other hand, μ’s and
χ ’s form the T2 and T1 representations, respectively. In the
discussion of the lattice distortion on the pyrochlore lattice,
the E representation is relevant in zero magnetic field and
leads the tetragonal or orthorhombic distortion [67–69]. In
a magnetic field, the T2 representation allows the trigonal
distortion and the half-magnetization plateau at the classical
level [70]. A related Z3 × Z2 symmetry breaking phase is
also proposed in the presence of a Dzyaloshinskii-Moriya
interaction [24]. The T1 representation generally leads to some
chiral ordered state as found in the pyrochlore lattice with
coupled tetrahedra in the presence of a magnetic field and
Dzyaloshinskii-Moriya interaction [53].

D. Hidden ferromagnetism and ground-state selection

Actually, besides the discrete S4 symmetry coming from the
original spin tube, the first-order Hamiltonian (29) possesses
a hidden SU(2) symmetry under the open boundary condition
(OBC). This model can be exactly mapped onto the spin-1
Heisenberg ferromagnet,

VH
(1)
eff V−1 = −J‖

4

L∑
i=1

�Ti · �Ti+1, (37)

by a nonlocal unitary transformation V introduced by
Kennedy [71] (see Appendix A 2), where �Ti is the spin-1
operator. We therefore obtain the exact (2L + 1)-fold degen-
erate ground state with ferromagnetic order. If we go back to
the original problem by the nonlocal unitary transformation,
the macroscopic degeneracy of the ground state still remains
but most of the ferromagnetic states will be disordered in
the same manner as that of the Affleck-Kennedy-Lieb-Tasaki
model [72,73] (several exceptions are shown below). We note
that such a hidden SU(2) symmetry has also been observed [74]
in the spin-1 XY model under the OBC in which case the
symmetry takes the spin-1/2 representation while the spin-1
representation in our case. Although the SU(2) symmetry is
smeared under the periodic boundary condition (PBC), we
found that a ground-state degeneracy proportional to L still
remains.

Once the higher-order perturbations as in Eq. (31) are turned
on, the system starts to “feel” the S4 anisotropy. Then the emer-
gent SU(2) symmetry is reduced to T × D2 × Z3, where T ,
D2, and Z3 denote time reversal, dihedral group of π rotations
around spin axes, and cyclic group of permutations of spin
axes, respectively. We expect that, among the macroscopically
degenerate ferromagnetic states, some of them are selected by
the S4 anisotropy. Although a local operator generally takes
some nonlocal form through a nonlocal transformation, at least
to the second order, the higher-order perturbations in Eq. (31)
still take local forms (see Appendix A 2). Thus those states can
have a well-defined usual long-range order.

Indeed, we find the sixfold ferromagnetic ground state
aligned in the x, y, or z direction, as depicted in Fig. 7(a).

FIG. 7. (Color online) Schematic picture of the sixfold degener-
ate ground state. (a) In the ferromagnet obtained after the nonlocal
transformation, the ground state is a ferromagnetic state aligned in
the x, y, or z direction. (b) In the original model, the ground state is
a staggered spin imbalance phase associated with λ1, λ6, or λ4.
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This ferromagnetic order is related to the long-range order in
the original model by the string order parameter [71]:

V
[
(−1)rλ1

1λ
1
r

]
V−1 = Õx

string(r),

V
[
(−1)rλ4

1λ
4
r

]
V−1 = Õz

string(r),

V
[
(−1)rλ6

1λ
6
r

]
V−1 = Õ

y
string(r),

(38)

where

Õ
μ
string(r) = −(−1)rT μ

1 exp

(
iπ

r−1∑
l=2

T
μ

l

)
T μ

r , (39)

with μ = x,y,z. One can see that the fully polarized ferro-
magnetic state, say |1111 · · · 〉 in the T x basis, has a perfectly
saturated string correlation 〈Õx

string(r)〉 = −1. Therefore the
corresponding correlation function in the original model also
has a perfectly saturated value 〈(−1)rλ1

1λ
1
r 〉 = −1. A finite

expectation value of 〈(−1)iλ1
i λ

1
i 〉 indicates the staggered spin

imbalance order associated with (−1)iμ1234
i .

A direct way to see this order is to apply the nonlocal trans-
formation V to |1111 · · · 〉. V acts as |1〉 → (|+〉 + |−〉)/√2
on odd site, but |1〉 → (|+〉 − |−〉)/√2 on even site (if the
state |0〉 is inserted, this transformation becomes slightly more
complicated). This gives the product of the two local states
|�13〉 and |�24〉 on alternating sites. These local states are
actually the eigenstates of μ1234

i with eigenvalue ±1. The state
| − 1 − 1 · · · 〉 is also transformed to the product of the two
states |�13〉 and |�24〉 but in the opposite manner to |1111 · · · 〉.
One can repeat similar arguments for the other four states
aligned in y and z and obtain the spin imbalanced states
corresponding to (−1)iμ2314

i and (−1)iμ3124
i . Consequently,

we have the sixfold degenerate ground state with the quantized
spin imbalance in the strong-coupling limit, as shown in
Fig. 7(b).

Strictly speaking, the ground state of the strong-coupling
Hamiltonian (31) is not exactly in the direct-product state for
general J‖. The exact factorizable property of the ground state
only appears in the limit J‖/J⊥ → 0 with finite J‖. In this
sense, the ground state of our model is not an exact product
state, as opposed to the Shastry-Sutherland model [40] or its
variants [42,75] discussed in Sec. I. However, as long as J‖ is
close to zero, the second-order or higher-order perturbation in
J‖ just gives an anisotropy on the SU(2) ferromagnet whose
order parameter takes the saturated (quantized) value, and it
would not much change the order parameter from the saturated
value, which would be obtained for an exact product-state
wave function. This has already been expected from the OBD
mechanism in Sec. II and will be confirmed by numerical
simulations in Sec. IV.

E. Ground state of strong-coupling Hamiltonian

From now on, we confirm the above expectation for
the ground state of the strong-coupling Hamiltonian. We
separately treat the three regimes: (i) Jd < 0, (ii) Jd > 0, and
(iii) Jd = 0.

1. Regime Jd < 0

When Jd < 0, the ground state is polarized into the single
tetramer state |0〉 on each site. Thus we have a unique

disordered ground state with a finite excitation gap, where
all correlation functions decay exponentially. In Ref. [76],
Cabra et al. studied the magnetic phase diagram of a four-
leg spin tube corresponding to the Jd = −J⊥ case. In the
weak coupling limit J⊥ � J‖, they analyzed the model by
bosonization and found a possible gapped phase in the
1/4-magnetization plateau. That phase is described by the
massive sine-Gordon model, whose potential has only a single
minimum in the compactification radius, and expected to
be unique and disordered. Therefore the unique disordered
ground state would extend from the weak- to strong-coupling
regime.

2. Regime Jd > 0

If the diagonal asymmetry is sufficiently strong, Jd � 0,
the two states |+〉 and |−〉 are energetically favored on each
site, while exchange processes involving the state |0〉 will be
suppressed. In this case, the effective Hamiltonian (33) takes
the following form:

H
(1)
eff = J‖

4

L∑
i=1

λ1
i λ

1
i+1. (40)

If we regard the states |±〉 as eigenstates of the pseudo-spin-
1/2 operator τ z with eigenvalues ±1/2 and neglect the state
|0〉, this model is nothing but an Ising model in the x direction,

H
(1)
eff = J‖

L∑
i=1

τ x
i τ x

i+1, (41)

where �τi is a spin-1/2 operator. Thus we obtain a twofold
degenerate ground state, like an Ising Néel state, characterized
by a finite expectation value of (−1)iλ1

i (or equivalently,
(−1)iτ x

i ). Of course, close to the symmetric point Jd = 0, the
exchange processes involving |0〉 should be taken into account.
As discussed in Sec. III D, the field λ8

i acts as an easy-axis
anisotropy −(T x

i )2 on the ferromagnet. Thus the ferromagnetic
order in the x direction is favored. Even in the vicinity
of Jd = 0, this leads to the quantized expectation value,
〈(−1)iλ1

i 〉 = ±1, as if in the classical Néel state. If we translate
the above ground-state properties back in the original tube
variables, this indicates a staggered spin imbalance associated
with the order parameter (−1)iμ1234

i . This order parameter
possesses the symmetry under C2v = {(),(13),(24),(13)(24)}
as a subgroup of the C4v . Since C4v/C2v = Z2, this order
parameter is compatible with twofold degeneracy of the ground
state. The resulting phase is illustrated in Fig. 7(b) in the “λ1

direction.”
When increasing J‖, new terms appear in the Hamiltonian

and we obtain, considering only nearest-neighbor terms, an
XYZ model at the second order:

H
(2)
eff =

L∑
i=1

(
Jxτ

x
i τ x

i+1 + Jyτ
y

i τ
y

i+1 + Jzτ
z
i τ z

i+1

)
, (42)

where Jy and Jz are negative and of order J 2
‖ /J⊥ (given by

complicated analytical expression). Once projected onto the
truncated subspace, the relations τ

y

j = 2χ1234
j and τ z

j /2 =
Q1324

j hold. One can check that the form of the Hamilto-
nian (42) is invariant under the D2 × T symmetry operations
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coming from the original C4v symmetry. It turns out that in
the regime where the perturbation theory is valid, the Jx term
always dominates thus we do not expect a transition out of
the Ising phase as long as the magnetization plateau exists.
However, as we will see in Sec. III F, this is not the case for
S > 1/2.

3. Point Jd = 0

At the S4 symmetric point Jd = 0, the effective Hamiltonian
is given by Eq. (31). In this case, we expect the sixfold ground
state with the staggered spin imbalance order, as illustrated in
Fig. 7(b), associated with the three order parameters (−1)iλ1

i ,
(−1)iλ4

i , and (−1)iλ6
i . These operators transform each other

by the Z3 symmetry operation in Eq. (30). Although the dimer
states |�jk〉 are not orthogonal between each other (|�13〉 is
only orthogonal to |�24〉 for example), the overlaps of the
six product states built from them scale as 1/2L, similar to
valence-bond solid states [72,77]. Therefore the six ground
states are not orthogonal in a finite system but asymptotically
orthogonal in the thermodynamic limit L → ∞.

Since there is no analytical way to handle the effective
Hamiltonian (31), we first examine it numerically in order
to support the above proposal. Using exact diagonalization
(ED) technique, we compute the low-lying excitation energies
for the original tube model (1) with L = 10 and the effective
Hamiltonian with L = 18, at J‖ = 1, J⊥ = 10, and Jd = 0.
They are shown in Fig. 8 as functions of the longitudinal
momentum k‖ since we impose the PBC in the leg direction.
Both results are in good quantitative agreement and exhibit
a sixfold (nearly) degenerate structure in the lowest energies
and a large gap above them. This is a strong evidence of the
ground state with discrete Z6 symmetry breaking.

In the ED calculation on the second-order effective Hamil-
tonian (31), we implemented the global Z3 symmetry as
well as the longitudinal translational symmetry. The excitation
spectrum is resolved by k�, which is defined by

∏
i Xi |k�〉 =

exp(ik�)|k�〉 and take three values, 0 and ±2π/3. As seen from
Fig. 8(b), the six ground states belong to each six symmetry
sector characterized by k� and k‖ = 0,π . This observation is
consistent with one-dimensional irreducible representations
of the Z3 and translational symmetries, formed by linear
combinations of the six spin imbalance states displayed
in Fig. 7(b). On the other hand, for the diagonalization
on the original Hamiltonian, we implement the global Z4

symmetry associated with the cyclic permutation of legs and
classify the spectrum by the momentum k�. We can also
access the reflection quantum numbers R = (rx,ry) labeling
the even/odd states with respect to reflections respectively
along the leg and rung directions.[78] If we denote each
momentum sector as K = (k‖,k�), from Fig. 8(a), we can
find that the six lowest-energy states have quantum numbers:
(1) K = (0,0) and R = (+,+) (two states), (2) K = (0,π ) and
R = (−,+) (one state), (3) K = (π,π ) and R = (+,+) (one
state), (4) K = (π,π/2) and R = (N.A.,+) (one state), (5)
K = (π, − π/2) and R = (N.A.,+) (obe state), where N.A.

stands for not available (symmetries not commuting). This is
again compatible with the irreducible representations of the
C4v = Z4 × Z2 and translational symmetries.

FIG. 8. (Color online) Excitation energies are plotted as func-
tions of the longitudinal momentum k‖ for J‖ = 1, J⊥ = 10, and
Jd = 0. The top panel (a) shows ED data obtained from the tube
model with L = 10 and labeled by the transverse momenta k�. The
bottom panel (b) shows the ED data obtained from the second-order
effective Hamiltonian (31) with L = 18 and labeled by k�.

We also calculate the correlation functions, 〈λ1
i λ

1
j 〉, 〈λ2

i λ
2
j 〉,

and 〈λ3
i λ

3
j 〉, with respect to the ground state in each symmetry

sector (k‖,k�) for the effective Hamiltonian (31), which are
shown in Fig. 9. Oscillating behaviors in 〈λ1

i λ
1
j 〉 indicate the

staggered spin imbalance, while strong suppressions of 〈λ2
i λ

2
j 〉

mean no development of the spin vector chiral order. Although
〈λ3

i λ
3
j 〉 exhibits a finite uniform correlation, this does not

necessarily indicate the existence of another order associated
with λ3. Since we can write

λ3 = 1
2

[
exp(iπλ6) − exp(iπλ4)

]
, (43)

λ3
i becomes +1/2 (−1/2) if λ4

i takes ±1 (0) and λ6
i takes 0 (±1)

as in the spin imbalance phase. Combined with the fact that the
degenerate ground state obtained by ED is in a superposition of
the six spin imbalance states to respect theZ3 and translational
symmetries, this gives the finite values of 〈λ3

i λ
3
j 〉 in addition to

〈λ1
i λ

1
j 〉. Overall, for the m = 1/4 plateau, our ED data strongly

suggest the realization of the sixfold degenerate ground state
with staggered spin imbalance in the strong-coupling limit.
However, the quantization of the order parameter cannot be
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FIG. 9. (Color online) Correlation functions with respect to the
ground state of the second-order effective Hamiltonian (31) for
L = 18 and J‖/J⊥ = 0.1. The results are obtained for each symmetry
sector (a) k‖ = k� = 0, (b) k‖ = 0, k� = 2π/3, (c) k‖ = π , k� = 0,
and (d) k‖ = π , k� = 2π/3. The cross, circle, and triangle symbols
denote 〈λ1

i λ
1
j 〉, 〈λ2

i λ
2
j 〉, and 〈λ3

i λ
3
j 〉, respectively.

observed due to the limitation of the system size, because of
the nonorthogonality of the degenerate spin imbalance states.
In Sec. IV, we will address this issue on the original tube by
large-scale numerical simulations.

In summary, we expect two different phases when varying
Jd . When Jd < 0, the ground state is unique and disordered.
For Jd � 0, the ground state forms localized singlets on each
rung and exhibits the staggered spin imbalance order. Since the
ground state preserves the C2v symmetry for both Jd = 0 and
Jd > 0 cases, the difference in the ground-state degeneracy
between these cases stems only from the symmetry of the
Hamiltonian. The former gives sixfold degeneracy while the
latter gives twofold degeneracy. Thus the phase transition
at Jd = 0 would be of the first-order type since the order
parameter (−1)iμ1234

i is expected to show a discontinuous
jump at this point. Indeed, Jd is like a conjugate field to the
spin imbalance order parameter but does not fully breaks the
ground-state manifold. It is similar to a uniaxial anisotropy in
a classical Heisenberg ferromagnet. This model also shows a
jump in magnetization profiles and has a first-order transition
at the Heisenberg point, when passing from the Ising to planar
ferromagnet by varying the anisotropy parameter.

F. General S: highest plateau

Finally, we consider the higher S cases. For a generic
magnetization plateau, the strong-coupling Hamiltonian ap-
proach becomes too difficult to handle because the number
of low-energy states increases. Yet, our preceding discussions
on the S = 1/2 case can be directly applied to these cases
in the highest plateau (not counting the saturated plateau)
of magnetization per spin m = S − 1/4. When solving the
single tetrahedron, there are four eigenstates which can be
written exactly as Eq. (22) with the changes ↑ → S and
↓ → S − 1. We now show that, for any S > 1/2, this leads

FIG. 10. (Color online) Values of the parameters Jx , Jy , and Jz

of the effective XYZ second-order Hamiltonian (42) as functions of
J‖/J⊥ for S = 1 and Jd/J⊥ = 0.5. The inset shows the value of the
critical coupling J‖,c, defined by Jz/Jx = −1, as a function of Jd/J⊥.

to the appearance of a new phase, for both cases Jd = 0 and
Jd > 0.

1. Regime Jd > 0

The second-order effective Hamiltonian in this general
spin-S case is an XYZ model as in Eq. (42) with couplings
being complicated functions of J⊥, Jd , and S. We plot in
Fig. 10 the values of those couplings as functions of J‖ for
S = 1 and Jd = 0.5. Several comments have to be made.

First, contrary to the S = 1/2 case where Jx is always
dominant coupling, |Jz| ∼ |Jy | > |Jx | occurs even in the
perturbative regime J‖/J⊥ � 1. Then, we expect a transition
from an antiferromagnetic Ising phase where the positive
coefficient Jx dominates to a ferromagnetic Ising phase where
either of the negative Jy or Jz has the largest magnitude. From
Fig. 10 for S = 1, Jz dominates (it is also true for higher S)
but it is difficult to rule out the possibility of having another
regime dominated by Jy , since they take very close values
at the second order. Higher-order terms possibly lead to an
extra transition appearing if their values cross for larger J‖.
However, from the results at Jd = 0 (see below), it appears
that the coupling Jz always dominates. We observe a uniform
ordering of the operator Q1324 where all the states on each
rung are either in the tetramer state |+〉 or in |−〉 [see Eq. (24)
and Fig. 6(b)]. On the other hand, we do not find any sign
of chiral order. Like the order parameter μ1234

i , the operator
Q1324 now possesses an order-4 symmetry, but in a different
way, namely {(),(12)(34),(14)(23),(13)(24)}. This leads to the
twofold degenerate ground state with the uniform tetramer
order.

Since our effective Hamiltonian (42) is of the form of an
XYZ model, the transition passes through the U(1) symmetric
point Jx = −Jz. Apparently, the transition becomes the con-
tinuous one with central charge c = 1. Of course, this is merely
due to the truncation of higher-order perturbations; including
those perturbations, this emergent U(1) symmetry will be
broken. In general, between two ordered phases associated
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FIG. 11. (Color online) Excitation energies obtained in the effective Hamiltonian (31) are plotted against J‖/J⊥ for (a) S = 1, (b) S = 3/2,
and (c) S = 2. The logarithmic scale is used for the horizontal axis. Here we set J‖ = 1 and use the L = 16 system. Each symbol corresponds to
the lowest energy eigenvalues associated with the set of quantum numbers: k‖ = 0 and k� = 0 (cross), k‖ = 0 and k� = 2π/3 (square), k‖ = π

and k� = 0 (circle), and k‖ = π and k� = 2π/3 (triangle). Energy levels of the k� = 2π/3 sector are degenerate with those of k� = −2π/3.

with different order parameters, there is a first-order transition
or an intermediate phase where both order parameters coexist.
However, several exceptions of this criterion exist in 1D due
to strong quantum fluctuation. Indeed, even in the absence
of the exact U(1) symmetry, we can still have a Gaussian
transition with c = 1 under the dihedral group symmetry of
spin rotations, provided by the C4v symmetry. This is our case
and the transition becomes continuous although both phases
have different symmetries.

2. Point Jd = 0

Moving to the symmetric point, the second-order effective
Hamiltonian in the strong-coupling limit is given by the
same form as Eq. (31), except for the S-dependent coupling
constants,

q1 = J‖
4

− J 2
‖

J⊥

(
32S2 − 16S − 3

32
+ 5

256S

)
,

q2 = −J 2
‖

J⊥

(
32S2 − 1

32
+ 3

256S

)
,

(44)

q3 = −J 2
‖

J⊥

(
32S2 + 1

32
− 3

256S

)
,

t1 = − J 2
‖

32J⊥
, t2 = − J 2

‖
48J⊥

.

At the first order in J‖, we obtain exactly the same
Hamiltonian as Eq. (29), and therefore the hidden SU(2)
symmetry causes the macroscopic degeneracy in the ground
state. Again, adding the second-order perturbations, we will
find the staggered spin imbalance phase associated with finite
expectation values of (−1)iλ1,4,6

i . In the S = 1/2 case, this
follows from the fact that q1 is positive and always larger
than other couplings in its magnitude for the strong-coupling
regime J‖/J⊥ � 1.

However, this is no longer true for S > 1/2 cases. In-
creasing J‖/J⊥ from zero, we can find a regime where q3

becomes the negative most dominant coupling. This implies
that another ordered phase associated with λ3

i or λ8
i is possible

to occur along J‖/J⊥. In Fig. 11, we show the lowest excitation

energies for the effective Hamiltonian (31) with the coupling
constants (44) for several S. Since we are interested in the
ground state, it is enough to look at the excitation spectra
at k‖ = 0 and k‖ = π . One should notice that each spectrum
with k� = 2π/3 is doubly degenerate with that with k� =
−2π/3. As expected from the S = 1/2 case, the (nearly)
sixfold degenerate energy corresponding to the staggered
spin imbalanced phase lies around J‖/J⊥ = 0.01. Increasing
J‖/J⊥, the three lowest energies with k‖ = π are lifted while
the other three with k‖ = 0 still remain. This indicates that a
uniform ordered phase with Z3 symmetry breaking appears in
the intermediate coupling regime.

In fact, this corresponds to a threefold degenerate ground
state with uniform tetramer order associated with λ8

i and
its Z3 symmetry counterparts Xλ8

i X−1 and X 2λ8
i X−2. In

the original tube, these order parameters correspond to the
plaquette operators P 1234

i , P 3124
i , and P 2314

i defined in Table I.
Since P

jklm

i preserves the order-8 symmetry, this clearly
detects the Z3 symmetry breaking. In the above Jd > 0 case,
since the S4 symmetry is initially broken, Q1324

i is equivalent
to P 3124

i or P 2314
i in the sense of the order parameter which

detects Z2 symmetry breaking. Nevertheless, for Jd = 0, we
can still use two independent Q

jklm

i instead of P
jklm

i to detect
the tetramer order as indicated in Eq. (36). Namely, the same
magnitude of expectation values of two different Qjklm

i implies
an additional Z2 symmetry and detect the tetramer order. For
the simplest three product states with maximal tetramer order,
|�ν〉 =⊗i |ν〉i , ν = +, − ,0 in the Q basis, Q

jklm

i takes the
expectation values indicated in Table II.

TABLE II. Expectation values of the operators Q
jklm

i in the
tetramer ordered phase.

Q1234
i Q1324

i Q1423
i

|�+〉 0 2S3 2S3

|�−〉 −2S3 −2S3 0

|�0〉 2S3 0 −2S3
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Although the two phases appearing in this strong-coupling
regime are understood, the question of the transition is
actually complicated. Again the two phases have different
order parameters. The standard Landau theory generally tells
us that there is a first-order transition or an intermediate phase
with coexistence of the order parameters. However, as seen
in the Jd > 0 case, we cannot exclude the possibility of a
continuous transition. We could not extract any information
about the nature of the transition from the second-order
Hamiltonian (31). In the next section, we will provide
numerical results supporting a continuous scenario.

IV. DMRG RESULTS

We here use the standard DMRG algorithm [79] to
investigate physical properties on the magnetization plateau in
the original spin tube (1). Typically, when computing energies
or local quantities, we have kept 1600 states (respectively,
3200 states) for S = 1/2,1 (respectively, S = 3/2), which is
sufficient to have a negligible discarded weight (below 10−9).
When computing correlations or entanglement entropies at
transitions, it was necessary to keep up to 4000 states to reach
convergence. In the following, we will set J⊥ = 1.

A. S = 1/2

First of all, by measuring the energy against total Sz

and performing a Legendre transformation, we can draw the
magnetization curve as plotted in Fig. 12 for S = 1/2 and
J‖/J⊥ = 0.2. Clearly, three magnetization plateaus appear at
m = 0, 1/4, and 1/2. The m = 0 plateau implies a finite triplet
excitation gap and the m = 1/2 plateau corresponds to the fully
saturated state. Now we are interested in the m = 1/4 plateau.
The saturation field hsat and the spin gap for Jd < 0 are easily
shown to be independent of Jd (for any S). A finite-size scaling
analysis of the m = 1/4 plateau width does confirm that it
remains finite in the thermodynamic limit for all parameters
that we study below (data are not shown).

FIG. 12. (Color online) Magnetization curves obtained by
DMRG for several values of Jd/J⊥ in Eq. (1) with S = 1/2, J‖/J⊥ =
0.2, and L = 64.

FIG. 13. (Color online) Local quantities Sz
i,j and Q

jklm

i computed
around the center of the system, as functions of rung index i for
Jd/J⊥ = 1, J‖/J⊥ = 0.1, and L = 96. The staggered values of 〈Sz

i,j 〉
indicate that the simulation selects one of the two spin imbalance
states predicted by the strong-coupling analysis.

1. Regime Jd < 0

We have verified that for Jd < 0 we have a unique
disordered ground state, by computing both the local quantities
and the correlations of the operators defined in Table I.
Both data are compatible with a unique disordered state,
very close to the product of the |0〉 state, |�0〉, as expected
from the strong-coupling analysis. In particular, all connected
correlations decay exponentially and for the local magneti-
zations no spin imbalance is observed (data are not shown).
This case encompasses the nonfrustrated four-leg tube with
Jd = −J⊥ [76].

2. Regime Jd > 0

Let us now move to the opposite side, namely, Jd > 0. In
Fig. 13, we plot the expectation values of the local operators
Sz

i,j and Q
jklm

i for Jd/J⊥ = 1 and J‖/J⊥ = 0.1. We note that,
in the following, data obtained around the center of the system
are shown for those local quantities so that effects from the
boundaries are considered to be negligibly small. It is obvious
that the simulation selects one of the two degenerate ground
states [80] with the staggered spin imbalance predicted by
the strong-coupling analysis from the values of 〈Sz

i 〉. Because
of this selection, we can use the local quantities rather than
the correlation functions to characterize the ground state.
〈Sz

i,1〉 and 〈Sz
i,3〉 take the values very close to +1/2 on odd

plaquettes while 0 on even ones, and vice versa for 〈Sz
i,2〉

and 〈Sz
i,4〉. Then we have the staggered spin imbalance with

tiny fluctuation, 〈(−1)iμ1234
i 〉 � −1. This indicates that the

ground state has a form close to a product state of |�24〉 on
odd plaquettes and |�13〉 on even ones. The finite expectation
value of Q1234

i = −Q1423
i just accompanies the staggered spin

imbalance and is very close to −1/8 as expected from Eq. (43)
(recall PiQ

1324
i Pi = λ3

i /4).

3. Point Jd = 0

Now, we are at the S4 symmetric point Jd = 0, where the
physical picture is expected to be the same as that for Jd > 0,
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FIG. 14. (Color online) Local quantities Sz
i,j and Q

jklm

i computed
as functions of rung index i for Jd = 0, J‖/J⊥ = 0.1, and L = 96.

with only a change of the ground-state degeneracy. We plot
in Fig. 14 the local quantities computed for J‖/J⊥ = 0.1. As
for Jd > 0, the simulation selects one of the six ground states
with the staggered spin imbalance pattern. Depending on the
parameters of the simulation (such as size, or labeling of the
1D path that we use for the simulation), the selected state is
not always the same and we have observed several of the six
states. In Fig. 14, we observed that 〈Sz

i,3〉 and 〈Sz
i,4〉 take the

value very close to +1/2 on odd plaquettes while 0 on even
ones, and vice versa for 〈Sz

i,1〉 and 〈Sz
i,2〉. This means that

〈(−1)iμ2314
i 〉 � +1 and the ground state is close to a product

state of |�12〉 on odd plaquettes and |�34〉 on even ones.
Accompanying the spin imbalance order, 〈Q1324

i 〉 = 〈Q1423
i 〉

takes the value very close to −1/8.

B. General S case

We treat now the higher spin-S cases: S = 1 and 3/2.
We give the results for the highest plateau to confirm the
appearance of another phase with tetramer order in the regime
of large J‖/J⊥. We mainly present results obtained for S = 1
on the highest plateau, which allows us to access larger
system sizes in DMRG. For completeness, we present in
Fig. 15 magnetization curves for S = 1 and J‖/J⊥ = 0.1 on
the L = 32 lattice, where the plateaus at m = 1/4, 1/2, and
3/4 clearly appear. We note the presence of jumps at the edges
of the magnetization plateaus for m = 1/4 and 1/2 at the
symmetric point Jd = 0 but will not investigate them further.
We also report the appearance, for the other plateaus, of several
staggered spin imbalance phases whose order parameters are
also quantized.

1. Highest plateau: Jd > 0

For Jd > 0, as increasing J‖/J⊥, we have expected the
twofold degenerate ground state with uniform tetramer order
from Sec. III F 1. For Jd/J⊥ = 1, the transition point was
estimated as J‖/J⊥ � 0.35 from Fig. 10. However, we could
not observe any sign of another symmetry broken phase
after the staggered spin imbalance order vanishes. A useful
quantity to identify the critical behavior of the system is
the von Neumann entanglement entropy of a block SvN (�),

FIG. 15. (Color online) Magnetization curves obtained by
DMRG for several values of Jd/J⊥ in Eq. (1) with S = 1, J‖/J⊥ =
0.1, and L = 32.

which exhibits two different behaviors for large block sizes
� under the OBC: SvN (�) saturates to a constant when the
system is gapped, whereas SvN (�) � (c/6) ln � + c′ when
the system is critical [81]. Here, c is the central charge of
the underlying conformal field theory and c′ is a nonuniversal
constant. Finite-size effects are correctly treated through the
conformal map, � → d(�|L) = (L/π ) sin(�π/L).

In Fig. 16, we plot the entanglement entropy for Jd/J⊥ = 1
and various values of J‖/J⊥. Starting at J‖/J⊥ = 0.05, we
observe the flat behavior of SvN in the spin imbalance phase
with a finite gap. Around J‖/J⊥ = 0.15, its behavior changes
and a logarithmic fitting, after removing the oscillating part
coming from a bond modulation [45], gives a central charge
close to 1 for a wide range of J‖/J⊥ (c = 0.96,0.99,0.93
for, respectively, J‖/J⊥ = 0.15,0.2,0.3). This does not agree
with our expectation that another gapped phase with uniform
tetramer order appears from the strong-coupling analysis. The
wide critical phase with c = 1 observed here is with no doubt

FIG. 16. (Color online) Evolution of the block entanglement
entropy SvN (�) vs block length d(�|L) (starting at one end of the
tube) on the L = 64 tube at Jd/J⊥ = 1 when J‖/J⊥ is varied from
0.05 to 0.3. The logarithmic scale is used for the horizontal axis.
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FIG. 17. (Color online) Local quantities Sz
i,j and Q

jklm

i computed
as functions of the rung index i at the symmetric point Jd = 0, L =
64, and S = 1. The results are shown for J‖/J⊥ = 0.05, 0.06, and
0.07 from top to bottom.

a numerical artifact and was anticipated from the following
reason. Since the difference between Jy and Jz in the effective
XYZ model (42) is very small (∼0.04J 2

‖ /J⊥) at the second
order, the tetramer phase dominated by Jz is close to an easy-
plane antiferromagnetic phase with c = 1. Thus the excitation
gap should be very small and this means that in a numerical
simulation we will find a critical behavior on the system whose
size is smaller than the correlation length.

2. Highest plateau: Jd = 0

At the S4 symmetric point, we begin by showing in Fig. 17
the evolution of the local quantities 〈Sz

i 〉 and 〈Qjklm

i 〉 with
varying J‖/J⊥. We see that at J‖/J⊥ = 0.05 the staggered spin
imbalance is present but starts to vanish, and is completely
absent for J‖/J⊥ = 0.06 and larger values. This gives us a
rough estimation of the transition and is in agreement with the
value expected from the ED calculation on the effective model
[see Fig. 11(a) where the excited levels start to collapse on
the threefold degenerate ground state at J‖/J⊥ � 0.06]. Also,
we can compare the expectation values of the operators Q to
the values given in the Table II for S = 1. We see that the
simulation for J‖/J⊥ = 0.07 selects the |�−〉 state, and that
the expectation value of the Q operators are almost halves of
those in the ideal tetramer states. From the Hamiltonian (31),
even if the q3 term dominates and causes the tetramer order,
the other terms with q1 and q2 are still not negligible in the
sense that they give the quantum fluctuations around this state.
This is different from the spin imbalance order, where the
order parameter gives the correct quantized value, indicating
the strong suppression of quantum fluctuation. Those ideas
will be developed more deeply in the conclusion.

Then, we use the entanglement entropy to precisely locate
the phase transition. In Fig. 18, we plot the entanglement
entropy for several values of J‖/J⊥ around the transition
point. The saturated behavior on both sides of the transition
confirms the gapped phases, and we see that for J‖/J⊥ = 0.058

FIG. 18. (Color online) Evolution of the block entanglement
entropy SvN (�) vs block length d(�|L) (starting at one end of the
tube) on the L = 64 tube at Jd/J⊥ = 0 when J‖ is varied from 0.04
to 0.08. The logarithmic scale is used for the horizontal axis. The
entropy for J‖/J⊥ = 0.058 is well fitted by a logarithmic function
(c/6) ln d(�|L) + c′ with c = 1.96, indicated by the dashed line.

the von Neumann entropy is logarithmically fitted with a
central charge c = 1.96, indicating some exotic criticality.
The question is then whether this value is trustworthy or not.
This c = 2 could point towards the criticality governed by
the level-1 SU(3) Wess-Zumino-Witten model. Neglecting the
next-nearest-neighbor terms in the effective model (31), the
model could be at or in the vicinity of such criticality (an
exact SU(3) symmetric point is at q1 = q2 = q3). However, we
could not find any evidence of the criticality with c = 2. As in
the case for Jd > 0, even though a microscopic Hamiltonian
does not possess the exact symmetry, the effective continuum
theory at the transition may exhibit the emergent symmetry.
We believe that this result could also be a numerical artifact,
maybe signaling the presence of some critical point in the
vicinity of our model. For larger system sizes, this critical
behavior could be replaced by a first-order transition as was
argued for instance in Ref. [82].

3. Other plateaus: quantized spin imbalance phases

We end this section by plotting in Fig. 19 the local
magnetization 〈Sz

i,j 〉 computed at the symmetric point Jd = 0,
J‖/J⊥ = 0.01, and S = 1, on the magnetization plateaus m =
1/4,1/2,3/4 from top to bottom for L = 32. Figure 20 shows
the local magnetization for S = 3/2 on the magnetization
plateaus m = 1/4,1/2,3/4,1,5/4 from top to bottom for the
same parameters.

All the plateaus display the presence of a staggered spin
imbalance with a quantized value 〈μjklm

i 〉 ∈ Z (with the
appropriate choice of the indices (jklm) depending on which
ground state is selected), aside from a small discrepancy for
the m = 1/2 plateau for S = 3/2 in Fig. 20. As said before,
our strong-coupling analysis is only available for the highest
plateaus (in the present case, m = 3/4 for S = 1 and m = 5/4
for S = 3/2). However, one can remark that starting from the
highest plateau where two spins are polarized to +S and the
two others have a magnetization S − 1/2, the pattern on the
next lower plateau is given by simply decreasing this last
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FIG. 19. (Color online) Local magnetization 〈Sz
i,j 〉 computed at

the symmetric point Jd = 0, J‖/J⊥ = 0.01, and S = 1, on a L = 32
tube. From top to bottom, the panels correspond to magnetization
plateau m = 1/4,1/2,3/4.

value by 1/2. This holds for all the plateaus except the
lowest one, for both S = 1 and S = 3/2. The former basically
suggests that those states can be understood at the mean-field
level by simply minimizing the diagonal term Sz

i,j S
z
i+1,j of the

longitudinal coupling, thus the ground states would be once
again direct-product states over the rungs. For the two lowest
plateaus not following this pattern, we did not find any simple
explanation for the computed local magnetizations. Finally,
the figures also indicate that the degeneracy of the ground
state for each plateau should be identical to what we obtained
previously, namely six at the symmetric point.

We do not show the magnetization profiles for Jd > 0
because it is in fact trivial. A quick reasoning on coupling

FIG. 20. (Color online) Local magnetization 〈Sz
i,j 〉 computed at

the symmetric point Jd = 0, J‖/J⊥ = 0.01, and S = 3/2, on a L = 32
tube. From top to bottom, the panels correspond to magnetization
plateau m = 1/4,1/2,3/4,1,5/4.

the four spins in a single tetrahedron tells us that if the
plateau has an even total Sz

�, then the ground state is unique
and no ordered phase will be present, and if it is odd
the ground state is twofold degenerate. When coupling the
tetrahedra, the perturbation theory always leads to the Ising
model (41) and as a consequence, the spin imbalance amplitude
is always minimal as for S = 1/2 and Jd > 0. For example,
for S = 1, the Ising effective Hamiltonian for the plateau with
m = 1/4 (i.e., Sz

� = 1) displays a staggered spin imbalance
characterized by 〈Sz

1,3〉 = 1/2 and 〈Sz
2,4〉 = 0 and conversely

on the neighboring rungs (data not shown). For an even plateau,
there is then a spin imbalance only at the symmetric point
Jd = 0. For Jd < 0 and Jd > 0, there is a unique ground state
and the point Jd = 0 would be right at the first-order transition,
in analogy with the classical magnet with a magnetic field,
where the symmetry broken ground state only appears at the
zero magnetic field.

C. Relation to the path-integral results

In the S = 1/2 strong-coupling approach of Sec. III, we
predicted the stabilization of staggered spin imbalance phases
in the regime of small J‖/J⊥. Its quantized magnitude was
understood in terms of the hidden ferromagnetism through
the nonlocal transformation. For higher values of S, the
perturbation theory becomes too involved because of the large
number of low-energy states to take into account. However,
the tetramer ground state for the highest plateau has the
same form as for S = 1/2, and we could repeat our analysis.
It led to the prediction of a second phase on the plateau,
characterized by a ferromagnetic ordering of the operator
Q (34). All those predictions were confirmed numerically by
using DMRG simulations. We also reported the observation
of quantized staggered spin imbalance phases for the other
plateaus, although we lack an effective theory to understand
them.

We want to make the connection with the path-integral
results. Our semiclassical approach is able to predict k‖ = 0
orders and can indeed describe the tetramer ordered phase.
From the discussion of Sec. II E, this phase corresponds to the
free energy with minima at α∗ = 0,π computed for moderately
small values of J‖, in the absence of tunneling between the two
wells, i.e., f the Z2 symmetry is broken. The degeneracies for
both Jd = 0 (three) and Jd > 0 (two) as well as the predicted
k‖ = 0 ordering of Q match with our numerical results. On
the other hand, as we previously explained, the staggered
phase cannot be recovered in our calculation. Yet, the same
mechanism proposed for a uniform quantized spin imbalance
in terms of the delocalization of an angular field is at play here.

We mentioned that in order to describe k‖ = π phases in
the semiclassical approach, it is necessary to double the unit
cell. This is done by considering the spin operators (6) on
two sublattices A and B on every chain and consequently
working with eight fields �i,p where i = 1, . . . ,4 labels the
chain and p = A,B labels the sublattice, and similarly the
angular variables ϕi,p. Thus in the calculation we would have
to consider, after the transformation (11), �i,p on the two sub-
lattices. We can then construct the uniform and staggered fields
�i,h/s = �i,A ± �i,B . The numerical data clearly indicate that
�2,s is locked to its (nonzero) eigenvalues, and therefore its
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angular conjugate φ2,s is necessarily delocalized. This is also
confirmed by the strong-coupling Hamiltonian. From the Ising
model at Jd > 0, the spin imbalance ground state is expected
to be of a product state form |�〉 =⊗i∈A,i ′∈B |�13〉i |�24〉i ′
(or the one obtained by interchanging A and B). We computed
the entanglement entropy between two rungs in the DMRG
simulations and indeed found a value very close to zero
(data not shown). Combined with the plaquette states given in
Eq. (25), it ensures that the fluctuation of the spin imbalance
(of �2,s) are suppressed, confirming that the field is strongly
pinned to one value. The same argument tells us that �2,h,
which takes a zero expectation value, has no fluctuation, thus
�2,h is also locked but to its zero eigenvalue. This situation
is different from the tetramer ordered phase coming from the
XYZ model, where again 〈�2,h〉 = 0 but can fluctuate. It is
coherent with the interpretation of this phase that we gave
above in terms of the broken Z2 (Z3) symmetry for Jd > 0
(Jd = 0), associated to the absence of tunneling between
the minima and therefore of winding. In the three-leg spin
tube, the staggered spin imbalance comes from an operator
τ x
i−2τ

x
i−1τ

x
i τ x

i+1τ
x
i+2τ

x
i+3 perturbing an XXZ model in the

bosonization picture [66], and in that case nothing prevents
the associated staggered �i,s field to fluctuate.

We also briefly numerically studied the various magnetiza-
tion plateaus for S = 1 and S = 3/2 at very small longitudinal
coupling. It revealed the presence, for every plateau, of k‖ = π

spin imbalance phases (see Figs. 19 and 20) displaying the
same quantization phenomenon. Even though we cannot rely
on an effective Hamiltonian, we noticed that, except for two
plateaus, two of the spins are always polarized to +S while
the magnetization of the two others progressively decreases
as m is lowered. It indicates that the ground state can also be
written as a product state and that the fluctuation of the spin
imbalance is again strongly suppressed.

It is, however, not evident how this delocalization happens
if we start from the model (1). Physically, it is obvious that
the field φ2,s should pick up a mass term m2

2,s ∝ J‖ and a
straightforward calculation with the doubled unit cell confirms
it. A possible explanation is that the observed staggered state is
in fact representative of a modified Hamiltonian, and the model
we study here is not sufficient in the semiclassical approach.
On the other hand, one can see that adding an extra term H

′
‖ =

J
′
‖
∑L

i=1

∑4
j=1

�Si,j · (�Si+1,j−1 + �Si+1,j+1) in the Hamiltonian,
i.e., including longitudinal “twisted” couplings, would favor
the uniform spin imbalance. A quick calculation for Jd > 0
shows that the factor in front of the Ising model (41) is changed
to J‖ − J

′
‖. This new term adds more frustration to the problem

and the two spin imbalance phases compete. In the semiclas-
sical approach, its effect is in particular to reduce the mass of
the �2 term in the action (12) as λ2 = 4a(J‖ − J

′
‖) + 2aJd . As

this prefactor is reduced, it is likely that the Gaussian order is
not sufficient to capture correctly the behavior of the field �2.
Beyond our second-order calculation, new terms are expected
to appear and favor the pinning of the field to nonzero values.

As a final remark, it is worth highlighting the direct link
between the continuous degeneracy present at the classical
level and its consequences on the quantum system. For a
generic unfrustrated system, in the path-integral formulation,
the presence of a magnetization plateau is explained by the
delocalization of the angular field representing the Goldstone

mode (the field φ4 here). As a consequence, its conjugate is
locked (to zero) and a plateau appears. Usually, this scenario
is not expected to happen for other fields. In the model studied
here, we have the unusual situation in which soft modes,
typical of highly frustrated systems, behave in some sense
as supplementary Goldstone modes, although strictly speaking
they are not. Despite the fact that no symmetry protects them to
have a localizing potential, frustration can make this effective
potential weak enough to be overcome by tunneling effects.
Then, these soft or pseudo Goldstone modes can experience
a proliferation of vortices, as for the real Goldtsone mode,
and delocalize. This has the effect of pinning the conjugate
variable, which in the case at hand is directly related to the
observed spin imbalance as we explained above. The relation
between a magnetization plateau and the delocalization of the
Goldstone mode is in fact not at all specific to one dimensional
systems [58]. Neither is the presence of soft modes (within
the spin wave description) in frustrated magnets, as it is,
for example, the case for the kagome lattice [9]. We have
then good reasons to expect a similar kind of behavior in
higher-dimensional frustrated magnetic models, with the same
phenomenology involved, that is, locking of spin imbalance
and a ground state wave function which is very close to
a product state. In that sense, the model studied here is
a very good representative example of a wide family of
highly frustrated magnets which present a very particular
manifestation of the classical order by disorder at the quantum
level, which goes beyond the most intuitive expectation,
namely, a selection mechanism similar to the classical case.

V. CONCLUSION

In this paper, we studied the behavior of a frustrated
four-leg spin tube under a magnetic field. As expected, the
system shows the presence of magnetization plateaus for a
wide range of parameters. We have focused on the behavior
of the system at the magnetization plateaus as it presents an
interesting behavior that can be traced back to the presence of
frustration. We used a combination of a path-integral approach,
the analysis of strong-coupling effective Hamiltonians, and
the DMRG method. The numerical results from DMRG show
two intriguing properties of the ground state when sitting
on the magnetization plateaus: (i) the appearance of a spin
imbalance which is locked to integer values, and (ii) a ground
state whose all observables can be very well represented by a
factorizable wave function over the plaquettes. Moreover, we
expect that the property (i) is a consequence of (ii).

In the highest plateau, where the number of nonmagnetic
degrees of freedom per rung is small enough, a relatively sim-
ple low-energy effective Hamiltonian can be constructed. The
analysis of the effective Hamiltonian confirms the behavior
described above. It is interesting to notice that at the most frus-
trated point, the effective Hamiltonian calculated to the first
order is equivalent, via a nonlocal transformation, to a spin-1
ferromagnetic Heisenberg chain. The macroscopic degeneracy
of the ground state is lifted by the higher-order corrections to
the effective Hamiltonian. It is, in principle, not evident at all
that the higher-order corrections give rise to the factorization
properties of the corresponding sixfold degenerate ground
state. This can be seen from the fact that the staggered
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correlation function, corresponding to a string correlation
function via the nonlocal transformation, is almost saturated,
indicating indeed a factorized structure of the wave function.

In the S = 1/2 case, the corresponding physical picture
is understood by the formation of singlets on each plaquette.
One may consider that the mechanism which gives rise to a
factorizable ground state in our model is similar to several
known models, such as the J1-J2 chain [38,39] or the Shastry-
Sutherland model [40] and its descendants [41,42,75]. In those
models, the Hamiltonian takes the form H (α) = H0 + αH1

where H0 is exactly solved and has the factorizable ground
state. For nonzero α, this factorizable state is no longer the
ground state of H (α), while it is still the exact ground state
when a special condition on H1 is satisfied [41]. However, our
factorizable ground state does not follow this scheme; it is not
uniquely identified as the ground state of H0. As obvious from
the strong-coupling analysis, our factorizable ground state is
chosen from the degenerate ground-state manifold of H0 by
an infinitesimal but finite perturbation α. In this sense, our
ground state is exact in the limit J‖ → 0, but its property and
factorizability are highly nontrivial since we need to evaluate
this limiting procedure.

Last but not least, we would like to insist that, in fact,
the above scenario is also reproduced for other plateaus
where the effective Hamiltonian is more complicated, because
of the presence of more low-energy (nonmagnetic) degrees
of freedom. Although no tractable effective Hamiltonian is

available in the general case, it can be seen in the numerical
results and argued as a delocalization of a pseudo-Goldstone
mode corresponding to the canonical conjugate variable to the
spin imbalance. States having the properties (i) and (ii) were
already shown to be exact ground states in a wide variety
of frustrated systems [36], but in fact, this property remains
almost intact to a very large extent even when the ground
state cannot be obtained exactly [45]. Increasing further the
magnetization on those systems may either imply a jump in
the magnetization curve (as it happen in Ref. [36]) or simply
a delocking of the spin imbalance, which is due to the onset
of quasi-long-range order (or just simply long-range order in
higher dimensions) associated with the true Goldstone mode
enforcing itself a localization of the pseudo Goldstone mode
conjugate to the spin imbalance.
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APPENDIX: NOTES ON STRONG-COUPLING EXPANSION

1. Gell-Mann matrices

A convention of the Gell-Mann matrices used in this paper are given by

λ1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ , λ2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠ , λ3 =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠ , λ4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ ,

(A1)

λ5 =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠ , λ6 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ , λ7 =

⎛
⎝0 0 0

0 0 −i

0 i 0

⎞
⎠ , λ8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠ .

2. Nonlocal transformation of the strong-coupling Hamiltonian

We here explain the hidden SU(2) symmetry in the first-order effective Hamiltonian in Sec. III B under the OBC. As shown by
Kennedy [71], any spin-1 Hamiltonian with short-range interactions, T α

i T α
i+1 and (T α

i )2, can be mapped onto some Hamiltonian
written in terms of short-range bilinear interactions of three anticommuting operators by a nonlocal unitary transformation. One
can easily see that λ1,4,6 satisfy the anticommutation relation {λμ

i ,λν
i } = λ

ρ

i , where (μ,ν,ρ) is any permutation of (1,4,6). Since
the first-order effective Hamiltonian (29) is precisely in the latter form, we can conversely use his result and obtain some spin-1
Hamiltonian. The desired nonlocal unitary transformation has been proposed in Ref. [71] and written as a product of two unitary
operators V = UKTW , where UKT is the nonlocal one found by Kennedy and Tasaki [73,77],

UKT =
∏
j<k

exp
(
iπT z

j T x
k

)
, (A2)

and W is a product of local unitary operators,

W =
∏
k

Wk, Wk =
⎛
⎝1/

√
2 0 1/

√
2

0 1 0
1/

√
2 0 −1/

√
2

⎞
⎠ . (A3)

Under this transformation V , the bilinear operators are transformed as

Vλ1
i λ

1
i+1V−1 = −T x

i T x
i+1, Vλ4

i λ
4
i+1V−1 = −T z

i T z
i+1, Vλ6

i λ
6
i+1V−1 = −T

y

i T
y

i+1. (A4)
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and the Hamiltonian (31) is exactly mapped onto the spin-1 Heisenberg ferromagnetic chain,

VH
(1)
eff V−1 = −J‖

4

L∑
i=1

�Ti · �Ti+1, (A5)

under the OBC.
Once we concern the second-order perturbation as in Eq. (31), the transformed Hamiltonian no longer exhibits the exact SU(2)

symmetry but still remains a local form. For instance, few of the additional terms are given by

Vλ2
i λ

2
i+1V−1 = −(T y

i T z
i + T z

i T
y

i

)(
T

y

i+1T
z
i+1 + T z

i+1T
y

i+1

)
, Vλ3

i λ
3
i+1V−1 = [(T z

i

)2 − (T y

i

)2][(
T z

i+1

)2 − (T y

i+1

)2]
,

Vλ1
i λ

4
i+1λ

6
i+2V−1 = T x

i

(
T x

i+1T
y

i+1 + T
y

i+1T
x
i+1

)
T

y

i+2, Vλ1
i

(
1 −

√
3λ8

i+1

)
λ1

i+2V−1 = 3T x
i

[(
T x

i+1

)2 − 1
]
T x

i+2. (A6)

The effect of a finite diagonal coupling Jd �= 0 in Eq. (33) is written as

Vλ8
i V−1 = − 1√

3
+

√
3
(
T x

i

)2
. (A7)
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