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Polar Kerr effect from a time-reversal symmetry breaking unidirectional charge density wave
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We analyze the Hall conductivity σxy(ω) of a charge ordered state with momentum Q = (0,2Q) and calculate
the intrinsic contribution to the Kerr angle �K using the fully reconstructed tight-binding band structure for
layered cuprates beyond the low energy hot spot model and particle-hole symmetry. We show that such a
unidirectional charge density wave (CDW), which breaks time-reversal symmetry, as recently put forward by
Wang and Chubukov [Phys. Rev. B 90, 035149 (2014)], leads to a nonzero polar Kerr effect, as observed
experimentally. In addition, we model a fluctuating CDW via a large quasiparticle damping of the order of the
CDW gap and discuss possible implications for the pseudogap phase. We can qualitatively reproduce previous
measurements of underdoped cuprates, but making quantitative connections to experiments is hampered by the
sensitivity of the polar Kerr effect with respect to the complex refractive index n(ω).
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Introduction. One of the most controversial topics in the
field of high-temperature superconductivity is the origin of
the so-called pseudogap phenomenon observed by various
experimental techniques in the underdoped cuprates [1–3] at
temperatures T ∗ being larger than the superconducting transi-
tion temperature Tc. A large number of theoretical scenarios
have been initially proposed to explain the origin of the pseudo-
gap [4]. Recent experimental studies of hole-doped cuprates,
however, have indicated that the pseudogap region of the high-
Tc cuprates is a state which competes with superconductivity,
and also breaks several symmetries [5–12]. In particular,
x-ray and neutron scattering experiments as well as scanning
tunneling microscopy (STM) have found the breaking of the
lattice symmetry from C4 down to C2 below the pseudogap
temperature T ∗ in several cuprate compounds [5–7,10]. In
addition, recent findings of the polar Kerr effect [9,11–13], and
the intraunit cell magnetic order [14] point towards breaking
of time-reversal or mirror symmetries in the underdoped
cuprates. Furthermore, direct indications in favor of the static
incommensurate charge-density-wave (CDW) order with mo-
menta Qx = (2Q,0) and/or Qy = (0,2Q) were found by x-ray
measurements [15–18], the nuclear magnetic resonance tech-
nique [19–21], and in experiments on the sound velocity in a
magnetic field [22]. In addition, quantum oscillation measure-
ments indicate a reconstructed band structure with small Fermi
surfaces [23–26]. In these systems 2Q refers to the distance be-
tween the so-called hot spots on the Fermi surface, i.e., points
where the magnetic Brillouin zones intersect the Fermi surface
(FS). It was also argued that the charge order has a predomi-
nantly d-wave form factor [10] and that the formation of Fermi
surface arcs coincides with the formation of CDW order [27].

Possible explanations of the charge order and other related
symmetry breaking include loop-current order [28] or d-
density-wave (current) order [29]. Within the so-called spin
fluctuation scenario, which supports also d-wave supercon-
ductivity, there is another instability in the d-wave charge
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channel, associated with the wave vector Qd = 2khs [30].
Here, khs is the momentum of one of the hot spots such
that 2khs = (2Q,2Q) points along one of the Brillouin zone
diagonals. Efetov, Meier, and Pepin [31,32] argued that the
pseudogap can be a consequence of the competition between
d-wave charge order (bond order) and superconductivity (SC).
In this case T ∗ refers to the formation of the combined
SC/CDW supervector order parameter, but its direction gets
fixed along the SC axis only at lower temperature Tc. Sachdev
and collaborators [33–35] proposed that a magnetically me-
diated interaction can also yield an attraction in the CDW
channel for unidirectional incoming momenta Qx = (0,2Q)
or Qy = (2Q,0), which has also been found in three-band
models [36,37]. In these proposals the ground states break C4

rotational symmetry of the lattice. Most recently, Wang and
Chubukov [38] have shown that for large magnetic correlation
lengths there could be a CDW instability with both real
and imaginary order parameters at nonzero temperature, also
breaking time-reversal symmetry. Translated into real space,
the latter order has both bond and site charge densities and
bond current modulations.

In this Rapid Communication, we follow Ref. [38] and
analyze the Hall conductivity which arises from such a
unidirectional time-reversal symmetry breaking CDW phase.
We do not attempt to answer the question as to whether
this state truly minimizes the free energy of a particular
model, but concentrate on the experimental consequences
once the state is formed. Our main objective is to study the
intrinsic contributions of the full lattice band structure to the
polar Kerr effect, which is well established experimentally
in the pseudogap phase [9,11,12]. Its microscopic origin
is still poorly understood and under current debate. Two
original proposals [39,40] to explain the nonzero Kerr signal
based on inversion symmetry breaking were retracted [41,42],
and in a number of articles the necessity of time-reversal
symmetry breaking was emphasized [41–44]. Note that our
present study is complementary to a very recent work [43]
which, however, analyzed only the extrinsic contributions and
scattering on intrinsic spin fluctuations to the polar Kerr effect
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FIG. 1. (Color online) The spectral function I (k,ω = 0) is shown
in the full Brillouin zone for three different cases (from left to right):
(i) normal state, �1 = �2 = 0 and small quasiparticle damping � =
10 meV; (ii) fluctuating CDW state, �1 = �2 = 50 meV modeled
by a large damping � = 50 meV; and (iii) long range ordered CDW
state, �1 = �2 = 50 meV (� = 10 meV).

in a similar setting, but was restricted to an effective low
energy description, keeping only states around the hot spots. In
contrast, we include the entire effective band structure of the
CDW state when considering a pure intrinsic band structure
contribution [45].

Theory. Our starting point is the CDW mean-field Hamil-
tonian,

Ĥ =
∑
k,σ

{
εkc

†
kσ ckσ + �

Q
k c

†
k−Qσ ck+Qσ + H.c.

}
, (1)

with �
Q
k = �1 cos (kx−k0) cos Qy − i�2 sin (kx − k0) sin Qy ,

2Qy = π
5 , and k0 = 0.9π . We use the parameters of the tight-

binding energy dispersion from Ref. [9] to obtain a commen-
surate CDW. Note that the above order parameter satisfies the
following symmetry relations, (�Q

k )∗ = �
−Q
k , and transforms

as (�−Q
−k )∗ = �

Q
−k under time-reversal symmetry. The center of

mass momentum of the CDW is at k0 such that khs = (±k0, ±
Qy). This stripe-type order breaks both the rotational and the
time-reversal symmetries. Since �

Q
k+2Q �= �

Q
k , it is necessary

to diagonalize a 10 × 10 matrix with all multiples N2Qy

up to N = 10 that closes the periodic Brillouin zone (BZ).
Since the CDW order parameter has two components, there is
the interesting possibility [38] that a composite Ising-like order
breaking only rotational and time-reversal symmetry forms
above TCDW at which long range translational order (LRO)
gets broken. In the following we do not explicitly calculate
such a fluctuating CDW, but we mimic the effect by a large
quasiparticle damping � of the order of the CDW gap itself,
� ≈ �.

We first investigate the direct feedback of charge order on
the electronic structure, which has been shown to be intimately
connected [27]. Angle resolved photoemission spectroscopy
(ARPES) measures directly the electronic spectral function
I (k,ω) = Im[Ĝ0(k,ω)]1,1, which can be calculated from the

bare Green’s function,

Ĝ0(k,ω) = [ω + i� − Ĥ (k)]−1. (2)

We have omitted the spin label, Ĥ (k) is the 10 × 10 Hamil-
tonian matrix, and � is our phenomenological quasiparticle
damping. The results are shown in Fig. 1 for three different sets
of parameters: (i) normal state FS, (ii) the fluctuating CDW
state modeled by �1 = �2 = 50 meV and a large damping
� = 50 meV, and (iii) the LRO CDW state with the same set
of �i but with a smaller damping � = 10 meV.

The formation of the CDW gaps out states at the hot
spots khs which, together with the suppressed spectral weight
outside the antiferromagnetic (AFM) BZ, leads to the observed
Fermi arc structure of the spectral function. In accordance with
ARPES experiments [17], the wave vector connecting the tips
of the arc is larger than the wave vector connecting the hot
spots of the normal state FS. The effect appears naturally
in our mean-field description in which a full region around
the hot spots is gapped out by the CDW order. However, we
have chosen the momentum of our CDW to match the vector
connecting two hot spots [38], which could likely turn out to
be different when investigating the origin of the ordered state
beyond weak coupling. As this question is beyond the scope of
our study we concentrate on the experimental consequences of
the formed CDW phase. Our following results do not depend
sensitively on the precise value of the ordering vector.

Next we study the polar Kerr effect which is quantified by
the Kerr angle θK . It can be expressed in terms of the Hall
conductivity σxy(ω) and the complex refractive index n(ω)
as [46]

θK = 1

ε0ω
Im

[
σxy(ω)

n(ω)[n2(ω) − 1]

]
, (3)

where for a complex refractive index both the real and
imaginary parts of the Hall conductivity contribute. Generally,
the Hall conductivity has an extrinsic and intrinsic contribu-
tion [43,47–50], where the latter can be expressed entirely in
terms of the electronic structure of the unperturbed crystal [51].
In contrast, the extrinsic contribution is mediated via impurity
scattering [43,49,52,53]. Fundamentally, the system needs to
break mirror and time-reversal symmetry to exhibit a finite
intrinsic or extrinsic Hall conductivity [43,54]. Furthermore, in
order to create an intrinsic contribution, multiple bands have to
be considered. In a single-band system the effect would vanish
by definition [55,56]. In the present case of a charge density
wave, which breaks time-reversal and C4 rotational symmetry,
the gap parameter is providing all conditions intrinsically and
creates an effective multiband system in the reduced Brillouin
zone.

In general, the antisymmetric part of the Hall conductivity
can be expressed as [56]

σxy(ω) = e2
�

V m2

∑
n,n′,k

f (En(k)) [1 − f (En′ (k))]
Im

[
u
†
n′(k)Hx

k un(k)u†
n(k)Hy

k un′(k) − un′ (k)Hy

k un(k)u†
n(k)Hx

k un′ (k)
]

[En′(k) − En(k)]2 − (�ω + i�)2
, (4)

where u
†
n(k) = [u1

n(k),u2
n(k), . . . ,u10

n (k)] are the eigenfunctions of the k-dependent Hamilton matrix Ĥ (k). The operator H
x,y

k
is the k derivative with respect to kx or ky , respectively. For the tight-binding model under consideration the important matrix
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elements can be written as

〈n′k|Hx,y

k |nk〉 =

⎛
⎜⎝

u1
n′(k)

u2
n′(k)

...

⎞
⎟⎠

† ⎛
⎜⎜⎝

∇kx,y
εk ∇kx,y

�
Q
k . . .

∇kx,y
(�Q

k )∗ ∇kx,y
εk−2Q . . .

...
...

. . .

⎞
⎟⎟⎠

⎛
⎜⎝

u1
n(k)

u2
n(k)
...

⎞
⎟⎠ , (5)

where the main assumption is that all matrix elements of the
position operator vanish [56]. With that at hand, the Hall
conductivity can be evaluated, and the results are shown
in Fig. 2 for different broadenings accounting for random
impurity scattering.

For the considered model Hamiltonian, the antisymmetric
part of the Hall conductivity will vanish in the case of a real
order parameter not breaking time-reversal symmetry. Hence,
the breaking of C4 symmetry is not sufficient to induce a
Kerr signal. The reason is straightforward and follows from
arguments used for the existence or nonexistence of the Berry
curvature of a generic parameter-dependent Hamiltonian. In
the case of a real Hamiltonian the wave functions can be
chosen to be real, leading to a vanishing Berry curvature
for all k points, except for degeneracies in the electronic
bands [57,58]. Since the real part of the optical conductivity at
zero frequency resembles the Berry curvature and is connected
via a Kramers-Kronig transformation to the imaginary part,
both have to vanish [59,60]. The argument can be extended to
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FIG. 2. (Color online) The real and imaginary parts of the optical
Hall conductivity as a function of frequency. The impurity broadening
is � = 10 and 50 meV in the upper and lower panel, respectively. The
insets show the relevant frequencies (0.8 eV) at which experiments
were performed so far [9,11,12,61].

finite frequencies as well. Only for a complex order parameter
will the considered model exhibit a finite Berry curvature, i.e.,
a finite optical Hall conductivity. In the following we will
discuss in detail the numerical results for the time-reversal
symmetry breaking order parameter.

Results. Figure 2 summarizes the real and imaginary parts
of the antisymmetric Hall conductivity [Eq. (4)] for the
considered gap function and two distinct impurity scattering
amplitudes. The signal is already nonzero at a frequency of
the order parameter �1 = �2 = 5 meV, which is distinct from
the results for Sr2RuO4 [55,56]. For the latter, the signal
appeared at the interorbital coupling strength. Nevertheless,
both results are not in contradiction to each other, but in
the present case the finding is merely an artifact of the fact
that the multiband structure and the symmetry breaking are
both induced by the gap function. Furthermore, the signal
is two orders of magnitude larger than for the realistic band
structure of Sr2RuO4 [56]. It results from the order parameter
being one order of magnitude larger since it enters the
conductivity quadratically [55]. In the inset of Fig. 2 we
present the frequency region where the Kerr effect experiments
on Sr2RuO4 and the cuprates were performed [9,11,12,61].
Here, the signal drops by three orders of magnitude and the
imaginary part almost vanishes. In contrast to Sr2RuO4, in
the cuprates it might be feasible to perform corresponding
experiments at lower frequencies due to the significantly
higher energy scales (e.g., critical temperatures) and the much
larger predicted signal. Extending the measurements to a
larger frequency range would allow for a more quantitative
comparison between theory and experiments.

To model the temperature dependence of the optical
conductivity we perform additional calculations, assuming
that the gap function follows an effective strong-coupling-like
behavior as �(T ) =

√
1 − (T/TCDW)3. The result is shown in

Fig. 3 for the optical frequency of 0.8 eV. The temperature
dependence of the conductivity follows the square of the order
parameter, as expected in such a simple model case [55].

Finally, we performed doping-dependent calculations for
the optical Kerr effect, exploiting the results for Eq. (4) in
combination with Eq. (3). We follow earlier work [45] and
model the doping dependence with a phenomenological func-
tion �1/2(x) = �1/2(x = 0)(1 − x/0.18). For the refractive
index we consider two separate approximations. In the first
case (upper panel of Fig. 4) we assumed it to be purely
real as n = 1.692, according to Ref. [45]. In that case the
imaginary part of the optical conductivity is dominating
the signal, which is not only small but strongly depends
on the considered impurity broadening. On the other hand,
assuming a more general complex refractive index [62] as
n = 1.692 − i0.403 (lower panel of Fig. 4) leads to the
dominance of the real part of the optical conductivity in the
Kerr angle. The significantly larger Kerr angle is furthermore
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FIG. 3. (Color online) The normalized real and imaginary parts
of the optical Hall conductivity as a function of temperature (� =
10 meV). The temperature dependence of the gap is modeled mean-
field-like using the function �(T ) = √

1 − (T/TCDW)3.

almost independent of the impurity broadening. Nevertheless,
the observed sign change of the Kerr angle between the
two approximations highlights the importance of accurate
knowledge of the frequency-dependent complex refractive
index for qualitative but especially quantitative predictions.
Furthermore, we would like to point out that in general the Hall
conductivity is a sum of intrinsic and extrinsic contributions.
Our calculations rely on the intrinsic effect, in contrast to
Ref. [43], which focused on the extrinsic ones. Although
any conclusion about the dominance of either contribution
is ambiguous (especially at elevated frequencies), the intrinsic
effect will be dominant for rather impure samples because
of the impurity scaling behavior of the extrinsic mechanism
(skew scattering) [50,63].

Despite the mentioned obstacles preventing a determination
of quantitatively reliable results, our calculated Hall angle is
several orders of magnitude larger than in the superconducting
state of Sr2RuO4, which is in qualitative agreement with
the experimental findings of Refs. [9,11,12]. Most strikingly,
our results in the ordered phase (� = 10 meV) with a
purely real refractive index nicely reproduce the correct
order of magnitude of the polar Kerr angle in all three
cuprates YBa2Cu3O6+x[12], Pb0.55Bi1.5Sr1.6La0.4CuO6+δ [9],
and La1.875Ba0.125CuO4 [11], which are all of the order of
θK ≈ 1 μrad. Nevertheless, as pointed out recently by several
authors [13,64,65], the full complexity of the Kerr effect
measurements of the cuprates is more intricate than previously
thought. Importantly, the effect cannot be controlled by an
applied magnetic field and does not change sign on opposite
surfaces of the sample [13]. Although our current effective
two-dimensional one-band description is unable to account for
these aspects, it is a step forward towards a truly quantitative
understanding of the Kerr effect in the cuprates and calls for
a more microscopic model including oxygen orbitals and the
effect of three dimensionality.

Conclusion. In summary, we have shown that the unidi-
rectional CDW order parameter recently proposed by Wang
and Chubukov [38] to account for time-reversal symmetry
breaking in the pseudogap phase is capable of explaining the
polar Kerr effect measurements semiquantitatively. We have
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FIG. 4. (Color online) The Kerr angle as a function of doping x.
The doping is modeled with a linear dependence of the gap on the
doping as �(x) = �(x = 0)(1 − x/0.18) [45]. For the upper panel
we assumed the refractive index to be purely real (n = 1.692), in
accordance with Ref. [45]. In the lower panel we assumed a complex
refractive index (taken from Ref. [62]) as n = 1.692 − i0.403,
leading to a dominance of the real part of the optical Hall conductivity.
Note the change of sign between the two different assumptions.

explicitly evaluated the antisymmetric part of the conductivity
tensor for a model band structure describing the generic
Fermi surface of the underdoped cuprates, which allows
us to numerically calculate the full frequency range of the
optical conductivity. Our results show that for a reliable
quantitative comparison of experimental data and different
theoretical scenarios, a precise knowledge of the (in general,
complex) refractive index is called for. Together with further
measurements at lower frequencies, most desirable at the order
of the spectral gap itself, it has the potential to turn polar Kerr
effect measurements into a more powerful tool for elucidating
the complicated many-body state of underdoped cuprates.

Acknowledgments. We thank A. Chubukov, K. B. Efetov,
and P. A. Volkov for helpful discussions. M.G. acknowledges
financial support from the Leverhulme Trust via an Early
Career Research Fellowship (ECF-2013-538). The work of
J.K. is supported by a fellowship within the Postdoc-Program
of the German Academic Exchange Service (DAAD). I.E.
acknowledges the financial support of the Ministry of Educa-
tion and Science of the Russian Federation in the framework
of Increase Competitiveness Program of NUST MISiS (No.
22014015).

060512-4



RAPID COMMUNICATIONS

POLAR KERR EFFECT FROM A TIME-REVERSAL . . . PHYSICAL REVIEW B 91, 060512(R) (2015)

[1] H. Alloul, T. Ohno, and P. Mendels, Phys. Rev. Lett. 63, 1700
(1989).

[2] T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).
[3] A. Kaminski, T. Kondo, T. Takeuchi, and G. Gu, Philos. Mag.

(2014), doi:10.1080/14786435.2014.906758.
[4] D. A. Ivanov, P. A. Lee, and X.-G. Wen, Phys. Rev. Lett. 84,

3958 (2000); C. M. Varma, ibid. 83, 3538 (1999); V. J. Emery,
S. A. Kivelson, and O. Zachar, Phys. Rev. B 56, 6120 (1997);
L. Benfatto, S. Caprara, and C. Di Castro, Eur. Phys. J. B 17, 95
(2000); J. Schmalian, D. Pines, and B. Stojkovic, Phys. Rev. Lett.
80, 3839 (1998); J. R. Engelbrecht, A. Nazarenko, M. Randeria,
and E. Dagotto, Phys. Rev. B 57, 13406 (1998); Q. J. Chen, I.
Kosztin, B. Janko, and K. Levin, ibid. 59, 7083 (1999); S. C.
Zhang, Science 275, 1089 (1997); C. Castellani, C. Di Castro,
and M. Grilli, Z. Phys. B: Condens. Matter 103, 137 (1996); G.
Seibold, J. Lorenzana, and M. Grilli, Phys. Rev. B 75, 100505
(2007).

[5] M. Hücker, M. V. Zimmermann, G. D. Gu, Z. J. Xu, J. S. Wen,
Guangyong Xu, H. J. Kang, A. Zheludev, and J. M. Tranquada,
Phys. Rev. B 83, 104506 (2011).

[6] J. M. Tranquada, G. D. Gu, M. Hücker, Q. Jie, H.-J. Kang, R.
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