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Admittance of a long diffusive SNS junction
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The dynamical properties of hybrid normal metal/superconductor structures have recently come into research
focus both experimentally and theoretically. Recent experimental studies of the coherent admittance Y (ω) of
SNS rings as a function of the phase difference φ0 are still not fully understood. Here we concentrate on the
linear response regime, calculating Y (ω) by solving the Usadel equations, linearized in an electric field. Partially
reproducing previously known results, we find qualitatively different behavior in the collisionless regime of
τ−1

in � ω � ETh and high temperature T � ETh and low temperature T � ETh near the minigap closing φ0 ∼ π .
We find that the dissipative part ReY (ω) peaks when the minigap closes (at a phase difference of π ) even at high
temperatures, when the equilibrium supercurrent is fully suppressed.
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I. INTRODUCTION

The superconducting proximity effect on the transport
properties of normal metal/superconductor structures has been
thoroughly studied both theoretically and experimentally [1].
Most of the studies were concentrated on properties of these
systems in equilibrium [2,3] or stationary nonequilibrium sit-
uations [4,5]. Recently, one of the most basic quantities, char-
acterizing dynamical properties of such structures [the admit-
tance Y (ω) = I (ω)/V (ω)], acquired more attention [6–12]. It
characterizes the current response I (t) = ∫

(dω)I (ω)e−iωt to
an ac voltage V (t) = ∫

(dω)V (ω)e−iωt in the linear response
regime.

The problem of calculating the current in the tunneling
(SIS) junction has been solved long ago for arbitrary time-
dependent voltage V (t) [14]. The phase dynamics of such a
junction, coupled to the electromagnetic environment, can usu-
ally be described by the RSJC model [15]. The same problem
for a superconductor–normal metal–superconductor (SNS)
junction is much more complicated, since the ac dynamics
of the phase interferes here with the dynamics of the electrons
in the normal metal. This introduces two distinct energy scales
into the problem: inverse diffusion time over the junction of the
length L, ETh ≡ τ−1

D = �D
L2 with D for diffusion constant, and

inelastic scattering rate τ−1
in . Additionally, multiple Andreev

reflections are very important in such junctions, producing
highly nontrivial energy distribution of the electrons in the
wire [16–18], but they are not essential in the regime of the
small voltage which we concentrate on.

As follows, superconducting proximity effect causes Y to
be different from YN = 1/RN , the admittance of the wire in
the normal state. Due to the Josephson relation φ̇ = 2eV/�,
the admittance can be related to the linear susceptibility
of the junction with respect to the oscillating superconducting
phase difference. In the geometry of an SNS ring, the phase
difference φ = −2π �

�0
(where �0 = h/2e is the flux quantum)

is controlled by magnetic flux � penetrating this ring. The
corresponding response function χ (ω) = δI

δ�
can be directly
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measured, and is related to Y (ω) as follows:

χ (ω) = iωY (ω). (1)

In practice, the measurement of χ can be conducted by
exposing the SNS ring to a weak magnetic field B(t) =
B0 + Bosce

−iωt . While B0 fixes the stationary part of the
superconducting phase difference along the normal wire φ0 =
−2π �

�0
, Bosc generates an e.m.f. E(t) = − d�osc

dt
, generating an

ac electric current.
In the static limit (ω → 0), E(t) is absent and the equilib-

rium response function χ (0) is recovered:

χ (ω = 0) = −2π

�0
∂φIS(φ0), (2)

where IS(φ0) stands for the current-phase relation of the
junction in equilibrium. At finite frequency, the effect of E(t)
is to both modify the nondissipative response and to generate
dissipation in the normal wire.

It can be expected that there should exist a limit, in which
the admittance Y of the junction equals the admittance of two
SN junctions connected in series. In this incoherent limit, Y is
φ0 independent. As we will demonstrate shortly, it is achieved
only when frequency is large ω � ETh. Peculiarly enough,
largeness of temperature alone [T � ETh] is not enough to
destroy the coherence: at moderate frequency ω � ETh the
admittance has noticeable φ0-dependent contribution even at
large temperature. This contribution will be the focus of our
discussion. Another interesting point is that by measuring
the response of the wire to E as a function of frequency
and dc phase difference φ0 [11,12], one infers the dynamical
properties of the Andreev levels in the junction through their
effect on the conductive properties of the normal wire. This
effect is thus very sensitive to inelastic processes in the wire
and can be used as a specific probe.

From the theoretical side, the first study of the coherent
contribution to the impedance of an SNS bridge was performed
by Lempitskii [19] . He considered the long junction limit
(ETh � 
) at high temperature (T � ETh), biased in the
adiabatic regime (�ω � ETh), and obtained the following
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FIG. 1. (Color online) Left: Function Q(φ0) entering Lempit-
skii’s prediction for the coherent part of the dissipation. Right:
Dissipative response at T ≈ 17ETh, data from Ref. [13]. Blue curve:
Hydrodynamic regime, �ω = 0.4ETh, red curve: collisionless regime,
�ω = 2ETh (arbitrary shifted in the c axis).

result:

Y (ω) = YN

ETh

T

ETh/�

τ−1
in − iω

Q(φ0), (3)

with τin staying for the inelastic relaxation time and universal
function Q(φ0) evaluated numerically. This function has
recently been recalculated [9] with better precision, see Fig. 1
for the result.

Nontrivial phase dependence of admittance [Eq. (3)] on
phase difference, persisting to large temperature, results from
supercurrent-enhanced nonequilibrium population of Andreev
levels in the wire. The most fascinating result is that this
nonequilibrium population causes the coherent part of Y

to decay (at given τin) slowly, as ETh/T , at T � ETh,
whereas the equilibrium supercurrent decays exponentially,
as ∝ exp(−L/LT ) with thermal length LT = √

�D/kBT .
This nonequilibrium enhancement of the superconducting
correlations recalls the well known effect of the microwaves
enhancement of superconductivity, the phenomena, known
as the Dayem-Wyatt effect [20–22], which is observed in
microbridges, thin films, and stripes [23–27]. Similar effects
exist in the hybrid structures [28,29], but their physics is
enriched by the existence of two different time scales: time of
diffusion along the normal part τD and inelastic scattering rate
τin, as was clearly demonstrated recently [30]. In our work we
concentrate on how this rich physics shows itself in the linear
response function Y .

Since Lempitskii’s work, there has not much theoretical
activity on the coherent contribution to Y with notable
exceptions provided by [6,7,31,32]. However, the recent
experiments motivated a series of theoretical studies [8–10].
In particular, extensive numerical work [8,9], supported by
qualitative analytical treatment, was devoted to study Y in a
wide range of temperatures and frequencies.

Detailed comparison of the existent theoretical predictions
to the experimental results was performed in Ref. [13]. It was
found that the nondissipative response ImY of the junction can

be well understood on the basis of Lempitskii’s theory for all
moderate frequencies: �ω � ETh (in that experiment, ETh =
71 mK, corresponding to the frequency fTh = 1.5 GHz). In-
terestingly, experimental results demonstrate that it is possible
to follow the response function while it crosses over from a
hydrodynamic (ωτin � 1) to collisionless (ωτin � 1) regime,
and extract inelastic scattering rate τ−1

in as a function of
temperature. At the highest temperature studied, T ≈ 1.2 K, it
was found that τin ≈ 2.5τD . Interestingly, the scattering rate,
found in this experiment, demonstrates unusual temperature
dependence τ−1

in ∝ T 2. We are not aware of any physical
mechanism which can lead to such a dependence in a normal
gold wire and believe that this power law is specific to the
wire in the conditions of the proximity effect. We expect
that it is related to the strong modification of the electronic
spectrum in the wire by the superconducting contacts, which
should influence electron-electron scattering processes—the
effect which certainly deserves future studies.

Experimental results for hydrodynamic and collisionless
regimes are presented in Fig. 1. In this figure, phase susceptibil-
ity is measured in natural units of χ0 = YNETh/�. Theoretical
prediction, obtained from Eqs. (1) and (3), gives

χ/χ0 = ETh

T

iω

τ−1
in − iω

Q(φ0). (4)

Figure 1 illustrates one of the most important experimental
observations: while at low frequency Imcexpt fits well with
Lempitskii’s result [see Fig. 1 for Q(φ0)], at higher frequency
(ωτin > 1) the dissipative response has a very different shape as
a function of dc phase bias φ0. Recall that Eq. (4) results from
the adiabatic calculation, which assumes ω � ETh. One may
hope that the full numerical calculation (the one not relying on
the expansion in ω/ETh) in this regime can describe the exper-
imental results. Such a calculation, performed in Ref. [9], im-
plies that the peak in Imχ expt at minigap closing φ0 = π should
be absent at T � ETh, in clear contradiction with experiment.

This contradiction motivated a linear response analysis on
the basis of BdG equations [10]. The results of the latter study
seem to indicate qualitatively the presence of a maximum at
φ0 = π . From the theoretical side, it is clear that Lempitskii’s
prediction concerns deviation from equilibrium of the Andreev
pairs only, but quasiparticle excitations in the normal region
can also be relevant, especially at not too low a frequency.
While it is clear that dissipation due to quasiparticles, excited
by electric field, should be sharply peaked at φ0 = π at
low temperatures T � ETh, the fate of this peak at high
temperature is not obvious a priori. As we mentioned above,
it was predicted in Ref. [9] that at high temperature this peak
should disappear. Our goal is to reconsider this problem and to
resolve the apparent contradiction between numerical results
and experimental data in this regime.

We start with a simple observation: For the dissipative
response the condition for validity of the adiabatic approx-
imation is more stringent than for the nondissipative one.
Since the adiabatic contribution to Imc decreases for ω � τ−1

in ,
the nonadiabatic (proportional to �ω

ETh
) correction to Eq. (3)

becomes essential already at �ω ∼ √
�ETh/τin � ETh. As we

will show, the terms of the order of �ω/ETh result from the
charge imbalance (induced by the ac electric field) and lead to
the enhancement of dissipation at φ0 ≈ ±π .
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Our approach is based on the Usadel equation, expanded to
first order in the electric field, without assuming smallness of
the proximity effect (in particular, we take into account all non-
perturbative effects, such as the minigap). Although it is impos-
sible to get a response function Y (ω,φ0) in closed form even
in the simplest limiting cases, we go as far as possible analyti-
cally, resorting to numerical calculation only at the latest stage,
which makes our calculation more controllable than fully
numerical solution of the time-dependent Usadel equation.

II. USADEL EQUATION AND LINEAR RESPONSE

A. General equations

In what follows we make several additional simplifying
assumptions: (i) we treat the system as quasi-one-dimensional,
(ii) we treat electron-electron interaction in the wire in the
relaxation time approximation, neglecting possible energy and
position dependence of the relaxation time as well as its
modification by the proximity effect, and (iii) we assume
that 
/ETh � 1. We measure the energy in units of ETh

and length in units of L. Our starting point is the Usadel
equation (e = −|e|) in the presence of an electric field. Due
to gauge invariance, we are allowed to use scalar potential
ϕ instead of vector potential A to define an electric field in
our quasi-one-dimensional normal wire: E = −∇ϕ. Then the
Usadel equation acquires the form

∂x(ǧ · ∂xǧ) + i[ετ̂ 3,ǧ] + ie[ϕ,ĝ] = ISt [ǧ]. (5)

In this equation ǧ(x,t,t ′) is an isotropic part of the quasi-
classical Keldysh Green function, which is a matrix in the
Nambu-Gorkov space. In terms of this function, the electric
current can be expressed as follows (S stands for the normal
wire’s cross-section area):

I = πσNS

4e
tr[τ̂ 3ĵK (t,t)], (6)

where ǰ = ǧ · ∇ǧ.

Neglecting spatial gradients in the superconducting reser-
voirs, we write for the Green function there:

ǧS = Šφ · ǧeq · Š+
φ , (7)

with

Š(t,t ′) = δ(t − t ′)eiτ̂3e
∫ t

ϕ(τ )dτ . (8)

Here ǧeq is the equilibrium BCS Green function.
Usadel equation (5) includes spectral and kinetic equa-

tions which may be obtained with the use of conven-
tional parametrization ĝK = ĝR · Ĥ − Ĥ · ĝA, where Ĥ is
a diagonal matrix of distribution functions in the Nambu-
Gorkov space. In equilibrium, distribution function equals
Ĥ = h(ε)τ̂0, with h(ε) = tanh ε

2T
. For retarded Green function

the following parametrization is appropriate:

ĝR
eq(ε,x) =

(
G F

F̄ −G

)
, (9)

where G = cosh θ, F = sinh θeiφ , and F̄ = − sinh θe−iφ . In
this parametrization, the spectral angle θ satisfies

∂2
x θ + (

2iε − τ−1
in

)
sinh θ + J 2 cosh θ

sinh3 θ
= 0, (10)

where J ≡ J (ε) = i sinh2 θ∂xφ is the spectral supercurrent,
which is an integral of motion: ∂xJ = 0 and we employed the
relaxation time approximation. The boundary conditions for φ

and θ are fixed by the BCS functions.
It is not feasible to write down the solutions of Eq. (10)

in a closed analytical form. However, the properties of the
solutions are well known and numerical approaches to it
are well developed. In order to obtain the solutions, we
use a publicly available solver, developed by Virtanen and
Heikkila and described in Ref. [33]. It provides the Green
function in the Ricatti parametrization, which is related to
the trigonometric parametrization by means of the equations
presented in Appendix A.

Once the unperturbed solution is found, the effects of the
weak electric field can be discussed. In the presence of the
oscillating electric potential ϕ, the Green function becomes
time dependent: ǧ = ǧeq + δǧ. The effect of the electric field
is twofold. First, it imposes time dependence on the phases
of the order parameters in the superconducting contacts, see
Eq. (7). This modifies the spectrum of the energy levels in
the junction through corrections to retarded and advanced
Green functions. Second, it induces interlevel transitions with
energy transfer ω, changing the populations of these levels
through corrections to the distribution function. Contributions
of these two types of corrections to the electric current
behave very differently at high temperatures: the former decay
exponentially ∝ exp(−L/LT ), while the latter decreases as a
power law by increasing the temperature.

B. Kinetic corrections

Let us start with a discussion of the correction to the
generalized distribution function δĤ . It can be chosen diagonal
in the particle-hole space:

δĤ (ε,ε′,x) = [hL(ε,x)τ̂0 + hT (ε,x)τ̂3]δ(ε − ε′ − ω).

In the contacts, the transversal distribution function hT is
driven out of equilibrium by the time-dependent voltage:

hT (ε,x = 0,1) = hT,0(ε,x = 0,1). (11)

The function hT (ε,x) describes the charge imbalance that is
induced in the N region due to an oscillating electric field.

The longitudinal distribution function hL(ε,x) describes all
deviations from the equilibrium Fermi distribution function
h(ε), which are related by nonequilibrium in energy distri-
bution, but without any charge imbalance. hL(ε,x) remains
unperturbed within the linear response regime strictly at the
boundaries with both superconductors:

hL(ε,x = 0,1) = 0, (12)

however it varies sharply within a short distance near these
boundaries, as will be discussed below.

In the wire hL,T are governed by conservation laws of
energy and charge currents:

∂xjL + N
(
iω − τ−1

in

)
hL = 0, (13)

∂xjT + N
(
iω − τ−1

in

)
[hT − hT 0] = 0, (14)
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where relaxation time approximation is employed. Here

hT,0(ε,x) = eϕ(x)
h(ε − ω) − h(ε)

ω
,

and h(ε) = tanh(ε/2T ) is an equilibrium Fermi distribution
function. Spatial distribution of the electric potential ϕ(x) has
to be found from the Poisson equation:


ϕ = −ρ, (15)

taking into account the fact that the oscillating voltage drop
along the wire V e−iωt = ϕ(0) − ϕ(1) is fixed by the applied ac
phase modulation. In general, this gives a complicated coupled
system of Eqs. (5) and (15) which can be solved iteratively.
In general we find that for all frequencies of interest, the
corrections to

ϕ(x) = ϕ(0) − V xe−iωt , (16)

which result from the charge redistribution in the wire, do
not lead to noticeable modification of the coherent part of the
admittance and we neglect them in what follows.

The energy current in Eq. (13) reads

jL = DL∂xhL − T ∂xhT + jhT , (17)

and the charge current is equal to

jT = DT ∂xhT + T ∂xhL + jhL. (18)

The transport coefficients, which enter the definitions of the
currents jL,T , have the following physical meaning: DL,T

are diffusion coefficients for energy and charge excitations,
T is responsible for conversion of charge current to energy
current and vice versa, while N plays the role of the DOS of
electron excitations. Finally, j is determined by the spectral
supercurrent J , see Eq. (B4). These quantities are modified
compared to their equilibrium values as a result of the time
dependence of the electric field, see Appendix B for explicit
expressions for them in terms of the unperturbed θ and φ.

C. Spectral corrections

Let us now turn to the corrections to the spectral functions
δĝR(A) [we will omit superscripts (R,A) below, since it cannot
lead to any confusion]. Naively, each of these two matrices in
the particle/hole space has four components:

δĝ(ε,ε′,x) =
(

upp(ε,x) uph(ε,x)
uhp(ε,x) uhh(ε,x)

)
δ(ε − ε′ − ω), (19)

but the normalization condition δ(ĝ · ĝ) = ĝ · δĝ + δĝ · ĝ = 0
allows us to express diagonal components in terms of the
off-diagonal ones:(

upp(ε)

uhh(ε)

)
= M̂

1 − th2 θ
2 th2 θ−

2

(
uph(ε)

uhp(ε)

)
(20)

with matrix M given by

M̂ =
(

eiφ− th θ−
2

(
1 − th2 θ

2

) −eiφ th θ
2

(
1 − th2 θ−

2

)
−e−iφ th θ

2

(
1 − th2 θ−

2

)
eiφ− th θ−

2

(
1 − th2 θ

2

)
)

(21)

and notation f−(ε) = f (ε − ω) is used. Parametrization (20)
reduces the number of independent components in δĝ to two:

uph,uhp. In the contacts, these functions are driven by the
time-dependent voltage:

uph(ε,x = 0,1) = uph,0(ε,x = 0,1), (22)

uph,0(ε,x) = eiφ sinh θ + eiφ− sinh θ−
ω

eϕ(x). (23)

Similar equations valid for uhp can be obtained from Eqs. (22)
and (23) by the replacement φ → −φ. In the wire, functions
uph(x) and uhp(x) are determined by the conservation laws of
the spectral currents, which take the following form:

∂xjph + (
2iε − iω − τ−1

in

)
uph

+ ieϕ[eiφ sinh θ − eiφ− sinh θ−] = 0. (24)

A similar equation is valid for uhp and jhp with substitution
φ → −φ. The spectral currents read(

jph

jhp

)
= D̂S

(
∂xuph

∂xuhp

)
+ ĴS

(
uph

uhp

)
, (25)

where

D̂S =
(

DS ei(φ+φ−)D̄S

e−i(φ+φ−)D̄S DS

)
(26)

and

ĴS =
(

JS + J+J−
cosh θ+cosh θ−

ei(φ+φ−)J̄S

e−i(φ+φ−)J̄S JS − J+J−
cosh θ+cosh θ−

)
. (27)

The spectral transport coefficients DS,D̄S and JS,J̄S which
enter these expressions are provided in Appendix B.

III. RESULTS

We start our presentation from the exemplary results
for the distribution functions, which are shown in Figs. 2
and 3. In all the figures, for inelastic rate we have assumed
�τ−1

in = T/g for definitenesses, assuming the standard model
for electron-electron inelastic scattering rate [34] (the value
of dimensionless film conductance g is given in the figure
captions).

Below we discuss the results for the admittance Y/YN . For
comparison with experiment, keep in mind that susceptibility

FIG. 2. (Color online) Variation of the longitudinal distribution
function at T = 15ETh, �ω = ETh with varying the phase difference
g = 40.
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FIG. 3. (Color online) Variation of the transversal distribution
function at T = 15ETh, �ω = ETh with varying the phase difference
g = 40.

to the oscillating phase reads χ/χ0 = i �ω
ETh

Y/YN . For the SNS
junction of the experiment, mentioned in the Introduction,
χ0 ≈ 35μA/�0.

A. High temperature

Let us discuss the variation of the dissipative part of the
admittance with frequency at high temperature, see Figs. 4
and 5. As expected, at low frequency, Lempitskii’s result is
reproduced, see the curve corresponding to ω = 0.1ETh. With
growth of the frequency, the shape of the curve drastically
changes and the dissipative part of Y acquires a peak at φ0 = π,

which becomes more prominent with growth of frequency
and can be clearly seen up to the largest temperature of T =
15ETh.

The same kind of evolution of ReY (φ0)/YN is shown for
different temperatures at fixed frequency �ω = ETh in Fig. 6.
Note the strong peak near the phase equal to π at T = 5ETh.

In order to understand this result, recall how Eq. (3) was
derived. First, we note that at T � ETh the contribution of the
spectral corrections δĝ to the electric current can be neglected

FIG. 4. (Color online) Variation of ReY (φ0)/YN with frequency
at T = 15ETh, g = 40, low frequencies.

FIG. 5. (Color online) Variation of ReY (φ0)/YN with frequency
at T = 15ETh, g = 40, high frequencies.

and only corrections to the distribution function (hL,T ) are
important. At finite voltage, the charge excitations, described
by hT , which enter the wire from the superconductor and get
converted into energy excitations there, see the last term in
Eq. (17). In the limit of �ω/
 � 1 the energy excitations [de-
scribed by hL(ε,x)] are locked in between the superconducting
contacts, since the corresponding density of states vanishes at
the superconductors. Because of that, a relatively large and
almost spatially independent nonequilibrium correction to the
longitudinal distribution function h

(Lemp.)
L (ε) = hL(ε) − h(ε)

in the wire is established:

h
(Lemp.)
L ≈ j

〈N〉
eV

iω + τ−1
in

h′(ε), (28)

which contributes to electric current as I ∝ ∫
jh

( Lemp.)
L dε,

leading to Eq. (3). Note that this equation seems to be

FIG. 6. (Color online) Variation of ReY (φ0)/YN with tempera-
ture at �ω = ETh, g = 40.
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inconsistent with the boundary condition Eq. (12). In fact,
in the limit ETh � 
 true distribution function differs from
h

(Lemp.)
L in the closest vicinity of the boundary, where it exhibits

large spatial gradient and sharply varies from hL = 0 in the
superconductor to hL = h

(Lemp.)
L in the wire. As a consequence,

the limit of 
 → ∞ is singular: hL has a jump at x = 0.
Expanding the KE in the vicinity of the contact x = 0 we find
that Eq. (12) is replaced by an effective boundary condition:

∂xhL(ε)|x=0 = ω

ζ (ε)
hL(ε)|x=0, (29)

where ζ (ε) = ∂xθ
A
−|x=0 − ∂xθ

R|x=0.
It is important that at low frequency hL is limited only

by inelastic processes: in the limit of τin → ∞ one has
hL ∝ V

T
ETh
�ω

. This is why at lowest frequencies the correction
to hL(ε) leads to the whole effect dominated by Lempitskii’s
contribution. The properties of the transversal distribution
function hT are quite different. It describes charge excitations
which are free to leave the wire via Andreev reflection, so that
corrections to hT are relatively small at the lowest frequencies:
hT (ε) ∝ V

T
. However, it is clear that at �ω ∼ ETh charged

excitations described by hT (ε) can provide an important
contribution to electric current, comparable to that due to
excitations of Andreev pairs [described by hL(ε)]. If one
is interested in the dissipative part of Y, the corresponding
condition is even more stringent, since the real part of hL

starts to decay already at �ω ∼ �τ−1
in � ETh.

B. Low temperature

At low temperature, the dissipation is noticeable only in the
vicinity of the minigap closing, see Fig. 7. These results are
very natural. Indeed, at T = 0 dissipation is nonvanishing only
as long as frequency is large enough compared to the minigap
Eg , in particular, at ω = 0 one has ReY ∝ δ(φ0 − π ). This
peak broadens at finite temperature: δφ ∝ �ω,T . In addition,
at finite ω it acquires an additional structure: observe a kink

FIG. 7. (Color online) Variation of ReY (φ0)/YN with frequency
at T = ETh, g = 40.

FIG. 8. (Color online) Variation of ReY (φ0)/YN with tempera-
ture at ω = 0.3ETh, g = 20.

of the dissipation as φ0 departs from π . The position of this
kink is determined by the condition 2Eg(φk) = ω. Indeed, for
φk ∼ π, one has [35] Eg(φ) ≈ π3

4 ETh|1 − φφ/π |, which gives
for �ω = 0.5ETh: φk ≈ 3.04. It can also be followed how this
kink shifts with growth of the frequency. At larger temperature
it becomes smoothed away, see for example the evolution of
the curve in Fig. 8 from T = 2ETh to T = 5ETh.

C. Low frequency

Another interesting crossover in the shape of ReY (φ0)/YN

is seen at low frequencies upon variation of the temperature.
It is illustrated in Fig. 8. At moderately low temperature
T = 2ETh a strong peak of dissipation is found at the phase
difference φ0 ≈ 0.75π ; with temperature increase, this peak
becomes more rounded and shifts further away from π , so that
curve becomes more and more similar to Lempitskii’s function
Q0(φ).

IV. CONCLUSIONS

We have developed a fully microscopic approach to the
calculation of a nonstationary ac linear response function of a
SNS junction under the dc phase bias, that is valid at arbitrary
relations between temperature T , Thouless energy ETh, and
frequency ω. We assumed an energy gap in the S terminals 


to be much larger than all these energy scales and took into
account inelastic relaxation rate �/τin � ETh. The shape of the
dissipative response ReY (φ0)/YN is shown to be very sensitive
to the relations between T , ETh, �ω, and �/τin. Explicit results
for the function ReY (φ0)/YN can be found for any choice of the
above parameters using the published codes. In particular, we
have shown that an accurate solution reproduces many of the
qualitative features of the experimental results [13], including
peak at the phase difference equal to π at high frequencies
and high temperature; we interpret this peak as the result of
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FIG. 9. (Color online) Variation of ImY (φ0)/YN with tempera-
ture at ω = 5ETh, g = 20.

charge imbalance induced by a high-frequency electric field.
Still some quantitative disagreement exists: The experimental
value of dissipation at φ0 = π is higher (at the same values of
T and ω) than our computations provide. A possible source
of this disagreement may be related to nonzero resistance
of SN interfaces which we did not take into account in the
present calculations, since we assume interfaces to be perfectly
transmitting. It is a straightforward task to include nonzero
interface resistance into the calculational scheme developed.

In our discussion, we did not touch the issue of the
nondissipative part of Y (φ0), which, at moderate frequency,
seems to be reasonably well described in Lempitskii’s approx-
imation. What lies outside this approximation is an interesting
feature at high frequency at φ0 ∼ π, which is observed in
the experiment [13], as Fig. 6.21 of this reference shows.
In our model we obtain the flattening of ImY at φ0 ∼ π at
ω � ETh. For example, see Fig. 9 for the results at ω = 5ETh,
which at high temperature are rather close to the experiment.
However, we do not see a qualitative change of behavior
by lowering the temperature and do not get the large drop
at φ0 = π which is observed in experiment. The nature of
this drop is a very interesting problem for a future study.
Another interesting problem is to include a more realistic
description of electron-electron interaction into the linear
response calculation. It can be as interesting and as important
due to the specific spectral properties of the electrons, confined
between superconducting reservoirs and the great sensitivity
of the admittance to inelastic processes in the experimentally
relevant regime of frequency and temperature.
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APPENDIX A: RICATTI PARAMETRIZATION OF THE GF

For numerical solution of the unperturbed Usadel equation,
it is more convenient to use Ricatti parametrization:

ĜR
0 = 1

1 − ab

(
1 + ab 2a

−2b −1 − ab

)
. (A1)

In this parametrization, the spectral Usadel equation reads

Da′′ + 2iεa = −2Dba′2

1 − ab
,

(A2)

Db′′ + 2iεb = −2Dab′2

1 − ab
.

In the main text we hold to trigonometric parametrization,
see Eq. (9), which makes the formulas more compact. The
relationship between the two parametrizations is as follows:

a = eiφ th
θ

2
, b = e−iφ th

θ

2
. (A3)

APPENDIX B: TRANSPORT COEFFICIENTS AT
FINITE FREQUENCY

Here we present expressions for transport coefficients at
nonzero frequency, which enter Eqs. (13) and (14). En-
ergy/charge diffusion coefficients read

DL,T = 1 − cosh θR cosh θA
−

± cos(φA
− − φR) sinh θR sinh θA

− , (B1)

anomalous transport coefficient:

T = −i sin(φA
− − φR) sinh θR sinh θA

− , (B2)

and density of states:

N = cosh θR − cosh θA
− . (B3)

Finally, the spectral supercurrent reads

j = JR − JA
− . (B4)

The frequency of oscillations enters these expressions by the
energy shifts, which are shown by the following notation:
f±(ε) = f (ε ± ω). The spectral transport coefficients, which
enter Eq. (24), read

DS = 1 + cosh θ cosh θ−
cosh θ + cosh θ−

, (B5)

D̄S = sinh θ sinh θ−
cosh θ + cosh θ−

, (B6)

and

JS = (1 + cosh θ cosh θ−)∂x

1

cosh θ + cosh θ−
, (B7)

J̄S = sinh θ sinh θ−∂x

1

cosh θ + cosh θ−
. (B8)
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[8] P. Virtanen, T. T. Heikkilä, F. S. Bergeret, and J. C. Cuevas,

Phys. Rev. Lett. 104, 247003 (2010).
[9] P. Virtanen, F. S. Bergeret, J. C. Cuevas, and T. T. Heikkilä,
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