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Photoinduced superconductivity in semiconductors
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We show that optically pumped semiconductors can exhibit superconductivity. We illustrate this phenomenon
in the case of a two-band semiconductor tunnel-coupled to broad-band reservoirs and driven by a continuous
wave laser. More realistically, we also show that superconductivity can be induced in a two-band semiconductor
interacting with a broad-spectrum light source. We furthermore discuss the case of a three-band model in which
the middle band replaces the broad-band reservoirs as the source of dissipation. In all three cases, we derive the
simple conditions on the band structure, electron-electron interaction, and hybridization to the reservoirs that
enable superconductivity. We compute the finite superconducting pairing and argue that the mechanism can be
induced through both attractive and repulsive interactions and is robust to high temperatures.
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I. INTRODUCTION

Superconductivity is unarguably a fascinating phase of
matter with tremendous applications. This low-temperature in-
stability towards zero-resistivity corresponds to the emergence
and the condensation of Cooper pairs of electrons. In most
simple metallic systems, the pairing is achieved by phonon-
mediated interactions [1] and the superconducting temperature
does not exceed a few degrees Kelvin. The last fifty years
have seen some remarkable progress in the understanding of
superconductivity. Cuprates [2] and iron pnictides [3,4] now
offer critical temperatures on the order of a hundred Kelvin.
They were dubbed “high-temperature superconductors” as
such temperatures can be easily achieved with liquid nitrogen.
All this allowed superconductivity to become a cornerstone to
many modern technological developments [1]. The Josephson
effect is routinely used in superconducting quantum interfer-
ence devices (SQUIDs) [1], and its inherent nonlinearity is
widely used to build qubits [5,6]. The Meissner effect and
the zero resistivity are used to realize powerful magnets [7].
However, the search for room-temperature superconductivity
is still a very active field of research [8].

Pioneering examples of the use of ac microwave fields in
condensed matter systems have been to enhance the critical
temperature of regular superconductors by redistributing the
quasiparticle density near the Fermi surface [1]. More recently,
it was established that an ac electric field leads to a renormal-
ization of the lattice hopping parameters [9–11]. It has been
suggested that in interacting systems such as the Bose-Hubbard
model it is thereby possible to induce a superfluid Mott
insulator phase transition [12–14]. Reversing the signs of
the hoppings in a lattice model could be used to realize
frustrated classical spin systems [15]. In the case of electrons
driven by a laser field, many interesting phenomena have been
proposed [16,17]. These include dynamical band flipping and
splitting [18], interaction strength renormalization, changes
in the sign of the effective interaction strength leading to
s-wave superconductivity with repulsive bare interactions and
negative absolute temperatures for a laser-driven band model.

In this work, we present a method to achieve super-
conductivity that consists of optically driving a two-band

semiconductor to a suitable nonequilibrium steady state, which
supports interband pairing between electrons in the valence
and conduction electrons. Importantly, we shall demonstrate
the robustness of this mechanism with respect to temperature,
up to room temperature, as long as it is smaller than the
semiconducting gap.

We note that the possibility of inducing superconductivity
in a two-band model has been discussed in narrow, indirect gap
semiconductors [19–23]. However, the mechanism proposed
here is significantly different in that it involves interband
pairing for wide gap semiconductors, instead of intraband
pairing for narrow gap semiconductors. Furthermore, in our
mechanism the majority of the pairing occurs around a
resonant surface Sω0 (see Sec. II), which is not directly
related to the band edge. Among the chief consequences of
the difference in pairing channel and its k-space location is
the fact that in our mechanism the pairing amplitude does
not need to be larger than the semiconducting gap in order
to establish nonequilibrium steady-state superconductivity,
therefore making pairing more easily attainable.

In Sec. II, we take a pedagogical route to demonstrate this
effect by considering a model of a two-band semiconductor
in tunneling contact with two reservoirs provided, say, by a
metallic plate (see Fig. 1). We carefully show that it is possible
to induce superconductivity in this system under favorable
conditions involving the electronic dispersion, the electron-
electron interaction, and the hybridizations to the reservoirs
as well as the chemical potential. To support the validity
of our analytical results in the steady-state, we perform an
exact numerical integration of the time dynamics. We show in
particular that the predicted nontrivial steady state is indeed
reached dynamically.

In Sec. III, we argue that the previous case can be
reduced to a simpler yet more realistic model of a two-band
semiconductor—not in strong tunneling contact with any
engineered external reservoirs—which is optically pumped
by a broad-band light source. In many ways, it is the most
relevant model discussed in this manuscript and the reader
eager to learn about these results can directly jump to Sec. III,
which is written in a self-contained fashion.
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FIG. 1. (Color online) Energy levels and laser. (a) A continuous
wave laser drives transitions between the lower (1) and upper (2)
bands. Both bands are coupled to reservoirs. The chemical potentials
of the reservoirs μ is set in the gap. (b) In the rotating frame,
the laser induces an avoided band crossing (with splitting ∼|�|).
(c) This creates an effective resonant surface Sω0 consisting of the
set of momenta k0 for which the laser resonantly connects the two
bands.

In Sec. IV, we provide an alternative derivation of the
previous results by means of a Keldysh formalism approach.
In particular, this allows to justify properly an approximation
used to self-consistently compute the superconducting pairing.
For the sake of completeness, we review in the Appendix the
case of a three-band semiconductor in which the extra band
plays the role of the reservoirs in Sec. II.

II. LASER-DRIVEN DISSIPATIVE TWO-BAND
SEMICONDUCTOR

Let us consider a semiconductor with two relevant elec-
tronic bands: the lower band (α = 1) with dispersion E1(k) and
the upper band (α = 2) with dispersion E2(k) are separated
by a gap Eg. For the sake of simplicity, let us assume that
the dispersion is symmetric so that Eα(k) = Eα(−k) for both
bands α = 1,2; this will allow for s-wave superconductivity
without any energy mismatches. The semiconductor is driven
by a continuous coherent laser source with frequency ω0. This
induces transitions between the bands if there are momenta k0

such that E2(k0) = E1(k0) + ω0. In practice, this condition is
easily met and the corresponding momenta lie on a finite closed
surface Sω0 of the Brillouin zone. In particular, we assume that
the level surfaces of E1(k0) and E2(k0) have good overlap
(which would happen for say parabolic bands). The laser acts
as a source of energy and we provide a heat sink by coupling
each band to an independent reservoir, which can exchange
particles and energy. Both reservoirs are kept in equilibrium at
temperature T and chemical potential μ. In principle, one can
also consider a single reservoir provided that its density of state
is broad enough to overlap with the upper and lower bands. We
set the chemical potential in the gap, exactly halfway between
the two bands, μ = [E2(k0) + E1(k0)]/2. This ensures that
all quasiparticles have zero energy. In the rotating frame, this
will correspond to a zero-energy condition for the electrons
at k0 ∈ Sω0 . Below, we measure energies relative to μ, i.e.,

we set μ = 0. We shall see later that the ability for the
electronic bands to acquire nontrivial populations is crucial to
the occurrence of superconductivity. In the case at hand, this
is favored if the two reservoirs have different density of states
or different coupling strength to the bands. In the Appendix,
we shall see that a third band, or alternatively as in Sec. III,
other k modes in the same band can also play this role.

In order to establish that superconductivity can be realized
in such a driven-dissipative system, we first solve for its
nonequilibrium steady-state dynamics by means of a master
equation approach. Within a self-consistent mean-field ap-
proach, we then obtain the criteria for superconducting pairing
and estimate the size of the superconducting gap. Finally, we
discuss the robustness of our results, in particular, against finite
temperature.

A. Mean-field Hamiltonian and master equation

We decompose the total model Hamiltonian into a laser-
driven semiconductor part (the system), a reservoir part (the
bath), and a system-reservoir coupling part:

H = Hsys + Hbath + Hsys-bath, (1)

where

Hsys =
∑
k,α

Eα(k) cα
k
†
cα

k + �(t)
∑
k,α,β

cα
k
†
σx

αβ c
β

k

+ i

2
�

∑
k,α,β

cα
k
†
σ

y

αβ c
β

−k

† − i

2
�∗ ∑

k,α,β

cα
k σ

y

αβ c
β

−k, (2)

Hbath =
∑
k,n,α

ωα
n (k) aα

k,n
†
aα

k,n, (3)

and

Hsys-bath =
∑
k,n,α

tα(k)
(
cα

k
†
aα

k,n + aα
k,n
†
cα

k

)
. (4)

cα
k and cα

k
† are the creation and annihilation operators of

electrons with a quasimomentum k in the α band, α = 1,2.
�(t) = � cos(ω0t) is the laser drive, and σx,y,z are the usual
Pauli matrices acting on the band indices. The last two
terms in Hsys originate from a microscopic electron-electron
interaction, which we treat at a mean-field level (see also
Sec. II B). � is the complex order parameter, which quantifies
the superconducting pairing between the bands and that will be
determined self-consistently. The aα

k,n’s represent the degrees
of freedom of the noninteracting reservoirs with energy ωα

n .
Here, n is a mode label. We shall assume that the reservoirs
have continuous density of states given by να(ω) and that they
are weakly coupled to the system, i.e., |t2

α |να � E2 − E1 [24].
In this case, the dynamics of the reduced density matrix of the
system, ρsys, can be described by a Master equation reading
[25]

d

dt
ρsys = −i[Hsys,ρsys] +

∑
k,α


α(k)
{
nF (Eα(k))D

[
c
α†
k

]
ρsys

+ [1 − nF (Eα(k))]D
[
cα

k

]
ρsys

}
, (5)

where nF(ε) ≡ [1 + exp(ε/T )]−1 is the Fermi-Dirac distribu-
tion function, and the rates 
α(k) ≡ 2π |tα(k)|2να(Eα(k)) are
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given by Fermi’s golden rule. We note that for some decaying
mechanisms such as phonons not considered here, the rates 
1

and 
2 may be temperature dependent. The Lindblad-type dis-
sipators are defined as D[X]ρ ≡ (XρX† − X†Xρ + H.c.)/2.

We neglected the Lamb-shift corrections (real part of hy-
bridization self-energy). We may now write the equations
of motion for the populations, coherences and anomalous
correlators n

αβ

k ≡〈cα
k
†cβ

k 〉 and s
αβ

k ≡ 〈cα
k
† c

β

−k

† 〉 with α,β = 1,2:

d

dt
n11

k = −i�(t)
(
n12

k − n21
k

) + i�s21
k − i�∗ s21

k
∗ − 2
1(k)

[
n11

k − nF(E1(k))
]
, (6a)

d

dt
n22

k = −i�(t)
(
n21

k − n12
k

) + i�s21
k − i�∗ s21

k
∗ − 2
2(k)

[
n22

k − nF(E2(k))
]
, (6b)

d

dt
n21

k = i[E2(k) − E1(k)] n21
k − i�(t)

(
n22

k − n11
k

) − [
2(k) + 
1(k)] n21
k , (6c)

d

dt
s21

k = i[E2(k) + E1(k)] s21
k + i�∗ (

n11
k + n22

k − 1
) − [
2(k) + 
1(k)] s21

k , (6d)

in which we made use of the identity tr(O D[X]ρ) = tr([X†,O]Xρ) + tr(X†[O,X]ρ) = 〈[X†,O]X〉ρ + 〈X†[O,X]〉ρ repeatedly.
We then perform a rotating wave approximation (RWA) to eliminate the explicit time dependence of these equations. This consists
in rotating all the operators of the theory with the unitary

U ≡ Uc ⊗ Ua, (7)

where

Uc ≡ exp

[
i

2
ω0t

∑
k

(
c

1†
k c1

k − c
2†
k c2

k

)]
and Ua ≡ exp

⎡⎣ i

2
ω0t

∑
k,n

(
a

1†
k,na

1
k,n − a

2†
k,na

2
k,n

)⎤⎦ . (8)

In particular, c1
k 
→ c̃1

k = c1
k e−iω0t/2, c2

k 
→ c̃2
k = c2

k eiω0t/2, and H 
→ H̃ = U (H − i∂t )U † so that the energies are shifted to
Ẽ1(k) = E1(k) + ω0/2 and Ẽ2(k) = E2(k) − ω0/2. Note that in the rotating frame, ñ11

k = n11
k , ñ22

k = n22
k , and s̃12

k = s12
k are

invariant, but ñ12
k = n12

k e−iω0t and ñ21
k = n21

k eiω0t . We drop all terms rotating at 2ω0 since they are not resonant with any
transition. We also drop the k dependence of the decay rates 
1,2(k) → 
1,2, which is justified by assuming their weak
momentum dependence in the small window of momenta around the surface of resonant condition Sω0 . Altogether, we obtain

d

dt
ñ11

k = − i

2
�

(̃
n12

k − ñ21
k

) + i� s̃21
k − i�∗ s̃21

k
∗ − 2
1

[̃
n11

k − nF(E1(k))
]
, (9a)

d

dt
ñ22

k = − i

2
�

(̃
n21

k − ñ12
k

) + i� s̃21
k − i�∗ s̃21

k
∗ − 2
2

[̃
n22

k − nF(E2(k))
]
, (9b)

d

dt
ñ21

k = (iεk − 
) ñ21
k − i

2
�

(̃
n22

k − ñ11
k

)
, (9c)

d

dt
s̃21

k = (iEk − 
) s̃21
k + i�∗ (̃

n11
k + ñ22

k − 1
)
, (9d)

where we defined 
 ≡ 
1 + 
2, εk ≡ Ẽ2(k) − Ẽ1(k), and
Ek ≡ Ẽ2(k) + Ẽ1(k). Where we have used the sym-
metry between k and −k stemming from Eα(k) =
Eα(−k). This reduces all computations to just one wave
vector k.

The steady-state values of populations, coherences and
anomalous correlators can now be solved by setting the
left-hand side of Eq. (9) to zero. We find that

s̃21
k = − �∗

Ek + i


(̃
n11

k + ñ22
k − 1

)
, (10)

where ñ11
k + ñ22

k − 1 measures the fraction of the total popu-
lation that can be borrowed from, or shifted to, the “storage”
constituted by the reservoirs or by the other k modes away

from resonance. It is given by

ñ11
k + ñ22

k −1≈ γ1 − γ2

�

�2

ε2
k + 
2

[nF (E1(k) ) − nF(E2 (k) )] ,

(11)

where we defined γ1,2 ≡ 
1,2/
,

� ≡ 4γ1γ2 + 4|�|2
Ek

2 + 
2
+ �2

ε2
k + 
2

(
1 + 4|�|2

Ek
2 + 
2

)
,

(12)

and we neglected a term proportional to nF(E1(k)) +
nF(E2(k)) − 1 since this factor vanishes at zero temperature
and is exponentially suppressed for temperatures smaller than
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the semiconducting gap Eg. We note that both a large γ1γ2 and
a large |�| lead to a decrease in ñ11

k + ñ22
k −1.

Anticipating what follows, we shall see that only a
nonvanishing value of ñ11

k + ñ22
k − 1, i.e., a finite population

deviation from the equilibrium situation, will amount to
superconductivity. It is quite transparent from Eq. (11) that
in order to obtain such nontrivial band populations, one must
drive the system (� = 0) and the decay rates 
1 and 
2 must
be different (γ1 = γ2).

When the drive � is large compared to 
, the ratio �2/(ε2
k +


2) is very large near the resonance (εk = 0). In this case, and
when the temperature is much smaller than the semiconducting
gap, the nonequilibrium population deviation simplifies to

ñ11
k + ñ22

k − 1 ≈ E2
k + 
2

E2
k + 
2 + 4|�|2 (γ1 − γ2) , (13)

which holds in a range of width � near the resonance. We
note that this approximation is also valid for moderate � when
γ1γ2

∼= 0 and � is small. Hence � plays the role of a cut-
off, and for energies |εk| < � we can use the approximate
expression in the equation above. Notice that one can achieve
finite nonequilibrium population deviations in this range of
εk, on the order of γ1 − γ2. Moreover, notice that the sign of
this deviation depends on which of the decay rates 
1 or 
2 is
larger, see also Fig. 2.

In the opposite case in which the decay rate 
 is much larger
than the drive �, the nonequilibrium population deviation is
(for bath temperatures much smaller than the semiconducting

bath 2

bath 1

bath 2

bath 1

(a)

(b)

FIG. 2. Nonequilibrium population deviation due to driving and
dissipation. The laser causes an electron in the valance band to
transition into the conduction band. The figure illustrates particular
examples when the two rates 
1,2 differ substantially. In (a), the rate

1 � 
2, so the reservoirs fill the hole in the valance band much faster
than the electron in the conduction band can relax back; the state is
blocked, and one has n11

k + n22
k − 1 ∼ +1. In (b), the rate 
2 � 
1,

so the reservoirs remove the electron in the conduction band much
faster than it can relax back; one is left with two holes, and one has
n11

k + n22
k − 1 ∼ −1 in this example.

gap)

ñ11
k + ñ22

k − 1 ≈ Ek
2 + 
2

Ek
2 + 
2 + |�|2

γ1γ2

γ1 − γ2

4γ1γ2

�2

ε2
k + 
2

. (14)

B. Self-consistency equation

We now solve self-consistently for the superconducting
gap. The pairing part of the mean-field Hamiltonian
originates from a microscopic Hamiltonian, which involves
a density-density type of interaction between the electrons
in the two bands of the semiconductor. The mean-field
decoupling for this microscopic interaction of strength V (in
a system of volume V) is given by

He−e = 1

V
∑
k,k′

V c2
k
†
c1
−k
†

c1
k′ c

2
−k′ (15)

→
∑

k

(
� c2

k
†
c1
−k
† + �∗ c1

k c2
−k

)
, (16)

with

�∗ = 1

V
∑

k

V
〈
c2

k
†
c1
−k
†〉 −−−→

V→∞

∫
(dk) V

〈
c2

k
†
c1
−k
†〉
, (17)

where we wrote (dk) ≡ dd k/(2π )d to shorten notations.
Equation (17) is solved self-consistently by using the

anomalous correlator in Eq. (10). The correct self-consistent
condition involves only the real part of Eq. (10); this assertion
will be justified in Sec. IV where we properly obtain the
self-consistency relation from a saddle point condition (notice
that this is trivially true in the limit 
 → 0). More precisely,
we use the self consistency relation:

�∗ =
∫

(dk) V s̃21
k Re

(
1

Ek + i


)
(Ek + i
) . (18)

We derive this rigorously in Sec. IV. Assuming that � � 


and using Eq. (13) for the populations, the resulting gap
equation reads

1 = −V

∫
(dk)

Ek

E2
k + 
2 + 4 |�|2 (γ1 − γ2)

= −N0V (γ1 − γ2)
∫ �

−�

dε
E(ε)

E2(ε) + 4|�|2 + 
2
, (19)

with N0 ≡ ∫
(dk) δ(εk) the density of states near the resonance.

Below, we study the solutions of the self-consistent equation
in a few relevant cases.

1. Bands with opposite velocities at resonance

This is a very favorable case, so let us start with it. On the
resonant surface Sω0 , the dispersion relations of both bands
can be Taylor-expanded as Ẽ1,2 = v1,2 q⊥ + κ1,2 q2

⊥ + · · · ,
where q⊥ is the momentum perpendicular to Sω0 . So ε =
v− q⊥ + κ− q2

⊥ + · · · and E = v+ q⊥ + κ+ q2
⊥ + · · · , where

v± ≡ v2 ± v1 and κ± ≡ κ2 ± κ1. If the velocities are opposite
in the two bands, i.e., v+ = 0, one can express E(ε) ≈
(κ+/v2

−) ε2. Upon using this E(ε) in Eq. (19) and extending
the limits of integration in Eq. (19) to ±∞ (for large �), we
obtain

1 = − π√
2
N0V

|v−| sgn κ+√|κ+|
γ1 − γ2

(4|�|2 + 
2)1/4
. (20)
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We note that Eqs. (10) and (11) are exact. Notice that
this equation can be satisfied for both attractive or repul-
sive interactions depending on the relative signs of γ1 −
γ2 and of κ+. Superconductivity is possible if the sign
of V satisfies

sgn V = sgn(γ2 − γ1) × sgn κ+, (21)

and its magnitude satisfies the threshold condition

|V | � Vc ≡
√

2

π

1

N0

√|κ+|
|v−|

√



|γ1 − γ2| . (22)

This expresses the fact that superconductivity is favored by
small and different decay rates.

If the conditions in Eqs. (21) and (22) are met, the
superconducting gap is given by

|�| = 


2

√(
V

Vc

)4

− 1. (23)

For large coupling constant, the gap scales as the square of
the interaction strength V . Notice also that the gap does not
vanish in the limit 
 → 0 because the threshold disappears
simultaneously. In this limit,

|�| −−→

→0

π2

4
(N0V )2 v2

−
|κ+| (γ1 − γ2)2. (24)

Robustness. Let us examine the domain of validity of our
results. Let us first argue that the condition v+ = 0 that we
used above can be achieved by a proper choice of the laser
frequency ω0. In practice, one may proceed as follows. The
resonance surfaceSω0 can be swept as one changes ω0. At k0 ∈
Sω0 , εk0 = 0 by definition. Assume for simplicity a spherical-
symmetric dispersion. As one scans ω0, one should search for
the frequency for which Ek0 reaches an extremum, either a
minimum or maximum. The extremum would correspond to a
zero of v+. Finding the extremum condition may require using
higher and lower bands; we illustrate this for a few examples of
band structure topologies in Fig. 3. By changing the chemical
potential, one can make the value of the extremum be zero,
i.e., Ek0 = 0, and therefore E(ε) ∝ ε2.

Additionally, we note that our results are relatively stable
in the case of a nonvanishing v+. Indeed, our results are
essentially unchanged as long as

|v+| �
√

|κ+| 

|V |
Vc

. (25)

Most importantly, our results are robust against finite
temperatures of the reservoirs. Indeed, this corresponds to
changes in nF(E1(k)) and nF(E2(k)), which may be neglected
for temperatures less then the semiconducting gap Eg.

2. Weak Rabi frequency

Previously, we considered the case in which the laser Rabi
frequency � was large compared to the decay rate 
. This
condition is most favorable towards superconducting pairing;
however, for many systems, it is not satisfied. For lasers
with moderate power (say on the order of milliwatts) and
semiconductors at room temperatures, the laser Rabi frequency
is several hundred megahertz, while the carrier decay rate is

ΓL X

E
b
a
n
d

ΓL X

E
b
a
n
d

(a) (b)

FIG. 3. Examples of how to choose optimal conditions. One must
seek points in the Brillouin zone where two bands have opposite
velocities. The transitions are depicted by the vertical dashed line,
whose length determines the laser frequency ω0. Notice that the
transition of choice does not need to be between two consecutive
bands, as is the case depicted in (a). In (b), the transition of
choice is between two consecutive bands. The horizontal dashed
line demarcates the position of the chemical potential, which can be
chosen by doping or gating. The topologies of the band structures
were sketched to resemble the bands in Si (a) and in GaAs (b).

several tens of gigahertz. It is therefore relevant to repeat the
previous analysis in the less favorable case in which the Rabi
frequency is less than the particle decay rate.

Following the steps of Sec. II B 1, but using here the
nonequilibrium population deviation given in Eq. (14), the
superconducting self-consistency equation now reads

1 = − π

4
√

2
N0V

|v−| sgn κ+
√|κ+|

v2−
√

|�|2 + γ1γ2
2 + √
γ1γ2
2|κ+|

× 1

(γ1γ2)1/4

γ1 − γ2

(|�|2 + γ1γ2
2)1/4
�2. (26)

We recover the previous condition on the sign of the electron-
electron interaction, namely,

sgn V = sgn(γ2 − γ1) × sgn κ+, (27)

and the threshold condition now reads

|V | � V ′
c ≡ 4

√
2

π

1

N0

v2
− + |κ+|

|v−| √|κ+|

γ1γ2 
3/2

|γ1 − γ2|
1

�2
. (28)

Compared to the case � � 
 [see Eq. (22)], the thresh-
old condition has changed by a factor 4γ1γ2(
2/�2) ×
[|κ+|
/(|v−|2 + 
|κ+|)]. We note that, while in this case
both factors 
2/�2 and |κ+|
/(|v−|2 + 
|κ+|) increase the
threshold, this could be compensated if the two bands have
rather different decay rates, in which case the factor γ1γ2 can
be small. If both conditions in Eqs. (27) and (28) are met and
|v−|2 � |κ+|
, the gap is then given by

|�| = 

√

γ1γ2

√( |V |
V ′

c

)4/3

− 1. (29)

Note that for large electronic interactions |V |, the gap is linear
in the decay rate 
.

Vanishing decay rates. One particularly interesting case is
when the Rabi frequency is small but the two decay rates

054517-5
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FIG. 4. (Color online) (a) Time evolution of the order parameter � for three representative values of the coupling constant: V = 5 > Vc =
2.14, V = 2.3 ∼ Vc, and V = 1 < Vc. The straight lines correspond to the analytic expressions in Eq. (23). Here, Vc is computed using Eq. (22)
(corrected to account for cutoff effects). (b) Perfect matching between the steady-state anomalous correlator s̃21

k as given by Eq. (10) (straight
lines) and the anomalous correlator s̃21

k obtained numerically after the time dynamics have converged (circles). The color coding is the same as
in (a). (κ+ = −50, v− = 10, � = 0.5, 
 = 10−2, and γ2 = 10−3.)


1 and 
2 are very different so that γ1γ2 ≈ 0. Repeating the
previous steps, the superconducting self-consistency equation
reads

1 = π√
2
N0V (γ2 − γ1) �

× |v−| sgn κ+
[�2 |κ+|2 
2(4|�|2 + �2)]1/4 + 2 |v−| |�| (30)

yielding the condition

sgn V = sgn(γ2 − γ1) × sgn κ+, (31)

and the threshold

|V | � V ′′
c ≡

√
2

π

1

N0

√|κ+|
|v−|




|γ1 − γ2| . (32)

We note that this is the same threshold as in Eq. (22) where
we considered the case of a large Rabi frequency � � 
.
Whenever this threshold is satisfied in the case of a large |v−|,
the superconducting order parameter reads

|�| = �

2

√

|κ+|
|v−|

( |V |
V ′′

c

− 1

)
. (33)

C. Dynamics of the order parameter

We now confirm our analytic predictions by numeric
integration of the equations of motion, see Eqs. (9a)–(9d).
We start by briefly describing our numerical simulation
procedure. For simplicity, we consider the case when the
Eα(k) are spherically symmetric. Furthermore, by focusing
on the region near the resonant surface Sω0 we may ignore
variations in the density of states. In this case, within mean
field, we may reduce the dynamics of the 3D model to the
dynamics of an equivalent one-dimensional model, where
for simplicity, we can mathematically shift the surface Sω0

to the wave vector k0 = 0. Furthermore, we will assume
that Ẽ1,2 = v1,2 k + κ1,2 k2 (with no higher-order corrections).
We will assume that κ− = v+ = 0 and the density of states
is set to N0 = 1/2π . We also scale all units such that all

quantities become dimensionless. We consider an initial state
(t = 0) where the populations and coherences are initial-
ized at their zero-temperature equilibrium values ñ21

k = 0,
ñ11

k = nF (E1(k)) and ñ22
k = nF (E2(k)). The superconducting

correlations are initialized at a very small but nonzero value
s̃21

k = 0.02 s̃21
k,Eq , where s̃21

k,Eq is the steady-state anomalous
correlator as computed in Sec. II (we also considered random
initial conditions and obtained similar results). We then time
evolve Eqs. (9a)–(9d) until we reach a steady state. We have
used the self-consistency relation in Eq. (18). In Fig. 4,
we present our numeric simulations for three representative
coupling constants (where � � 
 and γ1 � γ2). In Fig. 4(a),
we plot the superconducting gap as a function of time: it
converges to the order parameter theoretically predicted in
Eq. (23). To get good matching, we have calculated the
correction to Eq. (23) due to the finite cutoff in k space
|kmax| = 0.2 used in the numerical simulations. In Fig. 4(b),
we plot the theoretically predicted values of the anomalous
correlator s̃21

k as a function of k. We generate s̃21
k in two

 0
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0 5x103 104

|
|

t
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21

|
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FIG. 5. (Color online) (a) Time evolution of the superconducting
pairing � for a scenario where γ1 ∼ γ2. The straight line corresponds
to the steady-state value computed with Eq. (23). The discrepancy
between analytics and numerics is because the parameters for the
numeric integration are outside the limits of the approximations used
in Sec. II B. (b) Perfect matching between the steady-state anomalous
correlator s̃21

k as given by Eq. (10) (straight lines) and the anoma-
lous correlator s̃21

k obtained numerically after the time dynamics
have converged (circles). (κ+ = −50, v− = 10, � = 0.5, 
 = 10−2,
γ1 = 0.8, and V = 5.)
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FIG. 6. (Color online) (a) Time evolution of the order parameter
� for � = 
 = 10−2. (b) Time evolution of the order parameter � for
� = 
/5 = 0.2 10−2. (κ+ = −50, v− = 10, 
 = 10−2, γ2 = 10−4,
V = 20).

different ways: one using the theoretical predictions for the
steady state given in Eqs. (10) and (11) and using the value
of |�| from the simulations and also using the final values of
the anomalous correlators s̃21

k as computed from the numerical
integrations. The agreement is excellent.

To show that our theory is able to predict superconducting
pairing even when our approximations for ñ11

k + ñ22
k −1 and

hence s̃21
k are not accurate, see Eq. (13), we have chosen

parameters outside the approximations of Sec. II B. One way
to make these approximations inaccurate is to consider a value
of γ1,γ2 � �2


2+|v−|2
/κ+
, see the discussion below Eq. (13).

In Fig. 5(a), we have plotted the value of |�| as a function
of time, we see that despite the failure of Eq. (13), we still
obtain a relatively strong superconducting paring within a
factor of three of the analytical one. In Fig. 5(b), we plot
the theoretically predicted values of the anomalous correlator
s̃21

k as a function of k. We generate s̃21
k in two different ways:

one using the theoretical predictions for the steady state given
in Eqs. (10) and (11) and the value of |�| from the simulations
and also using the final values of the anomalous correlators s̃21

k
as computed from the numerical integrations. The agreement is
excellent. We conclude that the system also reaches a nontrivial
steady state for parameter ranges outside the validity of the
approximations used in Sec. II B.

We have also numerically verified that it is possible
to obtain superconductivity for the case when � < 
. We
have numerically integrated the time evolution of the order
parameter for two such values of � and 
. We chose γ1γ2 ∼ 0
in order to have a nonzero order parameter (see the discussion
in Sec. II B 2). We see that the order parameter develops but
the time evolution is highly oscillatory and the time scale for
convergence is increased by ∼100. This is because one of the
decay rates 
2 is very small so it takes a long time for the
oscillations to decay (see Fig. 6).

III. OPTICAL PUMPING OF A TWO-BAND
SEMICONDUCTOR

Let us now turn to an alternate scenario, which may
be more easily realized in the laboratory. Let us consider
a two-band semiconductor model whose population of the
bottom band is optically pumped into the upper band via a
broad band light source and whose interband relaxation is
slow, e.g., negligible optical phonon coupling. The lower band
(α = 1) with dispersion E1(k) and the upper band (α = 2)
with dispersion E2(k) are separated by a gap Eg.

FIG. 7. (Color online) Optical pumping. The upper band (1) of a
two-band semiconductor is populated with a single broad band optical
pump. The chemical potential μ is tuned halfway between the two
bands.

In order to reach a nontrivial steady state, the coupling to
a thermal reservoir is necessary to drain the energy which
is continuously injected in the system. However, unlike the
previous case, the reservoir does not need to play the role of
an extra “storage” of particles (or holes) and a single weakly
coupled reservoir is enough. We set the chemical potential μ

in the gap, see Fig. 7, such that there are momenta k0 lying on
a closed surface S of the Brillouin zone where the condition
E1(k0) + E2(−k0) = 0 is satisfied. Here, μ corresponds to
the field produced by the external voltages (say set by external
gates). We do not assume that Eα(k0) = const. We shall also
assume the optical pumping laser (or broadband source) is not
on resonance with these momenta k0.

Neglecting superconductivity temporarily, the main effect
of the optical pumping is to modify the population of the lower
and upper bands to some nontrivial distribution. Since the
pumping and the interband relaxation is weak, the populations
of the two bands relax to a separate quasithermal equilibrium
within each band. Therefore the bands can effectively be seen
as having two different chemical potentials μ1 and μ2 [26].
We note that μ1 and μ2 are not directly related to the energy
levels of the Hamiltonian describing the semiconductor. They
can be seen as the Lagrange multipliers enforcing the average
number of particles in the two bands and depend on the balance
between the strength of the drive and the interband relaxation.
Once the system is quasiequilibrated, we may write

n11
k = nF(E1(k),μ1), n22

−k = nF(E2(−k),μ2), n12
k = 0.

(34)

Here, nF(ε,μ) ≡ [1 + exp ((ε − μ)/T )]−1 is the Fermi-Dirac
distribution and T is the temperature of the underlying crystal.
The equations of motion for the populations and anomalous
correlators which are consistent with the steady state given in
Eq. (34) read

d

dt
n11

k = i�s21
k − i�∗s21∗

k − 2
1 (k) ñ1
k,

d

dt
n22

−k = i�s21
k − i�∗s21∗

k − 2
2 (k) ñ2
−k, (35)

d

dt
s21

k = i(Ek (k) − i
21 (k))s21
k + i�∗(n11

k + n22
−k − 1

)
.
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Here, Ek ≡ E1(k) + E2(k) and ñα
k ≡ [nαα

k − nF (Eα(k),μα)].

α are the relaxation rates for the two bands and 
12 is the
superconducting decay rate. In principle, these can be obtained
by linearizing the Boltzmann equation (collision integral) close
to equilibrium. Typically, 
12 ∝ 
1 + 
2 [26]. We also drop
the k dependence of 
 since we are only considering a small
portion of the Brillouin zone near the surface S. The steady-
state solution of these equations reads

s21
k = − �∗

Ek + i
12

(
n11

k + n22
−k − 1

)
(36)

and

n11
k + n22

−k − 1 = 1

�′ 4γ1γ2 (
/
12)2

× [nF(E1(k),μ1) + nF(E2(−k),μ2) − 1],

(37)

where we defined

�′ ≡ 4γ1γ2 (
/
12)2 + 4|�|2
Ek

2 + 
2
12

. (38)

Other pumping schemes. If other bands are present, other
pumping schemes can be considered. For instance, a third
band can be used to either populate or depopulate the two other
bands, see Fig. 8. We note that with these pumping schemes we
can choose the sign of the population deviation n11

k − n22
−k − 1.

Also, our method is likely to work with carrier injection
pumping [27]. The conclusions presented in this section apply
just as well for these generalized scenarios.

A. Self-consistency equation

We now solve self-consistently for the superconducting gap.
The pairing part of the mean-field Hamiltonian originates from
a microscopic Hamiltonian, which involves a density-density
type of interaction between the electrons in the semiconductor.
The mean-field decoupling for this microscopic interaction of
strength V (in a system of volume V) is given by

He−e = 1

V
∑
k,k′

V c2
k
†
c1
−k
†

c1
k′ c

2
−k′

→
∑

k

(
� c2

k
†
c1
−k
† + �∗ c1

k c2
−k

)
, (39)

FIG. 8. (Color online) Different available optical pumping mech-
anisms in a three band semiconductor. (a) Deplete the population of
the bottom band into a third reservoir band. (b) Populate the top band
from a third band.

with

�∗ = 1

V
∑

k

V
〈
c2

k
†
c1
−k
†〉 −−−→

V→∞

∫
(dk)V

〈
c2

k
†
c1
−k
†〉
, (40)

where we wrote (dk) ≡ dd k/(2π )d to shorten notations.
We solve for the self-consistent condition Eq. (40) using the

anomalous correlator in Eq. (36). The correct self-consistent
condition involves only the real part of Eq. (36); this assertion
will be justified in Sec. IV where we properly obtain the self-
consistency relation from a saddle point condition (notice that
this is trivially true in the limit 
 → 0). The resulting gap
equation is

1 = −V

∫
(dk)

γ1γ2 (
/
12)2 Ek

γ1γ2 (
/
12)2
(
E2

k + 
2
12

) + |�|2
× [nF(E1(k),μ1) + nF(E2(−k),μ2) − 1]. (41)

Let us now study the solutions of the self-consistent equation
(41) by first focusing on the very favorable case in which the
two bands have opposite velocities. On the resonant surface
S, where E1(k) + E2(−k) = 0, the dispersion relations can
be Taylor-expanded as Ẽ1,2 = v1,2 q⊥ + κ1,2 q2

⊥ + · · · , where
q⊥ is the momentum perpendicular to the resonant surface S.
So E = v+ q⊥ + κ+ q2

⊥ + · · · , where v± = v2 ± v1 and κ± =
κ2 ± κ1. When the velocities are opposite in the two bands,
i.e., v+ = 0, one can express E(ε) ≈ (κ+/v2

−) ε2. Upon using
this E(ε) in Eq. (41) and extending the limits of integration to
±∞, we obtain

1 = − π√
2
N0V

|v−| sgn κ+√|κ+| (γ1γ2)1/4 (
/
12)1/2

× [nF(E1(k),μ1) + nF(E2(−k),μ2) − 1]

(|�|2 + γ1γ2
2)1/4
. (42)

Here, N0 is the density of states at S. We note that in the
case where κ+ is not uniform over the surface S we can
replace

√|κ+| in the equation above by its average to obtain
the correct results for this case. We will not consider this
extension further. Notice that this equation can be satisfied
for both attractive or repulsive interactions depending on the
relative signs of nF(E1(k),μ1) + nF(E2(−k),μ1) − 1 and of
κ+. Superconductivity is possible if the sign of V satisfies

sgn V = −sgn κ+sgn[nF((E1(k),μ1)

+ nF(E2(−k),μ2) − 1], (43)

and if its magnitude satisfies the threshold condition

|V | � V
′′′

c ≡
√

2

π

1

N0

√|κ+|
N|v−|

√

12. (44)

Here, N ≡ nF(E1(k),μ1) + nF(E2(−k),μ2) − 1. The condi-
tion in Eq. (44) is very similar to the one obtained in Eq. (22).
This expresses the fact that superconductivity is favored by
small decay rates, e.g., weak coupling to longitudinal phonons
and impurities.

If the conditions in Eqs. (43) and (44) are met, the
superconducting gap is given by

|�| = √
γ1γ2 


√(
V

V
′′′

c

)4

− 1. (45)
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This corresponds to a robust gap that scales linearly with the
decay rate 
, and, for large coupling constant, scales as the
square of the interaction strength V .

Robustness. Let us examine the domain of validity of the
results we presented in this Section. First, we remark that they
are relatively stable in the case v+ is nonvanishing. Indeed, the
results are essentially unchanged as long as

|v+| �
√

|κ+|
 |V |
V

′′′
c

. (46)

Therefore the condition v+ = 0 that we used above does not
have to be perfectly tuned.

Most importantly, the results of these section are stable to
changes of temperature in the semiconductor. Indeed, those
would correspond to changes in nF(E1(k)) and nF(E2(k)),
which may be neglected for temperatures less then the
semiconducting gap Eg. We note that in realistic setups, 


may be temperature dependent.

IV. KELDYSH APPROACH

In this section, we revisit the self-consistent mean-field
condition for superconductivity that we used multiple times
in the previous sections. Starting from a particle conserving
theory, we justify the approximation that we used to obtain
Eqs. (19) and (41), which consisted in considering only the part
of the anomalous correlator s

†21
k in phase with �∗. For the sake

of simplicity, we concentrate on the case described in Sec. II.
We derive a Keldysh mean-field theory for the laser-driven
semiconductor system and solve for the symmetry-breaking
order parameter corresponding to the superconducting pairing.
The full Keldysh action reads

SK = Se−e + Sother (47a)

with

Se−e =
∫

ϒ

dt

∫
dd r V �̄ (r,t) � (r,t) , (47b)

where �(r,t) ≡ c1(r,t) c2(r,t), �̄(r,t) = c2†(r,t)c1†(r,t), V

is the coupling strength and Sother is the quadratic action
corresponding to all the other terms in the Hamiltonian (1)
such as c1

k, c2
k, a1

k,n, and a2
k,n. ϒ is the Keldysh contour,

which goes forward from time minus infinity to plus infinity
and then backward. We now perform a Hubbard-Stratonovich
transformation in Se−e so as to obtain

exp

[
i
∫

ϒ

dt

∫
dd r V �̄(r,t)�(r,t)

]
=

∫
D[�]ei

∫
ϒ

dt
∫

dd r [− 1
V

|�(r,t)|2+�(r,t) �̄(r,t)+�∗(r,t) �(r,t)].

(48)

Integrating out all the fields in SK except for �, we obtain
an effective action for �(r,t) and the zero-source generating
functional reads

Z =
∫

D[�+,�−] eiSeff [�+,�−], (49)

with the effective action expressed in terms of the fields �+ and
�−, which correspond to the order parameter in the forward

FIG. 9. Feynman diagrams. Series of ring diagrams that con-
tribute to the action S̃[�]. Each line corresponds to a propagator
GA/R/K . The terms 1/n are symmetry factors for the diagrams.

and backward branch of the Keldysh contour

Seff[�
+,�−] ≡ S̃[�+,�−] − 1

V

∫
dtdd r

× (|�+(r,t)|2 − |�−(r,t)|2). (50)

S̃[�+,�−] can be computed through a series of Feynman
diagrams as represented in Fig. 9. The propagators for these
diagrams are those that make for the action Sother. Given that
Sother is Gaussian, we use Wick’s theorem to calculate those
Feynman diagrams.

We solve for the saddle point of the effective action by
focusing on the solutions that are homogeneous in time and
space. We write �± = � ± δ, and note that the effective action
vanishes for δ = 0 for any �. This is a general result that
stems from the fact that for classical field configurations, the
action on the backward branch is canceled exactly by that of
the forward branch. Thus the variation of the effective action
with respect to � vanish for fixed δ = 0. The condition that
determines � at the saddle, is obtained by varying the action
with respect to δ: expanding the action in powers of δ, the
saddle point condition is that the terms linear in δ vanish.
These terms can be collected in perturbation theory.

Expanding Seff[�,δ], we observe that all the terms contain
δ�∗, δ∗�, and powers of |�|2. The action is invariant under
simultaneous phase rotations of δ and �. So we can fix the
phase of δ to be zero, i.e., make δ real (this is, of course,
a gauge choice for the fermionic description of the problem).
All terms linear in δ are multiplying the combination (� + �∗)
and powers of |�|2. Factoring out this combination δ(� + �∗)
in the expansion of Seff[�,δ] leads to an equation that depends
only on |�|. This equation determines the saddle point value
for |�|. We choose � to be real as well, and then simplify the
saddle point search by considering both δ and � in phase and
real. The net effect of this procedure is to neglect the relative
phase fluctuations of �+ and �−—which are assumed to be
small for a physical solution. The saddle point equation in this
case becomes

0 = ∂δ

(
−4δ�

V
+ L̃ [�,δ]

)
δ=0

. (51)
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We compute ∂δL̃[�,δ]|δ=0 by summing over the Feynman diagrams in Fig. 9 and obtain

∂δL̃ [�,δ] |δ=0

=
∞∑

n=1

∣∣∣∣�2
∣∣∣∣2n−1∫

(dk)
∫

dω

2π
Tr

{(
0 1
1 0

) [(
GR(k,ω) GK (k,ω)
0 GA(k,ω)

)(
iσyGA(k, − ω)iσy iσyGK (k,−ω)iσy

0 iσyGR(k,−ω)iσy

)]n }

+
∞∑

n=1

∣∣∣∣�2
∣∣∣∣2n−1∫

(dk)
∫

dω

2π
Tr

{(
0 1
1 0

) [(
iσyGA(k,−ω)iσy iσyGK (k,−ω)iσy

0 iσyGR(k,−ω)iσy

)(
GR(k,ω) GK (k,ω)
0 GA(k,ω)

)]n }
.

(52)

Here, GA/R/K stand for the advanced, retarded and Keldysh components of the electronic Green’s functions for the bands 1 and
2, with respect to the action Sother, and σy is the usual Pauli matrix which acts on the space spanned by the two bands α = 1, 2.
(Notice that GA/R/K are 2 × 2 matrices because of the two bands.) The Pauli matrix σy and the negative frequencies −ω in
some of the Green’s functions come about because some of the propagators shown in Fig. 9 originate from the same vertex (or,
equivalently, there are particle and hole propagators). We now observe that this series can be resumed and the trace can be greatly
simplified:

∂δL̃ [�,δ] |δ=0 = |�|
4π

∫
(dk)

∫
dω Tr

{ (
1 − |�|2

4
GR (k,ω) iσyG

A (k,−ω) iσy

)−1

× (GR(k,ω)iσyG
K (k,−ω)iσy + GK (k,ω)iσyG

R(k,−ω)iσy)

×
[

1 +
(

1 − |�|2
4

GA (k,ω) iσyG
R (k,−ω) iσy

)−1 |�|2
4

GA (k,ω) iσyG
R (k,−ω) iσy

]}

+ |�|
4π

∫
(dk)

∫
dω Tr

{ (
1 − |�|2

4
iσyG

A (k,−ω) iσyG
R (k,ω)

)−1

× (iσyG
K (k,−ω) iσyG

A (k,ω) + iσyG
A (k,−ω) iσyG

K (k,ω) )

×
[

1 +
(

1 − |�|2
4

iσyG
R (k,−ω) iσyG

A (k,ω)

)−1 |�|2
4

iσyG
R (k,−ω) iσyG

A (k,ω)

]}
. (53)

In case the superconducting field |�| is small, this expression Eq. (53) may be further simplified:

≈ |�|
2

∫
(dk)

∫
dω

2π
Tr [iσyG

K (k,−ω)iσyG
A(k,ω) + iσyG

A(k,−ω)iσyG
K (k,ω)

+GR(k,ω)iσyG
K (k,−ω)iσy + GK (k,ω)iσyG

R(k,−ω)iσy]

+ |�|3
8

∫
(dk)

∫
dω

2π
Tr [(iσyG

K (k,−ω)iσyG
A(k,ω) + iσyG

A(k,−ω)iσyG
K (k,ω))

× (iσyG
A(k,−ω)iσyG

R(k,ω) + iσyG
R(k,−ω)iσyG

A(k,ω))]

+ |�|3
8

∫
(dk)

∫
dω

2π
Tr [(GR(k,ω)iσyG

K (k,−ω)iσy + GK (k,ω)iσyG
R(k,−ω)iσy)

× (GR(k,ω)iσyG
A(k,−ω)iσy + GA(k,ω)iσyG

R(k,−ω)iσy)]. (54)

Using the quantum regression theorem [28], one can compute the various Green’s functions GR(k,ω) = (ω − H (k) + i
̂)−1,

GA(k,ω) = (ω − H (k) − i
̂)−1, and GK (k,ω) = GR(k,ω)(1 − 2f (k)) − (1 − 2f (k))GA(k,ω). Here, H (k) ≡ (Ẽ1(k) �/2
�/2 Ẽ2(k)),


̂ ≡ (
1 0
0 
2

), and f (k) ≡ (n
11
k n21

k
n12

k n22
k

). We may now perform the various traces and integrals over ω in Eq. (54) above. With
this, we solve for the stationary conditions on the field �, coming from Eq. (51), and obtain

0 = |�|
V

+ |�|
∫

(dk) Re

(
1

Ek + i


) (
1 − n11

k − n22
k

) − 4 |�|3
∫

(dk) Re

(
1

Ek + i


)
1 − n11

k − n22
k

E2
k + 
2

. (55)

The part involving Re( 1
Ek+i
 ) is exact and comes about

because the Keldysh action must be real. In the third term
of Eq. (55), we have also made the assumption that � � 
.
Using the nonequilibrium population deviation 1 − n11

k − n22
k

given in Eq. (13) for small |�| we see that this agrees to leading
order for small |�| with Eq. (19); a computation of the exact
trace in Eq. (53) would presumably reproduce Eq. (19) to all
orders.
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V. CONCLUSIONS

We have demonstrated that superconductivity can be
achieved in a laser-driven two-band semiconductor interacting
with reservoir—either in the form of a tunneling contact to a
metal, or in the form of other modes in the band, or in the form
of a third band (see Appendix). The superconductivity is robust
to changes in temperature, and under optimal conditions,
the size of the superconducting gap scales with the decay
rate 
. We found that depending on the sign of the band
curvatures, it is possible to obtain superconducting pairing
s21

k with both repulsive and attractive interactions. We can
estimate how stringent is the condition given in Eq. (22) for
the threshold for producing superconductivity with two bands
and reservoirs. To do so, we compare our results to regular
BCS theory. At zero temperature, the BCS gap equation may
be written as Vρ(kF) ln(ωD

�
) = 1. Here, ρ(kF) is the density

of states at Fermi energy and ωD is the Debye frequency.
Using the experimentally relevant parameters ωD ∼ 100 K
and � ∼ 1 K, we obtain Vρ(kF) ∼ 0.2. We note that V is
the effective electron-electron interaction which includes the
effects of phonons and screening. For the superconductivity
proposed in this manuscript, we have obtained the threshold
equation |V | N0|v−|

|κ|1/2
1/2 > 1. Using κ ∼ (106eV )−1c2, 
 ∼ 10−3eV ,

|v−| ∼ 10−2c this condition simplifies to 0.2 × 102.5 > 1,
which is easily satisfied. We note that for the case of repulsive
interactions |V | N0 can be larger. These numbers are relevant
for room temperature superconductivity. We note that the
same threshold condition shows up in the case of an optically
pumped two-band semiconductor considered in Sec. III and
in the case where the laser Rabi frequency is small but the
two decay rates are very different, see Eqs. (32) and (44).
Equation (46) establishes that all our results are unaffected
by mismatches in the Fermi velocities of the upper and
lower band as long as these mismatches are only roughly
ten percent of the Fermi velocity. The present results are
also insensitive to imprecision in tuning the right μ on the
order of 0.01 eV. We note that imperfections in finding the
right μ do not effect the results presented in Sec. III as
the condition E1(k) + E2(−k) = 0 is automatically selected.
Even though Tc (critical temperature for superconductivity)
does not scale with the gap for our setup, as in the case of a
regular superconductor, we note that under optimal conditions
it is possible to achieve a gap that is several hundred degrees
Kelvins.

Here we study a route to induce superconductivity, not
simply by lowering the temperature of the sample but by
shining light. In a semiconductor, such photoinduced su-
perconductivity is possible at temperatures smaller than the
band gap, which itself is a very high temperature. Hence the
mechanism may enable dissipationless current transport for
frequencies smaller than that set by the superconducting gap
at room temperature. In many ways, the ultimate limit on
our setup is the temperature dependence of the rate 
. Tc is
set by the relationship |V | N0|v−|

|κ|1/2
1/2(Tc) = 1. Additionally, one can
imagine applications where the superconductivity is induced
for short periods of time by laser pulses and is allowed to
decay when the laser is turned off. This opens the door for
superconducting switches. We intend to perform a DMFT
analysis of the phenomena to study the effects of strong

correlations and strong laser driving. We shall also study the
optical response of the proposed superconductor as well as
investigate the possibility of a Josephson effect.
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APPENDIX: THREE-BAND SEMICONDUCTOR

Let us consider superconductivity in an optically pumped
three-band semiconductor. The lower (1), middle (3), and
upper (2) bands have dispersion relations Eα(k) with α =
1, 2, 3. The third band can be seen as a replacement for
the reservoirs that were required in the case considered in
Sec. II. We assume that the dispersion is symmetric so that
Eα(k) = Eα(−k), for α = 1, 2 – this will allow for s-wave
superconductivity without any energy mismatch. The upper
and lower bands are resonantly driven by a single laser
with frequency ω0, i.e., E2(k0) = E1(k0) + ω0 for some wave
vectors k0. In our scheme, the middle band 3 (reservoir) is
not coupled to any laser but will simply ensure that there is
less then one electron per k value in the upper and lower
bands combined, n11

k + n22
k < 1. This inequality satisfies the

condition that the population of the two bands involved in
the pairing deviates from unity, which was the requirement for
superconductivity in Sec. II. We set the chemical potential μ in
between the lower and middle bands, i.e., E2 > E3 > μ > E1

for all wave vectors k, see Fig. 10. More precisely, we set
μ = [E2(k0 + E1(k0)]/2; this ensures that all quasiparticles
have zero energy. In the rotating frame, this will correspond to
a zero-energy condition for the electrons at k0.

To favor superconductivity, we assume that the level sets of
E1(k0) and E2(k0) have a good overlap and that the electron
velocities of the lower and upper bands are opposite at the
wave vector k0. Under such conditions, we find that depending
on the curvature of the lower and upper bands at k0 it is
possible to induce superconductivity with either repulsive or
attractive interactions, in particular to obtain a nonvanishing

FIG. 10. (Color online) Energy levels and laser. The upper band
of a three-band semiconductor is populated with a single laser drive
pumping from the lower band. The chemical potential μ is set between
the lower and middle (reservoir) bands.
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anomalous correlator 〈c2
kc

1
−k〉 ≡ s21

k . The analysis presented in
this Appendix is highly similar to the one done in the body of
the manuscript and will be presented briefly.

1. Mean-field Hamiltonian

The mean-field Hamiltonian relevant to our three-band
system can be written as

HMF = HBand + HLaser + HSuper, (A1)

with

HBand =
∑
k,α

Eα (k) c
α†
k cα

k , (A2)

HLaser =
∑

k

� (t) c
2†
k c1

k + H.c., (A3)

HSuper =
∑

k

�c
2†
k c

1†
−k + h.c. (A4)

�(t) ≡ � cos(ω0t) is the laser drive and � is the mean-field
superconducting gap. The relevant equation of motions read

i
d

dt
c2

k = �c
1†
−k + E2c

2
k + �(t)c1

k,

i
d

dt
c3

k = E3c
3
k, (A5)

i
d

dt
c1

k = − �c
2†
−k + E1c

1
k + �∗(t)c2

k.

We eliminate all explicit time dependence by a means of
rotating wave approximation. This consists in rotating all the
operators of the theory with the unitary

U ≡ Uc ⊗ Ua, (A6)

where

Uc ≡ exp

[
i

2
ω0t

∑
k

(
c

1†
k c1

k − c
2†
k c2

k

)]
, (A7)

Ua ≡ exp

⎡⎣ i

2
ω0t

∑
k,n

(
a

1†
k,na

1
k,n − a

2†
k,na

2
k,n

)⎤⎦ . (A8)

In particular, c1
k 
→ c̃1

k = c1
k e−iω0t/2, c2

k 
→ c̃2
k = c2

k eiω0t/2, and
H 
→ H̃ = U [H − i∂t ]U † so that the energies are shifted to
Ẽ1(k) = E1(k) + ω0/2 and Ẽ2(k) = E2(k) − ω0/2. We drop
all terms rotating at 2ω0 since they are not resonant with any
transition. By adding dissipative mechanisms and considering
fermion bilinears, we may study the nonequilibrium steady-
state properties of this model. Note that in the rotating frame,
ñ11

k = n11
k , ñ22

k = n22
k , and s̃12

k = s12
k are invariant, but ñ12

k =
n12

k e−iω0t and ñ21
k = n21

k eiω0t . The steady-state equation of the
order parameter s̃21

k = 〈̃c2
k c̃

1
−k〉 reads

0 = i
d

dt
s̃
†21
k = −�∗(1 − ñ11

k − ñ22
k

) − (Ẽk − i
12)̃s†21
k ,

(A9)

where we introduced the notation Ẽk ≡ Ẽ1(k) + Ẽ2(k) and

12 is a phenomenological decay rate associated with the

damping of the order parameter. This simplifies to

s̃21
k = �∗

Ẽk + i
12

(̃
n11

k + ñ22
k − 1

)
. (A10)

This equation is identical to Eq. (10) and seems to be an
ubiquitous condition for superconductivity. This expresses that
to ensure superconductivity, we once again need to have a
nonzero ñ11

k + ñ22
k − 1 = 0. This is the rationale behind the

presence of the third band—which does not interact with the
other two bands but merely acts as “storage” for electrons.
To find the steady-state value of ñ11

k and ñ22
k , we write the

steady-state equations for the rest of the fermion bilinears.
From now on, we shall work in the weak-pairing field limit
� � �. The steady-state equations for the populations and
coherences read

0 = d

dt
ñ22

k = i
�

2

(̃
n12

k − ñ21
k

) − (
1 + 
2) ñ22
k ,

0 = d

dt
ñ33

k = 
1n
22
k − 
3n

33
k ,

0 = d

dt
ñ11

k = − i
�

2

(̃
n12

k − n21
k

) + 
2ñ
22
k + 
3ñ

33
k ,

0 = d

dt
ñ21

k = (iεk − τ−1)̃n21
k + i

�

2

(̃
n11

k − ñ22
k

)
. (A11)

We have introduced three spontaneous decay rates 
1, 
2, 
3,
and a dephasing time τ . For many semiconductors, τ−1 �

1,2,3 because it is hard to exchange populations between
the bands, by including say Coulomb interactions, but rather
easy to have energy fluctuations, which lead to dephasing.
In the case, the semiconductor has a strong coupling to
optical phonons, this inequality may be violated as all the
decay rates may become comparable. Notice that the previous
equations ensure the conservation of particle number, i.e.,
ñ11

k + ñ22
k + ñ33

k = 1. Using Eq. (A10), we obtain

s
†21
k = − �∗

Ẽk + i
12

|�|2
1

2τ (ε2
k+τ−2)


3(
1 + 
2) + |�|2(
1+2
3)
2τ (ε2

k+τ−2)

, (A12)

with εk ≡ Ẽ2(k) − Ẽ1(k).
Note that s

†21
k vanishes when 
1 = 0 but 
3 = 0. In this

case, there is no population in the the middle band, i.e.,
ñ33

k = 0. However, one would not expect that s
†21
k = 0 if we

simultaneously tune 
1,
3 ↓ 0 as some population will be
trapped in band 3 (reservoir) if both decay rates go down to
zero with the same rate, which can be seen from the analysis
of Eq. (A12).

2. Self-consistency equation

We now solve self-consistently for the superconducting gap.
The pairing part of the mean-field Hamiltonian in Eq. (A1)
originates from a microscopic Hamiltonian, which involves a
density-density type of interaction between the electrons in
the semiconductor. The corresponding mean-field decoupling
is given in Eq. (39). To obtain the most favorable conditions for
superconductivity, we shall once again assume that the electron
velocities of the lower and upper bands are opposite at the wave
vector k0. At the resonant surface Sω0 , the dispersion relation
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can be Taylor-expanded as Ẽ1,2 = v1,2 q⊥ + κ1,2 q2
⊥ + · · · ,

where q⊥ is the momentum perpendicular to the resonant
surface Sω0 and v1 + v2 = 0. So ε = v− q⊥ + κ− q2

⊥ + · · ·
and E = κ+ q2

⊥ + · · · , where v− ≡ v2 − v1 and κ± = κ2 ± κ1.
Substituting these energies into the gap equation, we obtain the
condition

�∗ � −V N0|v−|
∫

dq⊥
�∗κ+q2

⊥
κ2+q4

⊥ + 
2
12

×
|�|2
1

2τ [(v−q⊥)2+τ−2]


3(
1 + 
2) + |�|2(
1+2
3)
2τ [(v−q⊥)2+τ−2]

. (A13)

N0 is the density of states at k0. We note that

sgn V = sgn κ+ (A14)

is needed to satisfy the condition, which means that by tuning
band curvatures it is possible to have superconductivity with
both attractive and repulsive interactions. Furthermore, we
note that in the case in which the Rabi frequency is large,
the integral in Eq. (A13) greatly simplifies and the threshold
condition for superconductivity becomes

|V | � Vc ≡
√

2

π

1

N0

√|κ+|
|v−|

√

12 (1 + 2
3/
1) . (A15)

In the small damping limit (i.e., small 
12), the inequality is
easily satisfied. This condition is highly similar to the condition
obtained for superconducting threshold in Eq. (22). We note
that for the case γ2 − γ1 ∼ 1, 
12 ∼ 
, and 
1 � 
3 the two
equations become equivalent.
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[15] J. Struck, C. Ölschläger, R. Le Targat, P. Soltan-Panahi,

A. Eckardt, M. Lewenstein, P. Windpassinger, and K. Sengstock,
Science 333, 996 (2011).

[16] N. Tsuji, T. Oka, P. Werner, and H. Aoki, Phys. Rev. Lett. 106,
236401 (2011).

[17] N. Tsuji, T. Oka, H. Aoki, and P. Werner, Phys. Rev. B 85,
155124 (2012).

[18] N. Tsuji, T. Oka, and H. Aoki, Phys. Rev. B 78, 235124
(2008).

[19] V. F. Elesin, Sov. Phys. JETP 32, 328 (1971).
[20] V. M. Galitskii, V. F. Elesin, and Yu. V. Kopaev, ZhETF Pis.

Red. 18, 50 (1973).
[21] D. A. Kirshnits and Yu. V. Kopaev, ZhETF Pis. Red. 17, 379

(1973).
[22] V. F. Elesin, Yu. V. Kopaev, and R. Kh. Timerov, Zh. Eksp. Teor.

Fiz. 65, 2343 (1973).
[23] V. M. Galitskii, S. P. Goreslavskii, and V. F. Elesin, Zh. Eksp.

Teor. Fiz. 57, 207 (1969).
[24] It is not strictly necessary that each wave vector k corresponds

to its own reservoir. All that is needed is that 〈t∗(k)t(k′)〉 ∼
δ(k − k′), which would happen for a disordered metal reservoir.

[25] R. R. Puri, Mathematical Methods of Quantum Optics
(Springer-Verlag, Berlin, 2001).

[26] H. Haug and S. W. Koch, Quantum Theory of the Optical
and Electronic Properties of Semiconductors (World Scientific,
Singapore, 1990).

[27] W. W. Chow, S. W. Koch, and M. Sargent, Semiconductor-Laser
Physics (Springer-Verlag, New York, 1994).

[28] H. G. Carmichael, Statistical Methods in Quantum Optics 1:
Master Equations and Fokker-Plank Equations (Springer-
Verlag, Berlin, 1999).

054517-13

http://dx.doi.org/10.1080/00018732.2010.513480
http://dx.doi.org/10.1080/00018732.2010.513480
http://dx.doi.org/10.1080/00018732.2010.513480
http://dx.doi.org/10.1080/00018732.2010.513480
http://dx.doi.org/10.1103/PhysRevLett.101.076401
http://dx.doi.org/10.1103/PhysRevLett.101.076401
http://dx.doi.org/10.1103/PhysRevLett.101.076401
http://dx.doi.org/10.1103/PhysRevLett.101.076401
http://dx.doi.org/10.1126/science.285.5430.1036
http://dx.doi.org/10.1126/science.285.5430.1036
http://dx.doi.org/10.1126/science.285.5430.1036
http://dx.doi.org/10.1126/science.285.5430.1036
http://dx.doi.org/10.1103/PhysRevLett.89.197902
http://dx.doi.org/10.1103/PhysRevLett.89.197902
http://dx.doi.org/10.1103/PhysRevLett.89.197902
http://dx.doi.org/10.1103/PhysRevLett.89.197902
http://dx.doi.org/10.1103/PhysRevB.34.3625
http://dx.doi.org/10.1103/PhysRevB.34.3625
http://dx.doi.org/10.1103/PhysRevB.34.3625
http://dx.doi.org/10.1103/PhysRevB.34.3625
http://dx.doi.org/10.1103/PhysRevLett.69.351
http://dx.doi.org/10.1103/PhysRevLett.69.351
http://dx.doi.org/10.1103/PhysRevLett.69.351
http://dx.doi.org/10.1103/PhysRevLett.69.351
http://dx.doi.org/10.1103/PhysRevLett.99.220403
http://dx.doi.org/10.1103/PhysRevLett.99.220403
http://dx.doi.org/10.1103/PhysRevLett.99.220403
http://dx.doi.org/10.1103/PhysRevLett.99.220403
http://dx.doi.org/10.1103/PhysRevLett.96.210403
http://dx.doi.org/10.1103/PhysRevLett.96.210403
http://dx.doi.org/10.1103/PhysRevLett.96.210403
http://dx.doi.org/10.1103/PhysRevLett.96.210403
http://dx.doi.org/10.1103/PhysRevLett.95.260404
http://dx.doi.org/10.1103/PhysRevLett.95.260404
http://dx.doi.org/10.1103/PhysRevLett.95.260404
http://dx.doi.org/10.1103/PhysRevLett.95.260404
http://dx.doi.org/10.1103/PhysRevLett.102.100403
http://dx.doi.org/10.1103/PhysRevLett.102.100403
http://dx.doi.org/10.1103/PhysRevLett.102.100403
http://dx.doi.org/10.1103/PhysRevLett.102.100403
http://dx.doi.org/10.1126/science.1207239
http://dx.doi.org/10.1126/science.1207239
http://dx.doi.org/10.1126/science.1207239
http://dx.doi.org/10.1126/science.1207239
http://dx.doi.org/10.1103/PhysRevLett.106.236401
http://dx.doi.org/10.1103/PhysRevLett.106.236401
http://dx.doi.org/10.1103/PhysRevLett.106.236401
http://dx.doi.org/10.1103/PhysRevLett.106.236401
http://dx.doi.org/10.1103/PhysRevB.85.155124
http://dx.doi.org/10.1103/PhysRevB.85.155124
http://dx.doi.org/10.1103/PhysRevB.85.155124
http://dx.doi.org/10.1103/PhysRevB.85.155124
http://dx.doi.org/10.1103/PhysRevB.78.235124
http://dx.doi.org/10.1103/PhysRevB.78.235124
http://dx.doi.org/10.1103/PhysRevB.78.235124
http://dx.doi.org/10.1103/PhysRevB.78.235124



