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Sitewise manipulations and Mott insulator-superfluid transition of interacting photons
using superconducting circuit simulators
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The Bose-Hubbard model (BHM) of interacting bosons in a lattice has been a paradigm in many-body physics,
and it exhibits a Mott insulator-superfluid (MI-SF) transition at integer filling. Here a quantum simulator of the
BHM using a superconducting circuit is proposed. Specifically, a superconducting transmission line resonator
supporting microwave photons is coupled to a charge qubit to form one site of the BHM, and adjacent sites are
connected by a tunable coupler. To obtain a mapping from the superconducting circuit to the BHM, we focus
on the dispersive regime where the excitations remain photonlike. Standard perturbation theory is implemented
to locate the parameter range where the MI-SF transition may be simulated. This simulator allows single-site
manipulations, and we illustrate this feature by considering two scenarios where a single-site manipulation can
drive a MI-SF transition. The transition can be analyzed by mean-field analyses, and the exact diagonalization
was implemented to provide accurate results. The variance of the photon density and the fidelity metric clearly
show signatures of the transition. Experimental realizations and other possible applications of this simulator are
also discussed.
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I. INTRODUCTION

Intensive research has been focused on simulating complex
matter using well-controlled quantum systems in order to
better understand their behavior and create useful analogs
[1–6]. Successful examples include cold atoms trapped in
optical potentials [2], trapped ions [1,4], spins in defects in
diamonds [5], photonic arrays [3], etc. Recently, another class
of quantum simulators based on superconducting circuits has
opened more opportunities [7–11], which are made possible
due to progress in fabricating well-designed circuits on chips.
In those superconducting circuits, dissipation and decoherence
have been suppressed significantly [9,12]. Moreover, interact-
ing superconducting qubits and resonators can be fabricated
on a chip, where quantum error-correction encoding and high-
fidelity operations have been realized [13,14]. Various designs
of couplers for connecting different qubits or resonators with
wide tuning ranges have also been demonstrated [15–17]. The
progress in superconducting circuits provides a promising
perspective of scalable superconducting circuits as quantum
simulators for many-body systems, which may be bosonic
[7,18–20] or fermionic [21,22] in nature.

The Bose-Hubbard model (BHM) has been a paradigm
in many-body theories, and the Mott insulator-superfluid
(MI-SF) phase transition associated with the BHM has
been of broad interest [2,23]. This transition was observed
unambiguously in cold atoms trapped in optical lattices and can
be probed with single-atom resolutions [24–26]. On the other
hand, a theoretical framework for obtaining the BHM using
the Jaynes-Cummings Hubbard model has been established
[27,28]. Simulating this general model in cavity arrays has
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been proposed [27,29–31]. One may envision that introducing
inhomogeneity into the BHM parameters can lead to richer
physics, some of which has been explored in Refs. [32,33].
Simulating those phenomena requires tunability of single-
site parameters, which could be hard in currently available
simulators [1,2,4–6].

As a candidate for quantum simulators, a superconducting
circuit has the following additional features [6,7,34]: (i) The
circuit can be manipulated by applying voltages, currents,
and/or magnetic flux. Hence useful classical circuit techniques
can be introduced in similar ways. (ii) Circuit manipulations
can be implemented locally to a single site/unit or globally
to the whole system. (iii) The circuit can be tailored to a
certain characteristic frequency, interaction strength, etc., and
the circuit geometry can be fabricated in desired patterns.
Furthermore, according to recent reports, the decoherence time
of superconducting qubits based on different superconducting
circuits approaches 0.1 ms [35–38]. The Q factor of an on-chip
transmission line resonator [39] can even go beyond 105. A
three-dimensional (3D) superconducting resonator [12,36] can
have a quality factor up to 109, which implies that the lifetime
of photons in superconducting resonators may approach 10 ms.
This is good enough to allow one to practically consider the
photon number as a conserved quantity in the circuit if the
photon lifetime is compared to the operation frequency in
the circuit typically in the range of 100 MHz to 10 GHz
[9,34,40,41].

Having those features of superconducting circuit in mind,
we propose a scheme to simulate the BHM with controllable
inhomogeneous parameters. To demonstrate some interesting
features, we consider how the phase transition between the
delocalized SF and localized Mott insulator can be induced by
manipulating the parameters of one single site. In conventional
setups, global parameters such as the overall density or
interaction drive the system across this transition, and here
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we propose that in superconducting-circuit simulators, one
may observe this transition with a single-site manipulation by
exploiting the sensitivity to the commensurate filling close to
the transition. The details of our proposed scheme are verified
by the exact diagonalization method [42], which already shows
signatures of this transition in moderate-size systems. Thus this
proposed scheme should be feasible in experiments.

Here the simulator is based on an array of superconducting
transmission line resonators (TLRs). The goal is to simulate
the BHM [23],

H = −
∑

i

μini +
∑

i

Ui

2
ni(ni − 1)

−
∑

i

ti(b
†
i bi+1 + bib

†
i+1). (1)

Here μi is the on-site energy and plays the role of the chemical
potential, Ui is the on-site interaction, and ti is the nearest-
neighbor hopping coefficient. In cold atoms one can control
the filling and motion of a single atom [24], but manipulations
of the energy and interaction on each site remain a challenge.

A superconducting TLR with a length in the range of
centimeters can support a microwave resonant frequency
corresponding to the oscillations of the electric potential and
magnetic flux from the standing waves of the Cooper-pair
density. Those microwaves are referred to as the photons in the
TLR [43]. The quantum electrodynamics (QED) framework
can then be applied to the TLR-qubit system to get the so-called
circuit QED [43]. A single site of the system is modeled by
the Jaynes-Cummings (JC) model [44], while an array of
circuit QED systems, as schematically shown in Fig. 1, can
be described by the Jaynes-Cummings Hubbard model [45],

H =
∑

n

[
�ωc

na
†
nan + �ωqσ z

n + gn(anσ
+
n + a†

nσ
−
n )

]
+

∑
n

Jn(a†
nan+1 + ana

†
n+1), (2)

where ωc
n is the cavity frequency, ωq is the qubit frequency, gn

is the coupling strength between the cavity and qubit, and Jn

is the effective hopping coefficient between cavities.

φe
B

φe
A

FIG. 1. Schematic plot of the 1D TLR array. SQUID A, as a
tunable charge qubit, is capacitively coupled to the center of a TLR.
Nearest-neighbor sites are connected by SQUID B. The external
magnetic fluxes φA

e and φB
e through SQUIDS A and B can be used to

tune their Josephson energies.

When the qubit is close to resonance with the cavity,
they are coexcited, and the excitation on a single site has
the form of a polariton. Simulating polaritonic many-body
behavior has been studied recently based on various physical
systems [19,46,47]. Here we consider a different regime in
the parameter space to take advantage of the tunability of
superconducting quantum circuits. We focus on the dispersive
regime [27], where the excitation is limited in the TLR, while
the qubit stays in its ground state. Hence the on-site excitation
becomes photonic. In this regime, a perturbation calculation
shows that the system can simulate the BHM. To make
connections to experiments, feasible controlling and probing
methods of the quantum phase transition between localized and
delocalized states will be discussed. The exact diagonalization
(ED) [42] method is used to numerically demonstrate the
details of the phase transition.

II. ARCHITECTURE OF THE SIMULATOR

As illustrated in Fig. 1, the proposed simulator is a one-
dimensional (1D) array of superconducting circuit elements.
One site is formed by a TLR capacitively coupled to a
superconducting charge qubit [9,34,40,41], which is labeled
as SQUID A, and the qubit energy is tunable. The TLRs
on different sites are connected via SQUID B, which leads
to tunable couplings between nearest-neighbor sites. Here a
derivation of how the Bose-Hubbard Hamiltonian (1) can be
simulated by the superconducting circuit will be presented.
Here we will use Hz × 2π as the unit of energy and set � ≡ 1.

A. TLR as a lattice element

The qubit-TLR system is an analog of an atom-cavity
system. In the strong-coupling regime the dynamics of the
latter system can be modeled by the Jaynes-Cummings
Hamiltonian [43]. Our superconducting circuit Hamiltonian
can be derived following the work of circuit QED in Refs.
[43,48,49]. The Hamiltonian of a single lattice site is

H site = H TLR + H qubit. (3)

The TLR with length D could be treated as a cavity with a
single mode of the first harmonic. The excitation in the TLR
is modeled as

H TLR = ωca†a. (4)

The cavity frequency is ωc = 2π√
CcLc

= 2π
√

Ec
cE

c
L, where the

net capacitance and inductance of the TLR are Cc and Lc, and
the charge and inductive energies of the cavity are Ec

c = (2e)2

Cc

and Ec
L = 1

Lc(2e)2 . For the first harmonic, the spatial distribution

[43] of N peaks at x = −D
2 ,0,D

2 . The node charge number and
node flux at the maxima correspond to N = √

ωc/Ec
c (a† + a)

and φc = −i
√

ωc/Ec
L(a† − a).

Since the qubit consists of two Josephson junctions in a
superconducting loop, its Hamiltonian is

H qubit = EA
c (n − ng)2 − 2EA

J cos

(
φA

e

2

)
cos φ. (5)

Here n = CA
�VJ /2e and ng = CA

g Vg/2e are the numbers
of Cooper pairs on the island and the gate, respectively.
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The capacitance between the qubit and TLR is CA
g . EA

c = (2e)2

2CA
�

,

with CA
� being the total effective capacitance in the qubit.

The Josephson tunneling energy is EA
J , and the phase φ

displaces the number of Cooper pairs. Because of the giant
Kerr effect due to the Josephson junction, the energy difference
between the lowest two levels |0〉 and |1〉 is separated
from the other energies. Therefore SQUID A in Fig. 1
behaves like a superconducting qubit [34] with the Hamil-

tonian H qubit = −EA
c

1−2ng

2 σ̃ z − EA
J cos(φA

e

2 )̃σx , where σ̃ x =
|0〉〈1| + |1〉〈0| and σ̃ z = −|0〉〈0| + |1〉〈1|. Furthermore, ng =
ndc + CA

g

√
ωc/Ec

c (a† + a) by investigating the gate voltage
Vg at the point of the TLR to which the qubit couples, which
includes the dc gate voltage on the qubit and a quantum mode
of the TLR: Vg = V dc + V̂ ac. As Fig. 1 shows, the qubit is
coupled to the center of the TLR, so V̂ ac = √

2eN/Cc =√
ωc/2Cc(a† + a) for the fundamental mode.
Here we focus on the case when the dc gate voltage bias

is at the degeneracy point, ndc = 1
2 . Then by introducing

|↑〉 = (|0〉 + |1〉)/√2 and |↓〉 = (|0〉 − |1〉)/√2 with σx =
|↑〉〈↓| + |↓〉〈↑| and σ z = −|↓〉〈↓| + |↑〉〈↑| and dropping
constant terms, the one-site Hamiltonian becomes

H site = ωca†a + ωqσ z

2
+ gqσ x(a† + a), (6)

where ωq = 2EA
J cos(φA

e

2 ) and gq = 2e
CA

g

CA
�

√
ωcCc. We define

H0 = ωc(a†a − σ z/2) and V = �σz/2 + gqσ x(a† + a), with
� = ωc − ωq being the detuning between the cavity and qubit
frequencies. Thus H site = H0 + V , and V is treated as a
perturbation.

The qubit frequency and cavity frequency are in
the same range of about 10 GHz, so it is natural to
apply the rotating-wave approximation (RWA). Then
� � ωc + ωq . Moving into the interaction picture
and rotating frame, one gets the Jaynes-Cummings

interaction gq(σ+eiωq t + σ−e−iωq t )(a†eiωct + ae−iωct )
RWA≈

gq(σ−a†ei�t + σ+ae−i�t ), where σ± are the ladder operators.
Moving back to the nonrotating frame, we get an effective
interaction gq(σ−a† + σ+a). Here we consider the
dispersive regime [28,50,51], so � 
 gq and there is
virtually no excitation from |↑〉 to |↓〉. Applying standard
perturbation theory with E

(0)
↑ = 0, E

(0)
↓ = �, V↑↑ = V↓↓ = 0,

V↑↓ = gqa† = V
†
↑↓ and going up to the fourth order, the

quartic Kerr term gives rise to an effective on-site interaction.
Going back to the Schrodinger picture, the single-site

Hamiltonian becomes

H site = ωc,effa†a + ωq

2
σ z +

(
gq

�

)3

gqa†a(a†a − 1). (7)

The charge qubit could be either a single Cooper-pair transistor
or a transmon [34,40,41,52] whose qubit frequency can be
tuned by changing the magnetic flux bias through a SQUID
loop in the qubit circuit. ωc,eff = ωc − gq2

�
+ ( gq

�
)3gq is the

effective on-site frequency, and the quartic term is the effective
on-site interaction of the photons. Those two terms are
functions of the controllable parameter �. Assuming gq =
120 MHz × 2π [9,41], � � 0.9 GHz × 2π , so (ωc − ωc,eff) ∈
[−0.1,0.1] GHz × 2π . We remark that the case � ∼ gq , where

the excitations are polaritons rather than photons, has been
discussed in the literature [46].

B. Tunable TLR array

Different architectures for implementing a tunable coupler
between two superconducting TLRs have been realized and
discussed in Refs. [16,17,53–56]. Here we present a basic
design. As shown in Fig. 1, SQUID B, with size and energy
different from those of SQUID A, is coupled to adjacent TLRs.
The coupling Hamiltonian is

HB =
∑

i=upp,low

[
CB

J

2

(
φ̇

jj

i

)2 + EB
J

(
1 − cos φ

jj

i

)]
, (8)

where φ
jj

i=upp,low are the phase differences across the upper
and lower Josephson junctions of SQUID B (see Fig. 1).
The two Josephson junctions in SQUID B are assumed to
be uniform with the same capacitance CB

J and Josephson
energy EB

J . The external magnetic flux bias through SQUID
B is φB

e = φ
jj
upp + φ

jj

low and φ̇
jj
upp + φ̇

jj

low = φ̇B
e = 0. Here we

introduce φc
1,2 on the two ends connecting to TLRs 1

and 2 as the node phases and N1,2 as the numbers of
Cooper pairs on the node. According to the geometry of
the SQUIDs, φc

1 − φc
2 = 1

2 (φjj
upp − φ

jj

low). Josephson equations

then give CB
J

2 (φ̇c
1,2)2 = 1

2
(2e)2

CB
J

N2
1,2 = EB

c N2
1,2. Therefore the

charge-energy term of HB becomes 2EB
c N2

1 − 4EB
c N1N2 +

2EB
c N2

2 . Meanwhile, the Josephson energy is approximated

by EB
J cos(φB

e

2 )[(φc
1)2 − 2φc

1φ
c
2 + (φc

2)2], where higher-order
terms are negligible because the phase difference across
SQUID B (φjj

upp − φ
jj

low) can initially be set to zero by shorting

both sides. It will be shown that 2EB
J cos(φB

e

2 ) can be tuned to
the same order of magnitude as the on-site interaction term
( gq

�
)3gq in Eq. (7), which is needed to place the system near

the MI-SF phase transition.
The Hamiltonian for SQUID B, after those manipulations,

becomes

HB =
∑
i=1,2

[
2EB

c N2
i + EB

J cos

(
φB

e

2

) (
φc

i

)2
]

−
[

4EB
c N1N2 + 2EB

J cos

(
φB

e

2

)
φc

1φ
c
2

]
. (9)

Here the simple harmonic terms inside the summation give an
additional frequency shift to the TLR Hamiltonian in Eq. (4),
which becomes H TLR

net,i = 1
2Ec∗

c N2
i + 1

2Ec∗
L (φc

i )2, with Ec∗
c =

Ec
c + 4EB

c and Ec∗
L = Ec

L + 2EB
J cos(φB

e

2 ). This corresponds
to a dressed cavity frequency

ωc∗ = 2π

√
Ec∗

c Ec∗
L (10)

as the TLRs are connected to an array with those SQUID
Bs. The cross term in HB leads to a coupling Hamiltonian
H coup= − gcap(a†

1 + a1)(a†
2 + a2) + gind(a†

1 − a1)(a†
2 − a2),

with gcap = ωcEB
c /Ec∗

c and gind = ωc4EB
J cos(φB

e

2 )/Ec∗
L . A

similar coupling Hamiltonian can be found in Ref. [54],
which is supported by experiments [15]. By considering
two identical resonators ωc∗

1 = ωc∗
2 and applying RWA and
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conservation of the photon number, one obtains

H
coup
12 � −(gcap + gind)(a†

1a2 + a1a
†
2). (11)

We define g = gcap + gind, which gives rise to the effective
hopping Jn in Eq. (2).

For the simulator discussed here, typical values [9,41]
of EB

c = 300 MHz × 2π , EB
J = 500 MHz × 2π , Ec∗

c =
10 GHz × 2π , Ec∗

L = 10 GHz × 2π will be considered. Note
that φB

e can be tuned within [0,2π ], so gind ∈ [2, − 2] GHz ×
2π . The net coupling strength is g = −(gcap + gind) ∈
[−2.3,1.7] GHz × 2π . Since the perturbation approach is
applied to the on-site Hamiltonian, in order to keep H coup

with the same order of magnitude as the highest-order term in
Eq. (7), the coupling strength g has to fulfill the condition g <

gq . By biasing the system in the range φB
e around π , one should

be able to get a smaller range of g ∈ [−30,30] MHz × 2π .

C. Superconducting-circuit simulator of the BHM

Collecting all terms, we obtain a many-body Jaynes-
Cummings Hubbard Hamiltonian:

H JCHM =
∑

i

H site
i +

∑
〈ij〉

H
coup
ij , (12)

where 〈ij 〉 denote nearest-neighbor pairs. In the dispersive
regime, where our perturbation approach is applicable, the
qubit does not get excitations and stays in its ground state.
Therefore the qubit term

∑
i ω

q

i σ
z
i does not contribute to the

many-body energy. In this case, the Jaynes-Cummings Hub-
bard model can be mapped to the Bose-Hubbard model [28]
by treating the photons in the TLR as interacting bosons.

When compared to Eq. (1), the on-site energy, on-site
interaction, and hopping terms are

μi = −
[
ωc∗

i −
(

g
q

i

�i

)
g

q

i +
(

g
q

i

�i

)3

g
q

i

]
, (13)

Ui

2
=

(
g

q

i

�i

)3

g
q

i , (14)

ti = (
g

cap
i + gind

i

) = gi. (15)

As discussed previously, �i and gi can be tuned by a
magnetic flux bias, so they are the independent variables in
this model. One may recall that |t | = |g| ∈ [0,30] MHz × 2π

from previous discussions. In the dispersive regime |�| ∈
[0.35,1.0] GHz × 2π should give reasonable values [9,41] of
gq = 120 MHz × 2π . Hence U ∈ [0.0024,10] MHz × 2π. To
meet the traditional treatment of BHM, we analyze parameters
in the unit of t . Thus gq/t ∈ [4,+∞), |�/t | ∈ [10,+∞),
U/t ∈ (0,+∞), which implies that the range of U/t in this
simulator should cover the MI-SF transition. To avoid going
beyond the valid range of our approximation, the parameters
are chosen in the range |�/t | ∈ [30,103].

In this simulation scheme the on-site energy μi , interaction
strength Ui , and hopping coefficient ti can be explicitly made
site dependent, which leads to a versatile simulator of the
BHM, especially if phenomena due to spatial inhomogeneity
are of interest. When compared to ultracold atoms in optical
lattices, this superconducting circuit simulator has some

additional features. The interacting bosons in the simulator is
confined inside the TLRs, so there is no need for background
trapping potentials, which is common in cold-atom systems.
Various geometries can be studied by fabricating the elements
accordingly. In addition, open boundary conditions (OBCs)
with hard walls can be introduced by terminating the coupling
SQUID at the ends of the superconducting TLR array. Even
in the presence of stray weak capacitive couplings, a high Q

factor can still be maintained [39]. On the other hand, periodic
boundary conditions (PBCs) can be realized by fabricating a
loop structure so that bulk properties can be studied with a
relatively small number of sites. The examples given in the
following section will illustrate those features.

We remark that the wide range of U/t , which covers
the SF-MI transition, is a consequence of the independent
tunability of t and U in this simulator. Other interesting
phenomena, such as the hard-core boson exhibiting nontrivial
scaling behavior [57,58], may be beyond the scope of this
simulator because t needs to remain finite as U goes to
infinity. Such a regime requires gq/� → ∞, so it is outside
the dispersive regime investigated here.

III. SINGLE-SITE MANIPULATIONS
OF THE MI-SF TRANSITION

Here we present one interesting application of this super-
conducting circuit simulator, where the MI-SF transition of
the BHM can be induced by single-site manipulations. Other
possible applications will be discussed later. To concentrate
on the underlying physics, we consider a 1D array of N sites.
The main idea is to exploit the commensurability of the BHM
close to the MI-SF transition.

The parameters of a selected site (called site 1) are tuned
by external magnetic flux through the charge qubit coupled
to the TLR of this site. One may consider, for site 1, a shift
of the on-site energy by δ and a shift of the on-site coupling
constant by η. The choice of which site to manipulate is not
important since the conclusions remain the same for the case
with PBCs. According to Eq. (13), when the detuning energy
between the qubit and TLR on site 1, �1, is different from
the detuning energy on the other sites �i = �0, i = 2, . . . ,N ,
the BHM parameters of site 1 are different from those on the
other sites. Thus the BHM Hamiltonian of this 1D array with
manipulations of site 1 is rewritten as

H = [δn1 + ηn1(n1 − 1)] − μ

N∑
i=1

ni + U

2

N∑
i=1

ni(ni − 1)

− t

N ′∑
i

(b†i bi+1 + b
†
i+1bi). (16)

The first two terms summarize the effects of a different
detuning on site 1. Here

δ = −g2
q

(
1

�1
− 1

�0

)
+ g4

q

[(
1

�1

)3

−
(

1

�0

)3]
,

η = g4
q

[(
1

�1

)3

−
(

1

�0

)3]
. (17)
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FIG. 2. δ (solid lines) and η (dashed lines) as functions of �1 for
U/t = 1,5,8,10 and gq = 120 MHz × 2π . As Eq. (16) shows, δ and
η are the displacements of the on-site energy and on-site interaction
of the first site. The vertical lines labeled (I) and (II) indicate the
mean-field critical values of the two cases discussed in Sec. III.

A diagram of δ and η as a function of �1 is shown in Fig. 2,
which gives an estimation of the BHM parameters in the
presence of a single-site manipulation. N ′ = N − 1 for the
OBCs and N ′ = N for the PBCs in the upper limit. We keep
ti = t the same in the whole lattice because it does not depend
on �1. The unit of energy will be t . The value of U is fixed by
�0 and gq .

We vary �1/t as an independent variable. The advantages
of this protocol are as follows: (1) The qubit energy is intact
away from the manipulated site. (2) Particles are conserved
in the whole system. We define the particle density ρ as
the ratio between the photon number and site number. In
the following we consider the phase transition due to this
single-site manipulation when ρ < 1 and ρ = 1. For ρ =
(N − 1)/N the system is a delocalized SF state in the absence
of manipulations, and a single-site push leads to a localized MI
state, which is shown schematically in Figs. 3(a) and 3(b). The
second case with ρ = 1 is illustrated by Figs. 3(c) and 3(d),
where the system is in an MI state without manipulations and
becomes an SF after a single-site push.

To characterize those single-site manipulated transitions
and to identify where the transitions take place, we analyze
a useful quantity called the fidelity metric, which has been
shown to capture quantum phase transitions or sharp quantum
crossovers in the fermion Hubbard model [58,59] and other
model Hamiltonians [60,61]. Given a Hamiltonian of the
form H (λ) = H0 + λH1, the fidelity is defined as the overlap
between two (renormalized) ground states obtained with a
small change δλ in the parameter λ:

F (λ,δλ) = 〈�0(λ)|�0(λ + δλ)〉. (18)

However, the fidelity has been shown to be an extensive
quantity that scales with the system size [61,62]. Therefore
the fidelity metric is introduced as [58,61,63]

g(λ,δλ) = (2/N )[1 − F (λ,δλ)]/δλ2, (19)

FIG. 3. (Color online) Illustration of single-site manipulations of
the Mott insulator to superfluid transition (a) and (b) for N − 1
bosons with strong repulsion in N sites and (c) and (d) for N

bosons with strong repulsion in N sites. (a) The on-site energy of
site 1 is increased, and the system is pushed into a localized Mott
insulator. The dashed circle implies that the first site is virtually empty.
(b) The system becomes a delocalized superfluid as the on-site energy
is lowered. (c) The system is a localized Mott insulator when the
on-site energy of site 1 is small. (d) By increasing the on-site energy
of site 1, photons are pushed into the bulk and form a delocalized
superfluid.

whose limit as δλ → 0 is well defined away from the critical
points and for which standard perturbation theories apply.
More precisely,

lim
δλ→0

g(λ,δλ) = 1

N

∑
α �=0

|〈�α(λ)|H1|�0(λ)〉|2
[E0(λ) − Eα(λ)]2

. (20)

The fidelity metric measures how significantly the ground-state
wave function changes as the parameter λ changes. A dramatic
increase of the fidelity metric as a function of the varying
parameter indicates a quantum phase transition or sharp
quantum crossover [60].

A. Case 1: ρ < 1

When there are (N − 1) photons in an array of N sites, the
ground state should be delocalized due to the incommensurate
filling if all the sites have the same on-site energy and inter-
action energy. As will be shown in Figs. 4 and 5, nonuniform
distributions of ni and stronger fluctuations of the on-site
photon density, quantified by the variance σi = 〈〈n2

i 〉 − 〈ni〉2〉,
in the small �1/t regime indicate delocalization of the photons
with interactions up to U = 10t . By increasing the on-site
energy of site 1, which can be performed by increasing �1,
a transition to a localized MI state of the remaining N − 1
sites occurs. The setup is summarized in Figs. 3(a) and 3(b).
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ni

σi

(h)

(i)

ni

σi

(e)

(f )

ni

σi

(b)

(c)

(g)(d)(a)

t
t

FIG. 4. (Color online) Exact diagonalization results of the den-
sity ni and its variance σi as a function of �1 for case 1 with OBCs.
Sites 2 to N are uniform and U = 10t . (a)–(c) The results for a
four-site array with three photons. In (a) the dashed line and solid
line on the first site correspond to the two schemes shown in Fig. 3.
(d)–(f) The case of eight sites with seven photons. (g)–(i) Twelve sites
with 11 photons.

Based on current experimental technology [7,10,11,64], the
size of the lattice in our exact diagonalization is chosen as
N = 4,8,12. An estimation of the phase transition point can
be obtained from a mean-field approximation.

For a homogeneous 1D array of N sites, the (N − 1)
photons are not localized if the hopping coefficient is finite.
By increasing the on-site energy of the first site, it becomes
unfavorable if any particle hops into it. If the repulsive
interactions between the bosons exceed the critical value of
the MI-SF transition (Uc/t ≈ 3.28 in 1D [65,66]), the ground
state for the remaining N − 1 sites becomes a Mott insulator
with a wave function in Fock space as |ϕ1〉 = |0,1,1, . . . ,1〉.

From the Hamiltonian (16), one gets the ground state energy
E1 = 〈ϕ1|H |ϕ1〉 = −μ(N − 1).

Then we estimate the ground state of a SF to de-
termine where the transition occurs when �1 is varied.
In our mean-field approximation, a simplified trial ground
state with no double (or higher) occupancy is used,
which is appropriate for the case U 
 t . The trial
ground state is |ϕ2〉 = 1√

N
(|0,1,1, . . . ,1〉 + |1,0,1, . . . ,1〉 +

|1,1,0, . . . ,1〉 + · · · + |1,1,1, . . . ,0〉). The ground-state en-
ergy is E2 = 〈ϕ2|H |ϕ2〉 ≈ δ + η − 2t − μ(N − 1). The en-
ergy difference between the two ground states is

�E = E1 − E2 ≈ 2t − (δ + η). (21)

A phase transition occurs at the crossing point �E = 0,

or (δ + η) = 2t . Thus the system forms a Mott insulator by
emptying the first site. From Eqs. (17) and (21) we obtain an
estimation of the phase-transition point at �1 ≈ 390t for U =
10t . The mean-field estimations are shown in Fig. 2. To check
this prediction and provide more accurate estimations, we
implement the ED method for several moderate-size systems.
Figures 4 and 5 show ground-state properties, including ni and
σi on different sites as �1 varies. The energy gap of the first
excited state, shown in Fig. 6(a), verifies the existence of the
SF (gapless) and MI (gapped) states.

The fidelity metric shown in Figs. 6(b) and 7 captures and
locates the critical regime when the on-site energy of site 1
is manipulated. In Fig. 4, above �1/t ≈ 365, the density is
uniform away from site 1. The variance σi is also suppressed
in the bulk. Thus the system is in the MI regime. Below �1/t ≈
365, the photons tend to congregate at the two ends of the array,
but the variance is small. At the center of the array, the photon
density is smaller, with a larger variance. This corresponds
to a delocalized state. The density ni thus captures the main
conclusion of our mean-field analysis and shows corrections
from finite-size effects.

The critical values in the numerical results are close to
the mean-field estimations. The location of the critical point

ni

σi

U = 10t,  PBC

t
t

ni

σi

U = 5t,  OBC

(a)

(b)

(c)

(d)

ni

σi

U = t,  OBC

(e)

(f )

FIG. 5. (Color online) Photon density profiles and their variance for selected values of U and boundary conditions. (a) and (b): U/t = 10
and PBCs. In this case, the photons in sites 2 and N can both tunnel to site 1. Hence the photon densities on sites 2 and N are different from the
bulk value due to boundary effects. (c) and (d): U/t = 5 and OBCs. (e) and (f): U/t = 1 and OBCs. The nonuniform density and its significant
variance of the last case indicate that there is no Mott insulator in this setting. Here N = 12 with 11 photons.
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t
t

t
t
t

(b)

(a)

FIG. 6. (Color online) (a) Energy gap for different values of U

and N . The inset shows a regime when U = t , in yellow, for N = 12
with OBCs compared to U = 5t from the main figure. (b) The peaks
of the fidelity metric indicate the critical points. When N varies, the
location of the critical point remains intact. However, varying the
on-site interaction U changes the location of the critical point, which
is consistent with the analysis in Sec. III. Note that PBCs give the
same critical point as OBCs.

does not change much as N changes, but the MI features
become more prominent when N increases. Due to finite-
size and boundary effects, the edge of the Mott insulator is
distorted, but the bulk indeed exhibits features such as an
integer filling and suppressed fluctuations σi . Boundary effects
can also be observed on the neighbors of the manipulated site
as their values of ni deviate from the bulk. Those observations
are also valid in Figs. 5(a) and 5(b), where site 1 is connected
to site 2 and site 12 due to PBCs.

(a)

(b)

FIG. 7. (Color online) (a) Fidelity metric as a function of �1 for
different values of U for N = 8 and 7 photons. (b) Peak position
of the fidelity metric as a function of U/t . The full width at half
maximum (FWHM) is shown as the bar spanning across each point.

For small U/t , as shown in Fig. 5(e), 5(f) and the insets
in Fig. 6, the SF state dominates the whole parameter space
explored in our ED calculations, which confirms that no artifact
is induced if the system is in the SF regime. In the insets in
Fig. 6, the results of a broader range of �1 for the case of
U = t are shown, and the small, smooth gap throughout the
range of �1 is consistent with a SF state for the case U = t in
Figs. 5(e) and 5(f).

Figure 6 shows another signature of the phase transition as
�1/t ≈ 365 for U = 10t when N = 4, 8, and 12, as indicated
by a minimum in the energy gap followed by a rapid rise. For
different values of U/t , �i in the bulk are different according
to Eq. (14). Hence the critical point shifts in the �1/t axis
according to Eqs. (17) and (21), and this is consistent with the
results shown in Fig. 6.

B. Case 2: ρ = 1

As illustrated in Figs. 3(c) and 3(d), here we consider N

photons placed in an N -site array. If U/t is large, the system
is in a Mott insulator state. As the on-site energy of site 1
increases, the boson in that site is expected to be pushed to the
bulk, and this should lead to a delocalized state because of the
extra boson. Following a similar procedure, we estimate the
critical value of �1 that controls δ and η for this case.

The localized MI ground state can be written as
|ϕ1〉 = |1,1,1, . . . ,1〉, with the ground-state energy
E1 = 〈ϕ1|H |ϕ1〉 = δ − Nμ. We consider a trial delocalized
ground state |ϕ2〉 = 1√

N−1
(|0,2,1, . . . ,1〉 + |0,1,2, . . . ,1〉 +

· · · + |0,1,1, . . . ,2〉), whose ground-state energy is
E2 = 〈ϕ2|H |ϕ2〉 ≈ −Nμ + U

2 − 2t . Thus the energy
difference is

�E = E1 − E2 ≈ δ − U

2
+ 2t. (22)

The MI-SF phase transition occurs when �E = 0, and one
may notice that the critical point depends explicitly on U ,
which is in contrast to the U -independent critical point in
the mean-field analysis of case 1. For case 2 we find that
the critical points are δ = 3t,�1 ≈ 390t for U/t = 10 and
δ = 0.5t,�1 ≈ 445t for U/t = 5. The mean-field predictions
are also shown in Fig. 2.

Numerical results from the ED method for this case are
shown in Fig. 8. As shown in Figs. 8(a) and 8(b), below the
critical point �1 ∼ 470t , the system is an MI with one photon
per site, and above �1 ∼ 470t the system becomes an SF with
significant σi in the bulk. The fidelity metric shown in Fig. 8(d)
verifies that the critical point is close to the estimation from
our mean-field analysis. These results verify the feasibility
of inducing and observing those transitions in moderate-sized
systems.

IV. IMPLICATIONS FOR EXPERIMENTAL REALIZATION

State preparation. In the MI regime, the particle density on
each site is an integer. One may prepare an arbitrary n-photon
state in each site, including n = 0,1, that is of interest by
adiabatically swapping the qubit state to the TLR [67,68].
This single-site preparation can be performed simultaneously
on all the sites. Then starting from the MI regime, one can
transform it to the many-body ground state for different cases.
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FIG. 8. (Color online) Exact diagonalization results for case 2
with N = 8 and eight photons. Here U = 10t . (a) The density profile
in the array and (b) the density variance. (c) The energy gap (E
Gap) and (d) fidelity metric (Fid. M.) clearly exhibit signatures of the
MI-SF transition.

For example, in case 1 in Sec. III, the ground state in the MI
regime is |0,1,1,1, . . . 〉. Recent work also proposes a scheme
of an N -photon state preparation in a superconducting TLR
array supported by numerical results [47].

Cooling. Solid-state simulators based on superconducting
circuits, including the one we propose here, contain many
degrees of freedom, which not only provide great tunability
but also introduce relatively strong couplings to external fields.
To experimentally implement the simulator proposed here,
cooling such a complex system can be a great challenge. We
suggest the following three stages. In stage 1, the whole system
is kept in the superconducting phase and thermal excitations
in the superconducting circuits, and Josephson junctions
should be suppressed [9,34,40,41,69]. They are also associated
with the suppression of dissipation and decoherence. As
mentioned in the Introduction, the lifetime of the photons at
this stage is already much longer than the operation time of
the superconducting circuit by a factor of about 107.

In stage 2, cooling of the TLR-qubit single-site system
should be performed before connecting the whole array. This
is associated with the state preparation of the TLR array,
and a degree of freedom different from that of stage 1
needs to be dealt with. The quantum computation community
has been making significant progress related to the cooling
at this stage [69]. Inspired by ideas from optical systems,
Sisyphus cooling, dynamic cooling, and sideband cooling of
superconducting systems have successfully cooled a qubit to
its ground state [70–73].

In stage 3, once a multisite array is connected by turning
on the hopping between adjacent sites, the desired many-
body Hamiltonian follows. In order to simulate and observe
the quantum phase transition discussed here, one needs to
constantly cool the system and keep the number of photons

conserved during the operation. This is more challenging
than cooling just a single site, especially if inhomogeneity
of the on-site energies is present. Applying a bias or other
manipulations can cause excitations as well and needs to be
performed quasiadiabatically. Moreover, taking out the heat
from the multisite system when operating near the critical
regime leads to yet another issue. Advanced schemes to cool
a single site have been available, while cooling a multisite
array like the one studied here has not been reported so far.
The development of such technologies is important for real-
izing the proposed simulator. Based on current ground-state
preparations and state-manipulation technologies developed
in coupled superconducting cavity systems [74,75], it is
promising that photon-number-conserving cooling processes
may be realized by scaling up the cooling methods for those
coupled systems.

Detection of the phase transition. Since the single-site
manipulations of the MI-SF transition exhibit strong signa-
tures in the density distribution, we briefly discuss a direct
measurement of the photon numbers and number fluctuations
on each site. Interestingly, the measurement can be turned on
and off when needed to minimize the coupling of the simulator
to those external circuits. As shown in Fig. 9, each site can
be coupled to a memory TLR via the additional circuit. The
central SQUID C is used to switch the coupling between the
on-site unit and the measurement unit [79] for controlling
the memorizing window. This is possible by changing the

FIG. 9. Measuring the photons in the simulator: Each site of
the simulator is connected to a memory unit formed by another
qubit-TLR system via a tunable SQUID (labeled SQUID C) acting
as a switch. Measurements of the photon number in the memory
unit can be applied [76–78]. This memory unit can also serve as a
circuit for preparing the initial state by manipulating SQUID C and
SQUID B.

054515-8



SITEWISE MANIPULATIONS AND MOTT INSULATOR- . . . PHYSICAL REVIEW B 91, 054515 (2015)

bias flux through SQUID C (labeled on Fig. 9), φm. A fast
photon state SWAP between the two TLRs can be applied
using a four-wave mixing scheme proposed in Ref. [50] to
get |non−site0measure〉 → |0on−sitenmeasure〉, so that the photons
in the TLR of the simulator are transferred and stored in the
measurement TLR. Fast measurements of single-photon states
can be applied to measure photon numbers in the memory
TLR with technologies recently developed in circuit QED [76–
78,80–83]. By repeating the measurement one gets the average
photon number 〈ni〉 and variation 〈σi〉, as depicted in Fig. 4
for detecting different quantum phases in the TLR array.

The conservation of photon numbers is important in
realizing the single-site induced MI-SF transitions. The circuit
may lose or gain photons due to couplings to external circuits
or the ac control signals in the circuit. Recent progress in
superconducting quantum circuits has extended the lifetime of
photons in each site with a TLR coupled to a qubit to millisec-
onds [12,36,39], which is long enough for practical photon-
number conservation compared to the manipulations and mea-
surements that are on the order of nanoseconds [9,34,40,41].
Furthermore, the couplers, SQUID B, can have energy scales
very different from that of the photons in the simulator to avoid
trapping photons. Therefore the photon numbers in the TLRs
can be treated as constants. The manipulations, in particular
those due to the couplers between sites, can be introduced in
an adiabatic fashion and minimize photon loss. Even in driven
systems a single photon can be transferred faithfully among
multiple TLRs [74], which predicts a promising perspective for
photon-conserving manipulations in quantum circuits. Other
theoretical work [84–86] for number-conserving manipula-
tions of photon excitations in superconducting circuits also
provides exciting alternatives. Moreover, stabilizing photon
coherent states in driven systems has been experimentally
demonstrated [87]. This progress hints at the feasibility of
the proposed simulator based on superconducting circuits.

V. CONCLUSION

A versatile quantum simulator of interacting bosons based
on a tunable superconducting TLR-SQUID array has been

presented. The BHM with tunable parameters on each site
can be studied using the photons in this simulator. We have
demonstrated the feasibility of inducing the MI-SF transition
by manipulating only one single site. Our results are further
supported by the exact diagonalization method, and details
of the transition with realistic parameters are presented. The
fidelity metric, energy gap, and on-site photon number show
signatures of the phase transition. We also discussed possible
schemes for state preparation, cooling, and detection of the
phase transition for this proposed simulator.

Besides the manipulations of the phase transition discussed
here, this quantum simulator is also capable of demonstrating
topological properties in the BHM with superlattice structures
and should exhibit the topological properties, edge states,
and topological phase transitions studied in Refs. [32,33,88].
Moreover, quantum quenches [89,90] and their associated
dynamics may also be simulated by this superconducting
circuit simulator. For example, similar to Ref. [91], one can
separate the TLR array into two sections by turning off the
hopping between the two sections. Then different photon
numbers are prepared in the two sections. By switching on
the hopping between the two sections, photons are expected to
slosh back and forth between the two sections, which should
be detectable with similar measurement methods. Thus the
superconducting circuit simulator adds more excitement to the
physics of interacting bosons and complements other available
simulators.
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