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We present a quantitative comparison between the measurements of the complex conductance at low [kilohertz
(kHz)] and high [gigahertz (GHz)] frequency in a thin superconducting film of NbN and the theoretical
predictions of the dynamical Berezinksii-Kosterlitz-Thouless theory. While the data in the GHz regime can
be well reproduced by extending the standard approach to the realistic case of a inhomogeneous sample, the
low-frequency measurements present an anomalously large dissipative response around Tc. This anomaly can only
be accounted for by assuming a strong slowing down of the vortex diffusion in the kHz regime, or analogously
a strong reduction of the length scale probed by the incoming finite-frequency field. This effect suggests the
emergence of an intrinsic length scale for the vortex motion that coincides with the typical size of inhomogeneity
probed by STM measurements in disordered NbN films.
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I. INTRODUCTION

More than forty years after its discovery [1,2], the
Berezinksii-Kosterlitz-Thouless (BKT) transition [3,4] still
represents one of the most fascinating phenomena in
condensed-matter systems. Indeed, it describes the universality
class for the phase transition in two spatial dimensions
in a system displaying U(1) symmetry. After its original
formulation within the classical XY spin model, it has been
later on applied to a wide class of phenomena, mostly related
to the superfluid or superconducting (SC) transition in two
dimensions, as it occurs in artificial Josephson junctions, thin
films, and recently also cold atoms [2]. In all these cases, the
transition is driven by topological vortex excitations instead of
the usual vanishing of the order parameter, leading to striking
predictions for the behavior of several physical quantities.

The most famous hallmark of BKT physics is certainly the
discontinuous but universal jump of the density of superfluid
carriers at the transition [5], which has been successfully
observed in superfluid He films [6]. However, in the case of
superconducting materials, the superfluid-density jump turned
out to be rather elusive: indeed, while some signatures have
been identified in thin films of conventional superconductors
as MoGe [7,8], InOx [9–11], and NbN [12–14] they are less
evident in other cases as thin films of high-temperature cuprate
superconductors [15] or SC interfaces between oxides [16].
The lack of clear BKT signatures is due in part to two
intrinsic characteristics of the SC films, absent in superfluid
ones [1]: (i) the presence of quasiparticle excitations that
contribute to the decrease of the superfluid density limiting
the observation of BKT effects to a small temperature range
between TBKT and the BCS critical temperature Tc, and
(ii) the screening effects due to charged supercurrents. The
latter can be avoided by decreasing the film thickness d, so
that the Pearl length [1] � = 2λ2/d, where λ is the penetration
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depth, exceeds the sample size making the interaction between
vortices effectively long ranged. However, this also implies
that in the case of conventional superconductors, like InOx and
NbN, the observation of BKT physics is restricted to samples
near to the superconductor-to-insulator transition (SIT), where
several additional features must be considered along with the
presence of BKT vortices. The most important one is the
emergence at strong disorder of an intrinsic inhomogeneity
of the SC properties, as shown in the last few years by detailed
tunneling spectroscopy measurements [17–20].

Such intrinsic granularity of disordered SC films, which
has been interpreted theoretically as the compromise between
charge localization and pair hopping near the SIT [21–24], has
been efficiently incorporated in the BKT description of the
superfluid density as an average of the superfluid response
over the distribution of local critical temperatures [25,26].
This leads to a drastic smearing of the superfluid-density
jump predicted by the conventional BKT theory, in accordance
with the experimental observations of the inductive response
in thin films of conventional superconductors [13,14], as
measured by means of two-coil experiments. Notice that
this experimental setup measures the complex conductivity
σ (ω) of a superconductor at low but finite frequency ω,
usually ω � 50–60 kHz. As a consequence, along with the
superfluid response, connected to the imaginary part σ2(ω),
it also allows one to measure the dissipative part σ1(ω),
which displays a peak slightly above TBKT, whose width in
temperature correlates usually with the broadening of the
superfluid-density jump [14].

According to the standard view [27,28], the largest contri-
bution to σ1(ω) near TBKT is expected to come from the same
vortex excitations that control the suppression of the superfluid
density. Indeed, the finite dissipation comes essentially from
the cores of the vortices thermally excited above TBKT, that can
move at finite probing frequency over a length scale rω of the
order of rω � √

D/ω. Here, D is the vortex diffusion constant,
that is usually assumed [27] to coincide with the electron
diffusion constant. The maximum of σ1 is then expected to
occur at the temperature T̄ above TBKT where ξ (T̄ ) � rω,

1098-0121/2015/91(5)/054514(9) 054514-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.054514


GANGULY, CHAUDHURI, RAYCHAUDHURI, AND BENFATTO PHYSICAL REVIEW B 91, 054514 (2015)

where ξ (T ) is the BKT correlation length. As a consequence,
one would expect a shift or the σ1 maximum towards higher
temperatures, along with a broadening and enhancement of
the dissipative peak as ω increases. As we will show in this
paper, these conditions are strongly violated in thin films
of disordered NbN. By comparing the experimental results
obtained on the same sample measured both at low (10 to
100 kHz) and high (1 to 10 GHz) frequency we show that
the dissipative response is approximately the same in the
two regimes. When compared with the theoretical predictions
for the BKT transition in an inhomogeneous system, these
results imply that the dissipation observed in the kilohertz
(kHz) regime is anomalously large, as reported before also
MoGe and InO films [7], while in the gigahertz (GHz) regime
the observed resistive contribution agrees approximately with
the BKT expectation. Within our approach the large resistive
contribution observed in the kHz range can be accounted
for only by assuming a strong reduction of the vortex
difussion constant with respect to the conventional value of
the Bardeen-Stephen theory. Such a slowing down of vortices
at low frequencies can be also rephrased as the emergence
of an intrinsic length scale cutoff ξV for vortex diffusion in
our disordered thin films that makes the dissipative response
quantitatively very similar in the two ranges of frequencies.
More importantly, ξV correlates well with the typical size
of SC islands observed in similar samples by STM [18,19],
showing that the disorder-induced inhomogeneity is a crucial
and unavoidable ingredient to understand the occurrence of
BKT physics in thin films.

The plan of the paper is the following. In Sec. II, we present
the experimental results obtained by means of two-coils mutual
inductance technique in the kHz and by means of broadband
measurements in the Corbino geometry in the microwave. The
direct comparison between the experimental data obtained on
the same sample in the two regimes of frequencies shows
clearly the emergence of an anomalously large dissipative
response at low frequency. To quantify this anomaly, we
introduce in Sec. III the standard BKT approach for the
finite-frequency response in a homogeneous system, and show
its failure to reproduce the experimental data. In Sec. III,
we extend the finite-frequency BKT approach to include the
effect of inhomogeneity, along the line of previous work done
in the static case [13,14,26]. Within this scheme we discuss
the role played by the anomalous vortex diffusion constant at
low frequency, and we comment on its relation to real-space
structures due to disorder. The final remarks are presented
in Sec. V. Finally, the Appendix contains some additional
technical details on the description of the BKT physics at
finite frequency.

II. EXPERIMENTAL RESULTS

A. Details of the measurements and analysis

The electrodynamic response was studied on a 3-nm-thick
NbN sample, which we expect to be in the 2D limit as previous
measurements in analogous samples have shown [13]. The
superconducting BKT transition was studied in both kHz (10
to 100 kHz) and microwave (1 to 10 GHz) frequency range on
the same sample to explore vortex diffusion as a function of
the probing length scale.

The kHz data were acquired using a home-built two-coil
mutual inductance setup [12], where we drive the primary coil
at a desired frequency varying in the range 10–100 kHz. The
amplitude of ac excitation is kept at 10 mOe. The sample
here is a circle of a diameter of 8 mm, which we prepare by
reactive dc magnetron sputtering of Nb on single crystalline
MgO(100) substrate an argon-nitrogen gas mixture. We place
the sample in between the coaxial primary and secondary
coils, and we measure the induced voltage of the secondary
coil. Since the degree of coupling between the coils varies
with temperature due to the variation of complex penetration
depth λω [λω = (λ−2 + iδ−2)−1/2, see Eqs. (10) and (11)
below] of the superconducting film, the real and imaginary
parts of the voltage induced in the secondary coil give the
complex mutual inductance Mexp of the coils as a function
of temperature. The theoretical value of Mtheo as a function
of λw can be determined by solving numerically the coupled
set of Maxwell and London equations for the particular coil
and sample geometry of our setup. The numerical method
takes into account the effect of the finite radius of the film,
as proposed by J. Turneaure [29,30], see also Ref. [31]. We
obtain a 2D matrix (typically 100 × 100) of complex mutual
inductance values for different sets of Re(λ−2

w ) and Im(λ−2
w ).

Then we compare Mexp with the calculated Mtheo in order to
extract λw as a function of temperature.

Microwave spectroscopy was carried out in Corbino ge-
ometry [32] on the same piece of sample after cutting it in
5 mm × 5 mm size and thermally evaporating Ag contact pads
on it [31]. By using the same piece of the sample, we can avoid
any effect of change in the SC properties (SC gap, superfluid
stiffness, etc.) while studying two different frequency regimes.
In this way, we can attribute the change of the optical response
only to variations of the vortex diffusion constant, which is the
aim of the present work. The sample here terminates a 50 cm
long ss coaxial cable to reflect the microwave signal, generated
internally from a vector network analyzer (VNA) spanning
10 MHz to 20 GHz. The complex reflection coefficient(S11)
measured by the VNA is first corrected using three error
coefficients for the cable, which we get after calibration with
three standards [33–35]. To calibrate the cable at experimental
conditions, i.e., at low temperature, we use as a short standard
the spectrum of a thick ordered NbN sample taken at the lowest
temperature, and as loads the sample spectra taken at two
different temperatures above Tc. Such a calibration technique
is less prone to error, since two of the three calibrators are
measured during the same thermal cycle with the actual
sample. The corrected S11 is then related to the complex
impedance Z of the sample by means of the relation

S11 = (Z − Z0)

(Z + Z0)
, (1)

where Z0 is the characteristic impedance of the cable, which
is 50 � in our case. The complex conductivity σ of the sample
is given by

σ = ln(b/a)

2πdZ
, (2)

where a and b are the inner and outer radius of the film, and d

is the thickness.
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FIG. 1. (Color online) Experimental data of σ1 and σ2 at both
kHz and GHz frequency range [(a) and (b)]. (c) and (d) show the
comparison of δ−2 and λ−2 at the various frequencies f = ω/2π

reported in the legend in (d). The panels contain also the result
of simultaneous dc resistance measurements. Notice that σ1 in the
microwave regime matches perfectly above Tc the value of the dc
conductivity obtained by the measured resistance, see (a).

B. Experimental data

The results of the kHz and GHz measurements of the
complex conductivity are shown in Figs. 1(a) and 1(b). Notice
that even though the kHz measurements lose sensitivity away
from Tc, our microwave measurements can capture the normal
state conductivity quite well, and exactly match the one
obtained from the dc measurement [see Fig. 1(a)]. To compare
data at different frequencies, it is more convenient to convert
the complex conductivity in a length scale:

λ−2 = μ0ωσ2, (3)

δ−2 = μ0ωσ1, (4)

where λ−2 coincides with the usual SC penetration depth,
proportional to the superfluid density of the sample [see
Eq. (13) below]. At finite frequency, λ−2 persists slightly above
Tc, in a temperature range that increases proportionally to the
probing frequency, as observed also in thick samples [32], and
as expected by scaling near criticality [36]. This effect, shown
in Fig. 1(d), is negligible for low frequency and becomes
appreciable in the microwave regime. The low-temperature
part of λ−2 can be fitted very well by means of a BCS formula,
as shown in Fig. 2. However, near Tc, a sudden deviation
of λ−2 from the BCS fit occurs, signaling the occurrence
of a vortex-induced BKT transition. As already observed
before [13,14], the low vortex fugacity of NbN films moves
the BKT transition at temperatures slightly smaller than the
one where the BCS curve intersects the universal BKT line
[see also Eq. (13) below].

The length δ−2 is instead a measure of the fluctuations
around Tc, which originate in our BKT sample by the vortex
motion at finite frequency, as we shall discuss below. On
very general ground, one can associate the probing frequency
ω with a finite length scale rω by means of the diffusion
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FIG. 2. (Color online) Inverse penetration depth at low frequency
compared with a BCS fit of the low-temperature part. The deviation
from the BCS fit, which occurs slightly before the intersection with
the universal line 2T/π , signals the occurrence of a BKT transition
due to thermally excited vortices. The ratio 
(0)/Tc = 2.2 obtained
from the fit, with Tc BCS temperature, agrees well with the estimate
given by tunneling experiments in thick NbN films [18].

coefficient D [27]:

rω =
√

14D

ω
. (5)

Within the standard Bardeen-Stephen model [28], the vortex
motion causes dissipation because of the normal-electron com-
ponent present in the vortex cores. Thus the diffusion constant
D in Eq. (5) should scale with the electron diffusion constant,
which has been estimated from the Fermi velocity and the
mean free path obtained by resistivity and Hall measurements
at 285 K, as D � 10−4 m2/s [31]. Thus, in the kHz regime, rω

should approach the system size, giving negligible dissipative
effects, in sharp contrast to the experimental observation.
Indeed, the intensity of δ−2 and the peak width are similar
both in the kHz and the GHz regime, despite a change of
frequency by six orders of magnitude, see Figs. 1(d) and 1(c).
As we shall discuss in the next section, the anomalously large
dissipative response found in the kHz-frequency regime is
the hallmark that the inhomogeneity cutoff for the vortex
diffusion at scales rω ∼ ξV is of the order of the typical size
ξinh of the inhomogeneous domains. Thus, while in the GHz
regime a standard value of the diffusion constant leads to a
probing length rω that is already of the order of ξinh, leading
to a dissipative response in good quantitative agreement with
standard predictions for the BKT theory in an inhomogeneous
system, in the kHz regime, the same approach fails, unless
one assumes a diffusion constant D much smaller than what
predicted by the Bardeen-Stephen theory.

III. DYNAMICAL BKT THEORY: THE
CONVENTIONAL VIEW

The extension of the BKT theory to include dynamic
effects was developed soon after its discovery in a couple
of seminal papers by Ambegaokar et al. [27], who considered
the case of superfluid Helium, and afterwards by Halperin
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and Nelson [28], who extended it to charged superconductors.
The effect of the transverse motion of vortices under an
applied electric field is then encoded in an effective frequency-
dependent dielectric function ε(ω), in analogy with the motion
of the charges for the Coulomb plasma. The resulting complex
conductivity of the film can be expressed as [1,28]

σ (ω) = − n0
s de2

iωmε(ω)
, (6)

where m is the electron mass and n0
s is the mean-field superfluid

density, i.e., the one including BCS quasiparticle excitations
but not the effect of vortices. The dielectric function is
controlled by the fundamental scaling variables appearing in
the BKT theory [1,26], i.e., the bare superfluid stiffness J and
the vortex fugacity g, defined as usual by

J = �
2n0

s d

4m
, g = 2πe−βμ, (7)

where μ is the vortex-core energy. As it is well-known [1,4,26],
the role of vortices at large distances can be fully captured by
the renormalization-group (RG) equations of the BKT theory
for the two quantities g and K ≡ πJ/T :

dK

d

= −K2g2, (8)

dg

d

= (2 − K)g, (9)

where 
 = ln(a/ξ0) is the RG-scaled lattice spacing with
respect to the coherence length ξ0, that controls the vortex
sizes and appears as a short-scale cutoff for the theory. From
Eq. (6), we can derive the real and imaginary parts of the
conductivity in terms of the bare stiffness J and the dielectric
function, so that one has, in agreement with Eqs. (3) and (4)
above,

λ−2 = μ0ωσ2 = J

dα
Re

1

ε
= J

dα

ε1

ε2
1 + ε2

2

, (10)

δ−2 = μ0ωσ1 = − J

dα
Im

1

ε
= J

dα

ε2

ε2
1 + ε2

2

. (11)

where α = �
2/4e2μ0 is a numerical factor. In particular, if λ

is expressed in micrometers, d in angstroms, and J in degrees
Kelvin, then α = 0.62. As we discuss in details in Appendix,
ε(ω) is a function of both K and g. In particular, in the static
limit, one can show that ε is purely real, and it is given by

ε(ω = 0) = ε1 = K(0)

K(
 → ∞)
= J (0)

J (
 → ∞)
, (12)

so that δ−2 = 0 and the inverse penetration depth λ−2 is
controlled by the renormalized stiffness Js introduced in
Refs. [5,26]:

Js ≡ T K(
 = ∞)

π
≡ �

2nsd

4m
= αd

λ2
. (13)

with ns being the real superfluid density, including also vortex-
excitation effects. According to the RG (8), when K � 2, the
fugacity g flows to zero at large distances, so that K(
 →
∞) �= 0. The resulting Js is finite but in general smaller than its
BCS counterpart J , due to the effect of bound vortex-antivortex

pairs at short length scales, as it has been discussed in the
context of NbN thin films [13,14]. Instead, when K � 2, g

diverges, signaling the proliferation of free vortices. The BKT
transition temperature is the one where K(
 = ∞) = 2, so that
at TBKT, Js is finite and it jumps discontinuously to zero right
above it:

Js(T
−

BKT) = 2TBKT

2
, Js(T

+
BKT) = 0. (14)

At finite frequency, ε(ω) develops an imaginary part due to
the vortex motion: in first approximation (see also Appendix),
one can put [27]

ε2 � Dnf

ω
= D

ωξ 2
∼

(
rω

ξ

)2

, (15)

where nf is the free-vortex density, expressed in terms of the
vortex correlation length ξ , and rω is the frequency-dependent
probing length scale introduced in Eq. (5) above. The length
scale rω provides also a cutoff for the real part of the dielectric
function, which is given approximately by Eq. (12) with 
 =
∞ replaced by 
ω = ln(rω/ξ0):

ε1(ω) � J (0)

J (
ω)
, (16)

so that instead of the discontinuous divergence of ε1 expected
for ω = 0, due to the superfluid-density jump (14), one
finds a rapid increase across TBKT. The resulting temperature
dependence of λ−2 and δ−2 in Eqs. (10) and (11) is controlled
by the increase of ε1,ε2 across TBKT. In particular, since ε2

from Eq. (15) becomes sizable when one moves away from
TBKT due to the proliferation of free vortices, until it overcomes
ε1, λ−2 displays a rapid downturn instead of the discontinuous
jump (14) of the static theory. Instead, δ−2 in Eq. (11) starts
to increase at TBKT and shows a maximum at approximately
the temperature T̄ where ε2 � ε1 ∼ O(1). In terms of the
characteristic length scales appearing in Eq. (15), this occurs
when

ξ (T̄ ) ≈ rω. (17)

The correlation length within the BKT theory is described by
an exponentially activated behavior [1,3,26,28]:

ξ � Aξ0 exp

(
b√
t

)
, (18)

where the coefficient b is connected to the distance between the
TBKT and the mean-field temperature Tc, and to the vortex-core
energy [28,39]:

b � 4

π2

μ

J

√
tc, tc = Tc − TBKT

TBKT
. (19)

By means of Eq. (18), and using μ/J � 1 as evidenced by
the analysis of the λ−2 far from the transition regime we are
investigating [18], we then obtain that up to multiplicative
factors of order one, the transition width at finite frequency is
approximately

T̄ − TBKT

TBKT
� 1

[ln(rω/ξ0)]2
tc. (20)

The above equation confirms the general expectation that the
broadening of the transition due to finite-frequency effects
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FIG. 3. (Color online) Comparison between the experimental
measurements (symbols) of λ−2 (a) and δ−2 (b) and the predictions
(solid lines) [(c) and (d)] of the conventional dynamical BKT
theory for D = 10−5 m2/s. The BCS fit in (a) works well far
from the transition and allows one to estimate the BCS transition
temperature Tc, while TBKT (obtained by using μ/J = 1.2) marks
here the prediction of the homogeneous, static case. By using a
conventional estimate of the vortex diffusion constant, one obtains
the rounding of λ−2 shown in (c): as one can see, it occurs on
a temperature scale two orders of magnitude smaller than the one
observed experimentally. At the same time, the peak in δ−2 shown in
(d) is essentially a δ-like peak when compared to the measurements
reported in (b).

is fully controlled by the probing length scale rω, where the
diffusion constant enters in a crucial way, see Eq. (5). Let us
then start with an estimate of the finite-frequency effects in
NbN based on the standard value of the diffusion constant
given by the Bardeen-Stephen model, where D coincides with
the diffusion constant of electrons De � vF 
loc. Since a direct
measurement of De is not available for this sample, we choose
here a value D � 10−5 m2/s for the vortex diffusion constant.
This value is chosen slightly smaller than the estimate of De

given by transport measurements in analogous NbN films [31],
in order to enhance the finite-frequency effects emerging
within the conventional BKT approach. The distance between
Tc and TBKT can be determined by a BCS fit of the data at low
temperatures, as shown in Fig. 3(a), and it is in the present case
tc = 0.1. Finally, for ξ0 � 10 nm, as appropriate for NbN [37],
one obtains from Eq. (17),

T̄ − TBKT � 0.01 K. (21)

This estimate is confirmed by the numerical calculation of the
optical response based on the full expression of the dielectric
function ε(ω) reported in Appendix, and shown in Figs. 3(c)
and 3(d). As one can see, finite-frequency effects lead indeed to
a negligible smoothening of the superfluid-density jump with
respect to the static case, and to a finite dissipative response
δ−2 whose width in temperature is two orders of magnitude
smaller than what is observed in real data, reported in Fig. 3(b).
The result for λ−2 can be easily understood by comparing the
scale rω with the other two length scales that act as cutoff on
the RG equations (8) and (9) already in the static case, i.e., the

system size R � 8 mm and the Pearl length � = 2λ2/d, that
is, at TBKT (where λ−2 � 0.5 μm−2) is of the order of � �
1 mm. For a value D � 10−5 m2/s of the diffusion constant
rω � 0.04 mm at 10 kHz, i.e., it is of the order of both R and �.
Thus the rounding effects at finite frequency on λ−2 shown in
Fig. 3(c) do not differ considerably from the ones found in the
static case, so that the finite-frequency computation induces
only a negligible shift of the transition temperature without
accounting for the broad smearing of the jump observed in
the experiments, see Fig. 3(a). Analogously, finite-frequency
effects lead now to a finite dissipation σ1, but the δ−2 response
appears as almost a δ-like peak at TBKT, in contrast to the wide
dissipation signal observed in the experiments, see Fig. 3(b).

The failure of the standard BKT dynamical theory for a
homogeneous system shown in Fig. 3 is a clear indication that
some crucial ingredient is missing. It is worth noting that the
same theoretical approach was shown to be instead in very
good quantitative agreement with the experimental data in He
films investigated in the past [27,38]. One crucial difference
between superfluid films and superconducting ones is that
in the latter case, vortex-antivortex interactions are screened
out by charged supercurrents, so that BKT physics becomes
visible only for thin enough films [1,26]. However, as the
film thickness is reduced also the disorder level increases,
putting thin BKT films on the verge of the SIT, where
additional physical effects emerge. The most important one
is the natural tendency of the system to form inhomogeneous
SC structures, which modify crucially the above results derived
for a purely homogeneous superconductor. In particular, as it
has been discussed in a series of recent publications [14,18],
the inhomogeneity of the system is the main reason for the
smearing out of the universal superfluid jump with respect to
the BKT prediction [see Fig. 3(a)]. However, as we shall see
in the next section, the analysis of the dissipative part shows
that the inhomogeneity can have also a strong effect on the
ability of vortices to diffuse under an ac field, explaining the
anomalously large resistive signal observed in the experiments.

IV. DYNAMICAL BKT THEORY IN THE PRESENCE
OF INHOMOGENEITY

A first route to account for inhomogeneity is a direct exten-
sion of the procedure proposed in Refs. [13,14] in the static
case, i.e., an average of the conductivity over a distribution
P (Ji) of local superfluid-stiffness values Ji . This inhomogene-
ity is meant to give a coarse-grained picture at the mesoscopic
scale of the spatial inhomogeneity observed at the nanoscale
by STM [17,19,20]. Indeed, as we shall see below, the data
are usually well described by using a Gaussian distribution for
P (Ji), that differs then considerably from the one that can be
inferred by the variation of STS spectra at the nanoscales, and
it is reproduced by microscopic theoretical calculations [24].
This effective approach justifies to use a (homogeneous) BKT
description for each patch, and to account for finite-frequency
effects by means of the complex dielectric function introduced
in Eq. (6) above. We thus proceed as follows: the complex
conductivity σ (ω) of each patch is computed according
to Eq. (6), while the global one is given by an average
σ = ∫

dJiP (Ji)σi(ω) over a Gaussian distribution P (Ji) =
(1/

√
2πσG) exp[−(Ji − J̄ )2/2σ 2

G] of local superfluid-density
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FIG. 4. (Color online) Comparison between the experimental
data and the complex conductivity computed as the average over
an inhomogeneous Gaussian distribution (σG/J̄ = 0.015) of lo-
cal superfluid-stiffness values for a conventional value of D =
10−5 m2/s. While this procedure works very well for the inductive
response (a), leading to the smearing of the BKT jump, it does not
capture at all the intensity of the dissipative response (b) observed
experimentally in the kHz frequency range.

values. Here each Ji(T ) follows from the numerical solution of
the BKT RG equations, using as initial value a BCS expression,
such that J̄ (T ) has as starting point the BCS fit of low-
temperature data shown in Fig. 2 (see details in Ref. [14]). The
complex conductance of each patch follows then from Eq. (6)
above. The resulting σ (ω) for a conventional value of the dif-
fusion constant, i.e. D ∼ 10−5 m2/s, is shown in Fig. 4(a). As
we discussed above, finite-frequency effects have a negligible
impact on the stiffness λ−2

i of each patch [see Fig. 3(c)], so at
ω = 20 kHz the average superfluid response is practically the
same computed in Refs. [14,18] for the static case. As one can
see, since within patches with smaller/larger local Ji values
the transition occurs at lower/higher temperatures, the average
stiffness displays a smeared transition, in good agreement
with the experimental data. This supports the notion, already
pointed out in previous work [14,18], that the main source of
the superfluid-density jump smearing is the inhomogeneous
distribution of local transition temperatures, while finite-
frequency effects are not so relevant. When applied to the
dissipative finite-frequency vortex response the averaging pro-
cedure has the analogous effect: the δ-like peak found at 20 kHz
for δ−2

i in each patch is now convoluted with a Gaussian distri-
bution of local transition temperatures, leading to a widening
of the peak. However, this has also the unavoidable effect of
reducing the peak intensity, that is now at ω = 20 kHz two
orders of magnitude smaller than what observed experimen-
tally, see Fig. 4(b). In addition, while the inductive response
is weakly dependent on the frequency, the dissipative one
increases strongly when we move in the microwave regime,
even after the average procedure. The peak in δ−2 shown in
Fig. 4(b) at ω = 2 GHz for a conventional value of the vortex
diffusion constant approaches instead the order of magnitude
of the experimental data, even if the quantitative agreement is
not reached yet, and the shape of the peak is still different.

The strong disagreement between the experiments and
the theory in the kHz frequency range suggests that the
length scale rω for vortex diffusion is the same expected
in the microwave regime, so that D must be taken in our
simulation a function of frequency strongly decreasing at
low ω. Notice also that the simple average procedure leads to
an overestimate of the transition width in σ1 at large frequency,
see Fig. 4(b). To improve the treatment of the finite-frequency
effect we then resort to a self-consistent effective-medium
approximation [40] (SEMA) for the optical conductivity of the
inhomogeneous system. Thus once generated a distribution
of local σi(ω) conductance with probability Pi ≡ P (Ji) the
complex SEMA conductance σ (ω) is computed as the solution
of the following equation:∑

i

Pi

σi(ω) − σ (ω)

σi(ω) + ησ (ω)
, (22)

where η = D − 1 coincides with 1 in two spatial dimensions.
Notice that Eq. (22) can also be rewritten as

σ =
(

(1 + η)
∑

i

Pi

σi + ησ

)−1

, (23)

so that one sees that in the limiting case η = 0, σ is computed
by assuming that the complex impedances are in series, as
it is the only possible case in D = 1 physical dimensions.
In this situation, the contribution of each single resistor
to the overall dissipative response is enhanced: indeed, for
η = 0 at each temperature, σ is dominated by the resistor
σi having a peak at that temperature, weighted as 1/Pi

instead of Pi as one had in the simple average procedure.
Thus the use of the effective-medium approximation amplifies
in general the dissipative response of our network of BKT
complex conductances, getting a better agreement with the
experiments. For what concerns, instead, σ2, the SEMA
conductance behaves essentially as the averaged one, with
a general smoothening of the superfluid-density jump due
to the superposition of several J i

s (T ) curves vanishing at
different temperatures. This can be seen in Fig. 5(a), where
the dashed line represents the result for the static case. Here,
the jump of the homogeneous case is replaced by a rapid but
continuous downturn that extends over the finite range where
the transition occurs for different patches, while the additional
tail only occurs when finite-frequency effects are taken into
account (solid lines).

In Fig. 5, we show results for the complex SEMA con-
ductance obtained with D � 10−11 m2/s in the kHz regime,
corresponding to a rω � 8ξ0 at ω = 20 kHz. In the kHz regime,
the dissipative response of each local impedance is highly
enhanced with respect to the results of Fig. 4, and the σ1 peak
is in better agreement with the experiments. In the microwave
regime, instead D increases, and a good compromise between
the fit of the inductive and dissipative response is found
for a value D = 0.01 × 10−5 m2/s, corresponding to rω �
ξ0 at ω = 1.8 GHz. Thus, for microwave frequencies, D

is still smaller than the estimate of the electron diffusion
constant De � 10−4 m2/s, even if the discrepancy is much
less severe than in the kHz regime. Moreover, taking into
account the uncertainties associated from one side with the
determination of De from normal-state properties, and from
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FIG. 5. (Color online) Inductive (a) and resistive (b) response of
the SEMA complex conductivity from Eq. (22). The same color is
used for the experimental data (symbols) and the theoretical curves
(solid lines). The dashed black line in (a) corresponds to the superfluid
response in the static limit. The value of the diffusion coefficient D

at the various frequencies is reported in the text. The remaining
parameters for the BCS fit are the same of Figs. 2 and 3(a), while the
BKT parameters are slightly different due to the different averaging
procedure, i.e., σG/J̄ = 0.02 and μ/J̄ = 1.18.

the other side with the identification between D and De for an
inhomogeneous system, such a difference is not unexpected.
Observe also that the experimental data of Fig. 1 show in any
case a dependence on the probing frequency more pronounced
than what found theoretically. This is a consequence of the fact
that within the BKT approach the frequency variations follow
a weak logarithmic dependence, as evidenced, for example, by
the estimate (20) of the peak temperature of each resistor.

V. DISCUSSION AND CONCLUSIONS

As one can see in Fig. 5, even if one accounts for the slow
vortex diffusivity and the system inhomogeneity, the agree-
ment with the experimental results for σ1 in the kHz regime is
not as good as the one for σ2. On the other hand, the present
phenomenological analysis, where the spatial inhomogeneity
of the system is included in an effective-medium approach with
a frequency-induced length-scale cutoff, elucidates already
the emergence of a peculiar interplay between the inductive
and resistive response near the BKT transition. In particular,
having in mind also the theoretical results on disordered
films [23], our results can be interpreted by assuming that
the superfluid inductive response can take advantage of the
existence of preferential (quasi-one-dimensional) percolative
paths connecting the good SC regions, while thermally excited
vortices responsible for the dissipation will mainly proliferate
far away from the SC region. This notion is further supported
by the emergence of an intrinsic length scale for vortex
diffusion rω ∼ ξV ∼ 10–50 nm that correlates very well with
the typical size of the SC granularity observed experimentally
by STM experiments [17,19,20] and predicted theoretically in
microscopic models for disorder [21–24]. Such a mechanism
could thus explain the coexistence of both a large superfluid
and dissipative response in a wide temperature range around

the transition. It is worth noting that STS experiments both
in thick [18–20] and thin [20] NbN films showed that the
inhomogeneity induced by disorder usually emerges along
with other striking features: a soft suppression of the density
of states (pseudopgap) above Tc. In our description of the
BKT physics, the emergence of a pseudogap phase, i.e., of
a separation between the energy scales connected to pairing
and phase coherence, is accounted for by an increase of
the vortex-core energy value μ/js � 1.2 with respect to its
estimate in a BCS clean superconductor μ/Js � 0.95 [13,26]
in agreement with previous analysis [13,14] in several NbN
films. Indeed, μ is expected to scale with the condensation
energy, which in turn increases when the pairing between
electrons gets stronger than its simple BCS estimate. On
the other hand, assuming a more costly vortex core does not
explain in a straightforward way why it should also have a
lower diffusivity than the normal electrons residing in it, as our
results suggest. On this respect, a more microscopic treatment
than the one given in the present work is certainly required.

The quantitative comparison presented here between the
theoretical prediction of a conventional BKT approach for
homogeneous films and the experiments shows also that some
care must be taken while analyzing the data with a standard
scaling approach [36], as suggested, for example, for mi-
crowave measurements in thin InOx films in Ref. [11]. Indeed,
we have shown that the shape of the complex conductivity
is strongly affected by the inhomogeneous distribution of
local SC properties. For example, even in the microwave
regime, the broadening of the superfluid-density jump cannot
be understood as a trivial finite-frequency effect, as it is instead
assumed in the usual scaling hypothesis [11,36]. Thus the
extraction [11] of a scaling frequency ω0(T ) that correlates
with the usual BKT behavior (18) of the vortex correlation
length does not mean in general that a standard BKT scaling,
i.e., the one predicted in the homogeneous BKT theory, is at
play. Indeed, the real agreement with BKT scaling should be
proven by comparing in a qualitative and quantitative way the
complex conductance itself. In our case, we checked explicitly
that even though the microwave data can be rescaled to give
a BKT-like scaling frequency ω0(T ), the scaling function
itself deviates strongly from the BKT one, since its shape
is controlled by the inhomogeneity. In addition, while we
focused here on thin films where the transition has a BKT
character, the peculiar role of inhomogeneity is a general
feature of disordered films near the SIT. Indeed, the strong
slowing down of the fluctuation conductivity observed recently
in thick NbN films [32], where BKT physics is absent, show
that the enhanced finite-frequency effects reported near the SIT
can be analogously interpreted as a signature of an intrinsic
length-scale dependence associated to inhomogeneous SC
domains.

Finally, the present analysis clarifies also that the absence
of a sharp superfluid-density jump in thin films of conventional
superconductors cannot be attributed [8] to the mixing between
inductive and reactive response that already occurs at the kHz
frequency. Indeed, in the standard homogeneous case, the
effect of the frequency on the universal jump would be the
one shown in Fig. 3(c), i.e., the λ−2 should still drop to zero so
rapidly to appear as a discontinuous jump in the experiments.
The rounding effect of the stiffness are instead entirely due
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to the inhomogeneity, that also mixes in a nontrivial way
inductive and reactive response, making it meaningless the
extraction from the data of the inverse inductance in order to
analyze the superfluid-density jump, as done, e.g., in Ref. [8]
(see also Appendix).

In summary, we analyzed the occurrence of the dynamical
BKT transition in thin films of NbN. We measured the same
samples both in the kHz regime, where dynamical effects
should be negligible according to the standard view, and
in the microwave regime, where one would expect instead
a sizable finite-frequency induced dissipative response. Our
experimental results show a consistent broadening of the
universal BKT superfluid-density jump that can be attributed
to inhomogeneity, and an anomalously large resistive response
in the low-frequency range that cannot be understood by
means of a standard value of the vortex diffusion constant. By
making a quantitative comparison between the experiments
and the theoretical predictions for the BKT physics in a
inhomogeneous SC environment, we show that the dissipative
response in the kHz regime can only be understood by
assuming a low vortex diffusivity. This effect limits the
vortex motion over an intrinsic length scale of the order of
the typical size of homogeneous SC domains observed by
STM near the SIT. While the present approach accounts for
the emergence of SC inhomogeneity in a phenomenological
way, a more microscopic approach is certainly required to
understand how the BKT vortex physics can accommodate
the disorder-induced SC granularity by preserving its general
character.
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APPENDIX: DIELECTRIC FUNCTION OF VORTICES
WITHIN THE RG APPROACH

The expression for the vortex dielectric constant ε(ω) that
appears in Eq. (6) has been derived [27,28] by exploiting the
analogy between the Coulomb gas and the vortices. It contains
two contribution: εb due to bound vortex-antivortex pairs that
exist already below TBKT and εf due to free single-vortex
excitations that are thermally excited above TBKT. To compute
εb, one exploits the idea that under the applied oscillating
field vortices experience a Langevin dynamics controlled by
the diffusion constant D. In practice, if we think that in the
BKT theory, what controls Js(r) is the screening due to neutral
vortex-antivortex pairs at a scale r , the dynamics introduces
one additional scale rω such that pairs with separation r 
 rω

will not contribute to the polarization since they will change
the relative orientation over a cycle of the oscillating field.
This explains while εb is cut off at rω. On the other hand, free
vortices have uncorrelated motions with respect to each other

and, when present, they will contribute directly to dissipation.
The general expressions for the bound εb and free εf vortex
contributions are then [27]

εb(ω) = 1 +
∫ ξ

ξ0

dr
dε̃(r)

dr

14Dr−2

−iω + 14Dr−2
, (A1)

εf (ω) = i
4π2J

kBT

Dnf

ω
= i

2π2J

7kBT

(
rω

ξ

)2

, (A2)

where nf is the free-vortex density, expressed in terms of the
correlation length ξ as nf = 1/ξ 2, J is the superfluid stiffness
defined in Eq. (7) above, and ε̃ is defined in terms of the RG
variable K (8) as

ε̃(r) = K(0)

K(
)

∣∣∣∣

=ln(r/ξ0)

. (A3)

Let us first analyze the case of an infinite system at ω = 0.
When the system is infinite, the correlation length ξ = ∞
below TBKT. In this case, the upper limit of integration in
Eq. (A1) is set at ∞ and the free-vortex contribution is different
from zero only above TBKT. Moreover, by using ω = 0, εb (and
then also the total ε) is purely real and it can be easily computed
using the definition (A3): indeed, we have that

εb(ω = 0) = 1 +
∫ ∞

a0

dr
dε̃(r)

dr
= 1 + ε̃(∞) − ε̃(ξ0)

= ε̃(∞) = K(0)

K(∞)
= J (0)

Js

(A4)

in agreement with Eq. (12) above, where we already used the
definition (13) J (
 = ∞) = Js . Since J (0) ∝ n0

s while Js ∝
ns , where ns is the real superfluid density including also the
vortex contribution, we obtain in Eq. (6) that at ω = 0 the
response is purely inductive:

σ (ω = 0) = −nsde2

iωm
. (A5)

At finite frequency, the dielectric function develops an
imaginary part, responsible for the dissipative response de-
tected via σ1. Bound vortices give the main contribution to the
real part of the dielectric function, while free vortices occurring
on the length scale rω contribute to the imaginary part of the
dielectric function. All the theoretical results shown in the
manuscript have been obtained by means of the full numerical
solution (A1) and (A2), where K(
) is the solution of the
RG equations (8) and (9). On the other hand, one can also
provide a rough estimate of the expected behavior of complex
conductivity based on the above formulas. For what concerns
ε1, the contribution of bound vortices at finite frequency can
be estimated by replacing in Eq. (A4) the upper cutoff of
integration with rω, that is, the maximum distance explored by
vortices under the applied field [27]. One then has

ε1(ω) = εb1(ω) ≈ K(0)

K(
ω)
, (A6)

so that instead of the discontinuous jump of ε1 expected at
ω = 0 one observes now a rapid but continuous downturn, as
discussed in Sec. III. At the same time for ε2, one has the largest
contribution from free vortices, i.e., the contribution (A2)
above that has been discussed below Eq. (15) in Sec. III. Notice
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that in the homogeneous case, Eq. (6) and (A6) above show
that if one plots directly the inverse inductance, as it has been
sometimes suggested [8], i.e.,

L−1 = n0
s e

2d

mε1(ω)
≈ ns(rω)e2d

m
, (A7)

then one can directly access the superfluid-density jump
occurring at finite frequency. However, while this would be
a viable procedure to isolate the real and imaginary part of

the dielectric function for a homogeneous system, it fails
completely in the presence of inhomogeneity, which has a
much more drastic effect on the jump than the finite-frequency
behavior. Thus, in the case of thin disordered films, the lack
of a sharp BKT jump cannot be circumvented by extracting
from the measured conductivity the inverse inductance, since
this procedure mixes in an artificial and uncontrolled way the
nontrivial effects of the inhomogeneity on the finite-frequency
response.
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