
PHYSICAL REVIEW B 91, 054505 (2015)

Measurement of the penetration depth and coherence length of MgB2 in all directions using
transmission electron microscopy
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We demonstrate that images of flux vortices in a superconductor taken with a transmission electron microscope
can be used to measure the penetration depth and coherence length in all directions at the same temperature and
magnetic field. This is particularly useful for MgB2, where these quantities vary with the applied magnetic field
and values are difficult to obtain at low field or in the c direction. We obtained images of flux vortices from a
MgB2 single crystal cut in the ac plane by focused ion beam milling and tilted to 45◦ with respect to the electron
beam about the crystallographic a axis. A new method was developed to simulate these images that accounted
for vortices with a nonzero core in a thin, anisotropic superconductor and a simplex algorithm was used to make
a quantitative comparison between the images and simulations to measure the penetration depths and coherence
lengths. This gave penetration depths �ab = 100 ± 35 nm and �c = 120 ± 15 nm at 10.8 K in a field of 4.8 mT.
The large error in �ab is a consequence of tilting the sample about a and had it been tilted about c, the errors on
�ab and �c would be reversed. Thus obtaining the most precise values requires taking images of the flux lattice
with the sample tilted in more than one direction. In a previous paper [J. C. Loudon et al., Phys. Rev. B 87,
144515 (2013)], we obtained a more precise value for �ab using a sample cut in the ab plane. Using this value
gives �ab = 107 ± 8 nm, �c = 120 ± 15 nm, ξab = 39 ± 11 nm, and ξc = 35 ± 10 nm, which agree well with
measurements made using other techniques. The experiment required two days to conduct and does not require
large-scale facilities. It was performed on a very small sample, 30 × 15 μm and 200-nm thick, so this method
could prove useful for superconductors where only small single crystals are available, as is the case for some
iron-based superconductors.
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I. INTRODUCTION

Superconductors have zero electrical resistance and expel
magnetic flux from their interiors (the Meissner effect).
However, if a sufficiently high magnetic field is applied, flux
penetrates by flowing along channels called flux vortices. Each
vortex carries one quantum of magnetic flux, �0 = h/2e,
where h is Planck’s constant and e is the electron charge. They
consist of a core with a radius given by the coherence length ξ ,
where the number of carriers (electrons or holes) contributing
to superconductivity is suppressed. Electrical supercurrents
circulate around the center, diminishing over a radius given by
the penetration depth, �. In a conventional superconductor, the
coherence length is related to the energy required to excite a
carrier out of the superconducting state, �, and the velocity of
the carriers at the Fermi energy, vF , via ξ = �vF /π� and the
penetration depth is related to the number density of carriers
involved in superconductivity, nS , and their effective mass, m∗,
via � =

√
m∗/μ0nSe2 (μ0 is the permeability of free space).

In a type-I superconductor, the core exceeds the size
over which the supercurrents persist and vortices attract one
another as the area of normal (nonsuperconducting) material
is minimized if the cores overlap. In a type-II superconductor,
the supercurrents persist over a larger radius than the core and
the Lorentz force causes vortices to repel one another so they
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form a hexagonal array in an isotropic superconductor. In-
troducing the Ginzburg-Landau parameter, κ ≡ �/ξ : a type-I
superconductor has κ < 1/

√
2 and a type-II has κ > 1/

√
2.

An anisotropic superconductor has different properties
along different crystal axes, a, b, and c. Most are uniaxial so
that a and b are equivalent. The anisotropy in the penetration
depth is γ� ≡ �c/�ab and in the coherence length it is
γξ ≡ ξab/ξc. In a one-band superconductor, where there is
one source of carriers contributing to superconductivity, the
penetration depth and coherence length are independent of
the applied magnetic field and their anisotropies are equal.
One method to investigate the penetration depths and coher-
ence lengths in both the a and c directions is to induce flux
vortices with their axes normal to the ac plane. The vortex
then has an elliptical core surrounded by circulating currents
as illustrated in Fig. 1(a).

MgB2 is a rare two-band superconductor [1] discovered in
2001 with a transition temperature Tc = 39 K. It is uniaxial
with a hexagonal crystal structure [1] (space group 191:
P 6/mmm) composed of alternating layers of magnesium
and boron with lattice parameters a = b = 3.086 Å and
c = 3.542 Å. Two bands contribute to superconductivity: the
σ band associated with bonding from the boron pxy orbitals
and the π band associated with boron pz orbitals [2]. The σ

carriers are confined to the ab planes whereas the π carriers
are delocalized almost isotropically. At low magnetic fields,
both σ and π bands contribute to superconductivity but as the
field is increased, the π contribution diminishes so that above
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FIG. 1. (a) Flux vortex with its axis normal to the ac plane. The
core (shaded) is elliptical with dimensions ξab and ξc. Supercurrents
J follow ellipses with the same aspect ratio, diminishing on length
scales �c and �ab. Streamlines of J are also contours of magnetic flux
density B. (b) Experimental arrangement for imaging flux vortices.
The electron beam is deflected by the component of B normal to the
beam so vortices appear as black-white features in an out-of-focus
image. (c)–(f) Simulated images with defocus �f = 7.15 mm for
a flux vortex in a 180-nm-thick specimen in the orientation shown
in (a) but tilted 45◦ about a. Contrast values (see text) are shown
below each image. (c) �ab = 100 nm, �c = 120 nm, ξV = 34 nm,
(d) �ab = 100 nm, �c = 120 nm, ξV = 1 nm, (e) �ab = 200 nm,
�c = 120 nm, ξV = 34 nm, and (f) �ab = 100 nm, �c = 200 nm,
ξV = 34 nm.

0.8 T (at 2 K), only the σ band contributes [3]. This has the
effect that the penetration depth and coherence length vary
with field [3].

In a previous paper [4], we showed that the penetration
depth of MgB2, �ab, could be obtained in the low-field limit
by making a quantitative comparison between images of flux
vortices acquired using transmission electron microscopy and
simulations. Here, we extend this method and show that the
penetration depths �ab and �c and coherence lengths ξab and
ξc can be measured in a low field of 4.8 mT from a very small
sample.

Focused ion beam milling was used to cut a MgB2 sample
in the ac plane of size 30 × 15 μm, thinned to 200 nm so that it
was electron transparent (see Sec. III). Flux vortices penetrate
normal to the thin surfaces and the sample was tilted about
its a axis at α = 45 ± 5◦ to give a component of the B field
normal to the electron beam [Fig. 1(b)]. The beam is deflected
by the Lorentz force and flux vortices appear as black-white
images in an out-of-focus image [5]. Such images are sensitive
to the B-field throughout the thickness of the specimen, not
just the stray field, and they can be acquired in real time [6].

The effect on such images of changing the coherence length
and penetration depth is shown in Figs. 1(c)–1(f). These
images were simulated by extending Beleggia’s method [7]
to model vortices with a nonzero core in a thin, anisotropic
superconductor (see Sec. II). We use Klemm and Clem’s
Ginzburg-Landau model for the vortex core [8,9]. In this
model, the core has the same symmetry as the circulating

currents so that ξab/ξc = �c/�ab and ξV = ξ
1/3
ab ξ

2/3
c but any

model for the magnetic structure of a flux vortex could be used
with equal facility.

Figure 1(c) shows a simulated image of a vortex with �ab =
100 nm, �c = 120 nm, and ξV = 34 nm. Panel (d) shows
that decreasing ξV to 1 nm sharpens the image, increasing
the contrast (the difference in the maximum and minimum
intensities divided by their sum) from 10.5% to 14.8%. In (e),
�ab is doubled, which stretches the image in c and reduces
the contrast from 10.5% to 8.8%. Figure 1(f) shows that the
images are most sensitive to �c so that when �c is increased
to 200 nm, the image is stretched in a and its contrast falls
to 4.4%. This sensitivity of the images to changes in these
parameters should allow the simultaneous measurement of the
penetration depths and coherence lengths in all directions. In
this paper, we assess the accuracy of this new technique.

II. SIMULATION OF FLUX VORTEX IMAGES

In this section, we present a model to calculate the magnetic
fields generated by a flux vortex and from this simulate
transmission electron micrographs. The model accounts not
only for the B field inside the superconductor but also for the
spreading of the field lines near the superconductor surface
and the field outside. It extends Beleggia’s method [7,10] to
treat the case of a vortex in a thin, anisotropic superconducting
slab and makes use of the work of Klemm and Clem [8,9,11]
to account for a nonzero vortex core although it has the
convenient feature that any model for the vortex core can
be used with equal facility. Like all magnetic objects, flux
vortices change only the phase and not the intensity of the
electron beam and once the fields have been calculated, the
phase shift can be found using the Aharanov-Bohm formula.
Once the phase shift is known, any image can be simulated.
Thus we first evaluate the magnetic vector potential, then use
this to find the phase shift and from this simulate out-of-focus
images of flux vortices.

A. Coordinate systems

In order to visualize flux vortices using transmission
electron microscopy, the specimen must be tilted by an angle
α to provide a component of the B field normal to the
electron beam so that the electrons are deflected by the Lorentz
force and show contrast in an out-of-focus image. Thus we
follow Beleggia’s method [7,10] and introduce two coordinate
systems: X,Y,Z referring to the specimen with X and Y in
the specimen plane and Z normal to its surface, and x,y,z

referring to the microscope with z parallel to the electron beam
as illustrated in Fig. 2. The specimen surfaces are at Z = ±d

so its thickness is t = 2d. We first evaluate the magnetic vector
potential in terms of the specimen coordinates and use this to
find the phase shift in the xy plane, which is equivalent to the
plane in which images are recorded.

B. Magnetic vector potential

Here, we evaluate the magnetic vector potential A from
a flux vortex passing through a thin superconducting slab
with its axis directed along Z, normal to its surfaces. We use
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FIG. 2. The relationship between the coordinates X,Y,Z referring
to the specimen and the microscope coordinates x,y,z. The y and Y

axes are normal to the other two axes and point in the direction given
by the right-hand rule. The axis of the vortex is parallel to Z and the
B field enters the specimen at the bottom and exits at the top. The
electron beam is parallel to z.

Beleggia’s Fourier-space method [10] throughout, in which all
the functions are Fourier transformed in x and y but not z (or
X and Y but not Z). This allows the Fourier transform of the
vector potential and phase to be expressed by analytical but
very lengthy expressions. These were evaluated symbolically
using Matlab and only the final inverse transforms were
performed numerically. For both coordinate systems, we use
the transform convention that if g(x,y,z) is a function in real
space, its Fourier transform g̃(kx,ky,z) is

g̃(kx,ky,z) =
∫ ∞

−∞

∫ ∞

−∞
g(x,y,z)e−i(kxx+kyy) dxdy. (1)

If the order parameter of the superconducting state is written
in terms of its amplitude f and phase θ as � = f eiθ , the vector
potential inside the superconductor is related to it by the second
Ginzburg-Landau equation [12,13]:

Af 2 + L∇ × (∇ × A) = �0

2π
f 2∇θ, (2)

where L is penetration depth tensor. When X,Y,Z are principal
axes of the superconductor, it has components

L =
⎛⎝�2

X
0 0

0 �2
Y

0
0 0 �2

Z

⎞⎠ . (3)

Following Clem [8], we look for a solution of the form

A = Abulk + Asurface. (4)

Abulk is the solution for a single vortex in an infinitely thick
specimen and consequently has no Z dependence. Asurface is
the general solution with the correct boundary conditions but
with the right-hand side of the Ginzburg-Landau equation set
to zero.

Clem [14] solved for the bulk term in the isotropic case by
using an order parameter for a single vortex of the form

� = f eiθ = ρ√
ρ2 + ξ 2

e−iφ, (5)

where ρ is the radius from the axis of the vortex, φ is the
azimuthal angle, and ξ is the coherence length. Klemm and
Clem [9,11] later extended this solution to the anisotropic case

so that the order parameter becomes

� =
√

X2/�2
Y

+ Y 2/�2
X

X2/�2
Y

+ Y 2/�2
X

+ ξ 2/�2
e−i arg(X/�

Y
+iY/�

X
), (6)

where � = (�
X
�

Y
�

Z
)1/3. This gives the magnetic flux den-

sity as

B = �0

2π�
X
�

Y

K0(R)

(ξ/�)K1(ξ/�)
Ẑ, (7)

where R = √
(X/�

Y
)2 + (Y/�

X
)2 + (ξ/�)2 and K0 and K1

are zero and first-order modified Bessel functions.
Fourier transforming the flux density gives

B̃ = �0K1(Qξ/�)

QK1(ξ/�)
Ẑ, (8)

where Q =
√

1 + k2
X
�2

Y
+ k2

Y
�2

X
. Since B = ∇ × A, in

Fourier space, we have B̃ = (ik
X
ÃY − ik

Y
ÃX)Ẑ = ik⊥ × Ã

where k⊥ = (k
X
,k

Y
,0). Imposing the additional requirement

that A obey the London gauge ∇.A = 0 so that ik
X
ÃX +

ik
Y
ÃY = 0, the vector potential in Fourier space is

Ãbulk = i�0K1(Qξ/�)

k2
⊥QK1(ξ/�)

⎛⎝ k
Y

−k
X

0

⎞⎠ . (9)

We now find the surface term, Asurface. This is the general
solution to the Ginzburg-Landau equation but where the
right-hand side is set equal to zero. We use the approximation
introduced by Clem [8] that the surface term should be only
weakly influenced by the vortex core and so set f 2 = 1 in the
search for a solution. The validity of this simplification was
confirmed by Brandt [15] who modeled the complete vortex
and found that the core only expands by a few percent as it
approaches the surface of the superconductor. The surface term
is thus the solution to

A + L∇ × (∇ × A) = 0. (10)

It should be noted that setting the right-hand side of the
Ginzburg-Landau equation [Eq. (2)] to zero fixes the gauge
of the vector potential and for an anisotropic superconductor,
this is not the London gauge. Thus we cannot say ∇·A = 0
nor make the convenient replacement ∇ × (∇ × A) = −∇2A.
Instead, we must deal with the awkward cross terms arising
from the double curl.

Taking the Fourier transform of Eq. (10) gives

Ã + L(i k⊥ + Ẑ ∂
Z
) × ((i k⊥ + Ẑ ∂

Z
) × Ã) = 0. (11)

We now postulate a solution of the form Ã(k
X
,k

Y
,Z) =

a(k
X
,k

Y
)eβZ and the resulting equation can be written in matrix

form as⎛⎝1 + k2
Y
�2

X
− �2

X
β2 −k

X
k

Y
�2

X
ik

X
�2

X
β

−k
X
k

Y
�2

Y
1 + k2

X
�2

Y
− �2

Y
β2 ik

Y
�2

Y
β

ik
X
�2

Z
β ik

Y
�2

Z
β 1 + �2

Z

(
k2

X
+ k2

Y

)
⎞⎠ a

=
⎛⎝0

0
0

⎞⎠ . (12)
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The above equation gives nonzero solutions for the vector
potential if the matrix cannot be inverted. To achieve this,
values of β must be found to make the determinant zero. At
this point, we introduce the symmetry of the problem otherwise
the answers become very lengthy. For this experiment, the
specimen was tilted about the a axis and thus, X ‖ c, Y ‖ a,
and Z ‖ b, so that �

X
= �c, �

Y
= �ab, and �

Z
= �ab. There

are then four possible values of β:

β1,3 = ±Qa/�ab (13)

and

β2,4 = ±Q/�c (14)

with corresponding eigenvectors

a1,3 =
⎛⎝ 0

±iQa/(k
Y
�ab)

1

⎞⎠ (15)

and

a2,4 =

⎛⎜⎝±i�c

(
1 + k2

X
�2

ab

)/(
�2

abkX
Q

)
±i�ckY

/Q

1

⎞⎟⎠ , (16)

where Qa =
√

1 + (k2
X

+ k2
Y
)�2

ab and Q =√
1 + k2

X
�ab + k2

Y
�c . The complete vector potential

inside the superconductor is then

Ãinside = Ãbulk +
4∑

n=1

cnane
βnz, (17)

where c1–c4 need to be determined by the boundary conditions.
This leaves the vector potential outside the superconductor

to be determined. Maxwell’s third equation gives ∇ × B = 0
as there are no electrical currents outside the superconductor
so the vector potential obeys ∇ × (∇ × A) = 0. This time, the
London gauge, ∇·A = 0, may safely be invoked to give

∇2Aoutside = 0 (18)

or, in Fourier space,

−k2
⊥Ã + ∂2Ã

∂Z2
= 0. (19)

The solution to this is

Ãtop =
⎛⎝ c5

c6

i(c5kX
+ c6kY

)/k⊥

⎞⎠ e−k⊥Z, (20)

Ãbottom =
⎛⎝ c7

c8

−i(c7kX
+ c8kY

)/k⊥

⎞⎠ ek⊥Z, (21)

where the Z components are determined by the London gauge.
We can now simplify the equations as symmetry requires
that A

X,Y
(−Z) = A

X,Y
(Z) and A

Z
(−Z) = −A

Z
(Z). This gives

c1 = −c3, c2 = −c4, c5 = c7, and c6 = c8.

Summarizing, so far, the vector potential inside the super-
conductor is

Ãinside = Ãbulk + 2c1

⎛⎝a1,X
cosh(β1Z)

a1,Y
cosh(β1Z)

a1,Z
sinh(β1Z)

⎞⎠
+ 2c2

⎛⎝a2,X
cosh(β2Z)

a2,Y
cosh(β2Z)

a2,Z
sinh(β2Z)

⎞⎠ , (22)

and above and below the superconductor, the vector potential
is

Ãabove,below =
⎛⎝ c5

c6

±i(c5kX
+ c6kY

)/k⊥

⎞⎠ e∓k⊥Z. (23)

To fix the values of c1, c2, c5, and c6, we invoke the
following boundary conditions. (1) In order to calculate the
phase shift from the vector potential, the X and Y components
of the vector potential must change continuously across the
boundary between the superconductor and vacuum at Z =
±d. (2) The in-plane flux density B‖ must be continuous
across the boundaries at Z = ±d as there are no currents
confined to the surface of the superconductor. There is also the
requirement that the normal component of the flux density B⊥
be continuous but this arises from Maxwell’s third equation,
∇ · B = 0, and by using a vector potential, it is automatically
satisfied.

The condition (1) that the in-plane vector potential is
continuous at Z = ±d gives two equations (one for each
component):

Ãbulk,X
+ 2c1a1,X

cosh(β1d) + 2c2a2,X
cosh(β2d) = c5e

−k⊥d ,

(24)

Ãbulk,Y
+ 2c1a1,Y

cosh(β1d) + 2c2a2,Y
cosh(β2d) = c6e

−k⊥d .

(25)

Calculating the flux density via B = ∇ × A or, in Fourier
space, B̃ = (ik⊥ + ẑ∂z) × Ã and matching its in-plane com-
ponents at the interface gives two more:

(−(k
Y
/k⊥)(c5kX

+ c6kY
) + c6k⊥)e−k⊥d

= 2c1D1 sinh(β1d) + 2c2D2 sinh(β2d), (26)

(−c5k⊥ + (k
X
/k⊥)(c5kX

+ c6kY
))e−k⊥d

= 2c1D3 sinh(β1d) + 2c2D4 sinh(β2d), (27)

where D1 = ik
Y
a1,Z

− β1a1,Y
, D2 = ik

Y
a2,Z

− β2a2,Y
, D3 =

β1a1,X
− ik

X
a1,Z

, and D4 = β2a2,X
− ik

X
a2,Z

.
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Writing these four equations in matrix form gives⎛⎜⎜⎜⎝
2D1 sinh(β1d) 2D2 sinh(β2d)

k
X

k
Y

k⊥
e−k⊥d

( k2
Y

k⊥
− k⊥

)
e−k⊥d

2D3 sinh(β1d) 2D4 sinh(β2d) −( k2
X

k⊥
− k⊥

)
e−k⊥d − k

X
k
Y

k⊥
e−k⊥d

2a1,x cosh(β1d) 2a2,x cosh(β2d) −e−k⊥d 0
2a1,y cosh(β1d) 2a2,y cosh(β2d) 0 −e−k⊥d

⎞⎟⎟⎟⎠
⎛⎜⎝c1

c2

c5

c6

⎞⎟⎠ =

⎛⎜⎜⎝
0
0

−Ãbulk,X

−Ãbulk,Y

⎞⎟⎟⎠ . (28)

The coefficients c1, c2, c5, c6 can then be found by inverting the
matrix, and then after substituting the answers into Eqs. (22)
and (23), the vector potential is fully determined. It should
be noted that although we use Klemm and Clem’s solution
for Abulk, Eq. (28) shows that our method has the convenient
feature that any model for Abulk could be used with equal
facility.

C. Phase shift

The magnetic contribution to the phase shift suffered by the
electron beam after passing through a specimen is related to
the vector potential via the Aharanov-Bohm expression:

φ(x,y) = −2πe

h

∫ ∞

−∞
A(x,y,z) · dl, (29)

where dl is an increment along the trajectory of the electrons
shown in Fig. 3. If the unit vectors in x, y, and z of the
microscope coordinate system are denoted i, j, and k and those
in X, Y , and Z of the specimen coordinate system are denoted
I, J, and K, the two sets of unit vectors are related via

I = i cos α + k sin α, (30)

J = −j, (31)

K = i sin α − k cos α. (32)

If the electron passes through the specimen at position (X,Y,0)
and if for the preceding part of its journey we label the height

above the specimen in the Z direction w (see Fig. 3), its
position at any point in its trajectory is given by

l = (X − w tan α)I + YJ + wK. (33)

By differentiating the above equation, an increment in its
trajectory dl can be related to an increment in w via

dl = (− tan α I + K)dw. (34)

The phase shift written in terms of the specimen coordinates
is thus

φ(X,Y ) = −2πe

h

∫ ∞

−∞
A(X − w tan α,Y,w)

·
⎛⎝− tan α

0
1

⎞⎠ dw. (35)

In the previous section, the vector potential was calculated
in Fourier space. This is related to the vector potential in
real-space via the inverse Fourier transform

A(X,Y,Z)

= 1

4π2

∫ ∞

−∞

∫ ∞

−∞
Ã(k

X
,k

Y
,Z)eik⊥.R dk

X
dk

Y
, (36)

where R = (X,Y,Z). Thus it follows that

A(X − w tan α,Y,Z)

= 1

4π2

∫∫
Ã(k

X
,k

Y
,Z)eik⊥.Re−ik

X
w tan α dk

X
dk

Y
. (37)

So the phase shift is

φ(X,Y ) = −2πe

h

∫ ∞

−∞

(
1

4π2

∫∫
Ã(k

X
,k

Y
,w)eik⊥.Re−ik

X
w tan α dk

X
dk

Y

)
·
⎛⎝−tanα

0
1

⎞⎠ dw. (38)

It can be seen from Fig. 3 that if an electron passes through a point (X,Y,0) on the specimen, it passes through a point (x,y,0)
in the xy plane where x = X cos α and y = −Y . The phase shift in the xy plane (which is equivalent to the plane in which the
image is taken) is now found by making this substitution:

φ(x,y) = −2πe

h

∫ ∞

−∞

(
1

4π2

∫∫
Ã(k

X
,k

Y
,w)eik

X
x/ cos αe−ik

Y
ye−ik

X
w tan α dk

X
dk

Y

)
·
⎛⎝−tanα

0
1

⎞⎠ dw. (39)

Now, let kx = k
X
/ cos α and ky = −k

Y
:

φ(x,y) = 2πe

h

∫ ∞

−∞

(
1

4π2

∫∫
Ã(kx cos α,−ky,w)eikxxeikyye−ikxw sin α cos α dkx dky

)
·
⎛⎝−tanα

0
1

⎞⎠ dw. (40)
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Changing the order of integration gives

φ(x,y) = 2πe cos α

h

1

4π2

∫∫
eik⊥.r

(∫ ∞

−∞
Ã(kx cos α,−ky,w)e−ikxw sin α dw

)
dkx dky ·

⎛⎝− tan α

0
1

⎞⎠ , (41)

or representing an inverse Fourier transform as IFT and using the flux quantum �0, we have

φ(x,y) = IFT

⎡⎣ π

�0

⎛⎝−sinα

0
cos α

⎞⎠ ·
∫ ∞

−∞
Ã(kx cos α,−ky,w)e−ikxw sin α dw

⎤⎦ . (42)

The integral over w is straightforward as it only involves
exponential functions but it is very lengthy so it and the scalar
product were performed symbolically using MATLAB. Only
the final inverse Fourier transform, which gives the phase, was
evaluated numerically.

A method to check the correctness of the solution is to
plot the phase shift as a contour map for α = 90◦. This gives
the B field projected through the thickness of the specimen
and is shown in Fig. 4. It can be seen that the correct
boundary conditions are fulfilled: the field lines spread as they
approach the specimen surface from the interior, and outside
the specimen they are straight so that the field resembles that
from a monopole if viewed far from the vortex. The figure
shows that the effect of increasing the coherence length ξV is
to make the field less intense near the center of the vortex as
expected.

D. Image simulation

Once the phase shift φ(x,y) has been calculated, the
wave function of the electron beam is ψ0(x,y) = eiφ and
the intensity of the in-focus bright-field image is I0(x,y) =
|ψ0(x,y)|2. It is immediately clear that this gives 1 and an
in-focus image is therefore featureless. In order to visualize
flux vortices, out-of-focus images must be taken. Taking an
out-of-focus image is equivalent to propagating the wave
function through free space by a distance �f , known as the
defocus. This is done via the Fresnel-Kirchoff integral [7] so
that the defocused wave function ψ�f (x,y) is related to the
in-focus wave function via

ψ�f (x,y) = 1

λ�f

∫∫
ψ0(x ′,y ′)

× e
iπ

λ�f
((x−x ′)2+(y−y ′)2)

dx ′dy ′, (43)

x

X

z

α

w

Z Electron
trajectory

X-wtanα
(X,Y,0)

l

FIG. 3. The relationship between the coordinates X,Y,Z, refer-
ring to the specimen (shown by the grey rectangle) and the microscope
coordinates x,y,z.

where λ is the electron wavelength. This is a convolution and
so is more conveniently evaluated as a multiplication in Fourier
space via

ψ̃�f = ψ̃0e
−iλ�f k2/4π . (44)

After inverse transforming, the intensity in the out-of-focus
image is given by I�f = |ψ�f |2.

III. EXPERIMENTAL METHOD

MgB2 single crystals were synthesized by the peritectic
decomposition of MgNB9 and their quality and bulk properties
have been well characterized by a variety of experimental
techniques [16–18]. The samples were prepared for electron
microscopy at the Technical University of Denmark (DTU)
using a Helios Nanolab focused ion beam microscope (FIB).
This is a dual-beam instrument in which a beam of gallium ions
is used to mill the specimen whilst secondary electrons emitted
by the specimen are used to produce an image, however, an
electron beam can also be used to illuminate the specimen in
order to take images without damaging the specimen.

The MgB2 single crystals were about 1 × 1 mm2 in the
ab plane and about 100-μm thick in the c direction. The
in situ lift-out technique was used to prepare the sample for
electron microscopy. First, the FIB was used to deposit a 3-μm
thick, 30 × 5 μm2 rectangle of platinum onto the ab surface to
protect the sample beneath from ion damage. Trenches were
then milled to a depth of 20 μm in the c direction around this

 x (nm)

 y
 (n

m
)

(a)

−400 −200 0 200

−400

−200

0

200

 x (nm)

(b)

−400 −200 0 200

−400

−200

0

200

FIG. 4. (Color online) Contours of the phase shift spaced by
0.2 rad illustrating the projected B field from a flux vortex with
�ab = 100 nm and �c = 120 nm and (a) ξV = 1 nm and (b) ξV = 36
nm. The red lines indicate the surface of the specimen, which is
128-nm thick. The a axis is parallel to x with c pointing into the
page.
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to produce a slab standing in the center of a crater. The top
surface of the sample was smooth and this avoided the creation
of the longitudinal thickness undulations reported in our last
paper [4].

A movable needle known as a micromanipulator was
attached to the slab using platinum deposition and the slab
was cut away from the rest of the specimen and extracted
on the end of the micromanipulator. A sample cannot be tilted
more than 25◦ in the electron microscope so to achieve a higher
tilt angle, the FIB was used to cut a slot at 45◦ to the plane of
an “Omniprobe” grid. Further platinum deposition was used
to attach the sample to this slot and the micromanipulator was
then cut away, leaving the sample attached to the grid and
tilted about its a axis by 45◦ with respect to the plane of the
grid. The sample was then thinned to approximately 200 nm
so that it was electron transparent using a 30 kV Ga ion beam.
Finally, the specimen surfaces were polished by a low-energy
(2 kV) Ga ion beam to minimize the damage layer caused by
FIB milling.

Electron microscopy was undertaken at DTU using an FEI
Titan 80-300ST transmission electron microscope operated at
300 kV equipped with a Gatan imaging filter to record images.
Under normal operating conditions, the main objective lens of
the microscope applies a 2-T field to the specimen, so to avoid
this, the microscope was operated in low-magnification mode
with the main objective lens set to a low value and the image
was focused with the diffraction lens. Prior to imaging vortices,
electron diffraction was used to make a fine adjustment of a few
degrees so that the tilt was purely about the a axis. Adjusting
the sample so that it is tilted purely about a can be performed
to better than 0.5◦ but this may alter the overall tilt angle and
we judge that the tilt angle was α = 45 ± 5◦.

The simulations were based on elastic electron scattering so
experimental images were energy filtered so that only electrons
that had lost 0–10 eV on passing through the specimen
contributed and an aperture was used so that only the 000 beam
and the low-angle scattering from the vortices contributed to
the image and the other crystallographic beams were excluded.
The sample was cooled using a Gatan liquid-helium cooled
“IKHCHDT3010-Special” tilt-rotate holder, which has a base
temperature of 10 K.

The defocus and magnification were calibrated by acquiring
images with the same lens settings as the original images from
Agar Scientific’s “S106” calibration specimen, which consists
of lines spaced by 463 nm ruled on an amorphous film. The
defocus was found by taking digital Fourier transforms of the
images acquired from the calibration specimen and measuring
the radii of the dark rings that result from the contrast transfer
function [19].

A thickness map of the specimen was created by dividing
an unfiltered image by an energy-filtered image and taking the
natural logarithm [20], which gives the thickness parallel to the
electron beam, l, as a multiple of the inelastic mean free path
λi . To determine λi , an electron hologram was taken at room
temperature at an edge of the specimen, which gives a phase
shift proportional to the thickness, φ = CEV0l. CE is a constant
that depends only on the microscope voltage and has the value
6.523 × 106 m−1V−1 at 300 kV. The mean inner potential V0

was calculated as V0 = 17.71 V from the theoretical scattering
factors given in Ref. [21], giving λi = 244 ± 5 nm, and the
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FIG. 5. (Color online) (a)–(f) Defocus series showing flux vor-
tices in MgB2 at 10.8 K in a field of 4.8 mT with defoci: (a) �f =
−21.4, (b) −14.3, (c) −7.15, (d) 7.15, (e) 14.3, and (f) 21.4 mm. (g)
Average vortex images at each defocus level. (h) Average simulated
images. (i) Difference images between experiment and simulation. (j)
Line scans across the images from the region shown by the red box
in (h). Black lines show experimental data and red lines the fit.

thickness l was varied from 200–290 nm across the field of
view of Fig. 5. Ideally, the thickness of the whole specimen
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would have been determined by electron holography but the
field of view of the interference region was not sufficiently
large.

A simplex algorithm [22] was used to minimize the reduced
χ2 value between the experimental images and simulations by
fitting the vortex positions and the in-plane rotation angle of
the vortices as well as �ab, �c, and ξV . The reduced χ2 value
is defined as χ2 ≡ (1/N)

∑N
j=1(I experiment

j − I simulation
j )2/σ 2

j ,
where N is the number of pixels used in the fit, Ij is the
intensity of pixel j in the image, and σj is the noise associated
with pixel j . We used σ 2

j = cI simulation
j having previously taken

a series of images of the vacuum with different electron
intensities. A graph of the standard deviation versus the
average intensity showed the noise was shot noise (so that the
square of the noise was proportional to the image intensity)
and gave the proportionality constant c relating the counts
recorded on the detector to the number of electrons received.
Unlike our previous publication where separate fits were made
for each vortex [23], here, all the vortex images were fit
simultaneously with a single value of �ab, �c, and ξV using
the model described in Sec. II.

IV. RESULTS

Figures 5(a)–5(f) show an experimental defocus series
acquired at 10.8 K (the base temperature of our cooling
stage) in a field of 4.8 mT. Sixty-eight images of vortices
that were the least affected by bend contrast were fit with a
single value of �ab, �c, and ξV along with the position of
each vortex and its in-plane rotation angle using a simplex
algorithm [22] to minimize the reduced χ2 value. The
specimen thickness and tilt angle were fixed at their calibrated
values.

Figure 5(g) shows the average of these images at each de-
focus level and (h) shows the average of the fitted simulations.
To demonstrate that the fit is good, (i) shows the difference
between images and simulations and (j) compares line scans
taken across the vortex images.

�ab, �c, and ξV were then altered in turn and the error
bar on each was judged by the point at which the difference
images displayed a discernibly worse fit as shown in Figs. 6(a)–
6(d). This corresponded to an increase in the reduced χ2 of
0.009 and the variation of χ2 as each parameter is varied,
as shown in Fig. 6(e). This yielded �ab = 107 ± 33 nm,
�c = 134 ± 6 nm, and ξV = 31 ± 9 nm. The images are
much more sensitive to the value of �c than to �ab as a
consequence of mounting the sample tilted about the a axis;
had it been tilted about c, the errors on �ab and �c would
be reversed. In a previous paper [4], we obtained the more
precise value of �ab = 107 ± 8 nm using a sample cut in the
ab plane.

To check for amorphous “dead layers” of nonsuperconduct-
ing material on the sample surfaces caused by ion thinning,
the thickness of the crystalline component of the sample was
measured using the convergent beam diffraction technique
described in Ref. [19]. This showed no difference between
the total and crystalline thicknesses to within the experimental
error of ±10 nm. Reducing the calibrated thickness values
by 50 nm to account for the largest conceivable dead layer,
reduced �ab by 13 nm, reduced �c by 27 nm, and increased

200 nm

(a)

(b)

(c)

(d)

Δf (mm): −21.4 −14.3 −7.15 7.15 14.3 21.4

0 20 40 60 80 100 120 140 1600.7

0.705

0.71

0.715

Penetration depth or coherence length (nm)

χ2

(e) Λab
Λc
ξV

FIG. 6. (Color online) Difference images between the average
defocus series and simulated images as each parameter is varied.
(a) Difference images for the best-fit values of the parameters.
(b) Difference images when �ab is varied: the top row shows
difference images when �ab is set at two error bars below the best-fit
value. The next row is for �ab set one error bar below. The next two
rows are for �ab increased one and two error bars above the best-fit
value, respectively. (c) A similar series showing the effect of changing
�c. (d) Series showing the effect of changing ξV . (e) Reduced χ 2

values as �ab, �c, and ξV are adjusted. Acceptable values of χ 2 lie
between the dashed lines.

ξV by 10 nm without altering the quality of the fit. Taking this
into account gives �ab = 100 ± 35 nm, �c = 120 ± 15 nm,
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and ξV = 36 ± 10 nm. The anisotropy ratio in the penetration
depth is then γ� = 1.2 ± 0.4 and the coherence lengths
are ξab = γ 2/3ξV = 41 ± 13 nm and ξc = γ −1/3ξV = 34 ±
10 nm. Alternatively, using the more precise value of �ab =
107 ± 8 nm and �c = 120 ± 15 nm gives γ� = 1.12 ± 0.16,
ξab = 39 ± 11 nm, and ξc = 35 ± 10 nm.

V. DISCUSSION

We now compare the values obtained here with those found
using other techniques. These show that the conditions used
(4.8 mT and 10.8 K) were in the low-field limit (<100 mT
as established by neutron diffraction) but not quite in the low-
temperature limit (<5 K from radio-frequency measurements).
In 2005, Fletcher et al. [24] performed radio-frequency mea-
surements, which gave the change in the low-field penetration
depth with temperature but not absolute values. At 10.8 K, �ab

increased by 12 ± 1 nm, and �c increased by 18 ± 4 nm with
respect to their low-temperature values. Subtracting these from
our most precise measurements of the penetration depths gives
�ab = 95 ± 8 nm and �c = 102 ± 15 nm and the anisotropy
as γ = 1.07 ± 0.18 in the low-field and low-temperature
limit.

The most reliable measurement of the absolute value of the
penetration depth is likely to be from neutron diffraction and
in 2003 Cubitt et al. [3] found that at 2 K, the extrapolated
low-field (<100 mT) value was �ab = 82 ± 2 nm, which is
close to our value. As samples grow as thin plates in the ab

plane, Cubitt et al. did not have direct access to �c and so
acquired diffraction patterns with vortices tilted at 45◦ with
respect to the c axis. It was uncertain whether the formula
used to calculate the anisotropy was valid for a two-band
superconductor [3] but data acquired at 2 K between 0.2–0.5 T
indicated that γ� varied with field and its extrapolated value
at low field was γ� = 1.1 ± 0.3. In 2006, Pal et al. [25] used a
different neutron diffraction technique to give γ� = 1.1 ± 0.1
at 4.9 K. Combining this with the neutron value for �ab

gives �c = 90 ± 8 nm, which agrees with our value of �c =
102 ± 15 nm. The anisotropy we obtain is close to the value
of 1.01 calculated from first principles by Golubov et al. [26]
in the clean limit, but in common with Fletcher et al. [24],
we find penetration depths approximately twice as large as
predicted.

Cubitt et al. interpreted their data assuming that the
coherence length did not vary with field. If it did, the value
they obtained, ξab = 8 ± 1 nm, would apply only at high field
(>0.8 T). This is close to the value of 10 nm found from the
upper critical field [27].

Eskildsen et al. [28] measured the coherence length in 2002
using scanning tunneling microscopy (STM) to measure the
width of vortex cores, scanning the ab plane with tunneling
in c. As the σ carriers are confined to the ab planes, the
tunnelling current came almost exclusively from the π band
giving ξπ = 38.8 ± 0.7 nm at 0.32 K in a field of 50 mT
(after adjusting for their slightly different model for the
core). This agrees with our value of ξc = 35 ± 10 nm at
10.8 K and 4.8 mT and supports this larger value at low
field.

VI. SUMMARY AND CONCLUSIONS

We have described a new method to measure the penetration
depth and coherence length of a superconductor in all direc-
tions at low applied magnetic field using transmission electron
microscopy. The measurement does not need large-scale
facilities and required one day to thin and mount the sample and
another day to take the images required. The experiment was
performed on a very small sample: 30 × 15 μm2 and 200-nm
thick so this method could prove useful for superconductors
where only very small single crystals are available, as is the
case for some iron-based superconductors. It is also useful if
the penetration depth and coherence length vary with field, as
is the case for MgB2, as the measurement is made at very low
fields, which can be difficult to access using other techniques.

For a sample of MgB2 cut in the ac plane and tilted to
45 ± 5◦ about the a axis, we obtained �ab = 100 ± 35 nm
and �c = 120 ± 15 nm at 10.8 K in a field of 4.8 mT. The
large error in �ab is a consequence of tilting the sample about
the crystallographic a axis. Had it been tilted about c instead,
the errors on �ab and �c would be reversed. We obtained
a more precise value of �ab = 107 ± 8 nm at 10.8 K in our
previous paper [4] in which the sample was cut in the ab plane.
Using this value gives �ab = 107 ± 8 nm, �c = 120 ± 15 nm,
ξab = 39 ± 11 nm, and ξc = 35 ± 10 nm, which agree well
with measurements made using other techniques discussed in
Sec. V.

Obtaining the most precise values for the penetration depths
and coherence lengths in all directions using this technique
requires taking images of the vortex lattice with the sample
tilted in more than one direction. It might be thought that the
sample could be mounted in the plane of the support grid and
tilted with the microscope goniometer, first about a and then
about c. However, the design of conventional liquid helium
cooled holders does not allow tilting to an angle higher than
α = 25◦, so the sample was instead mounted to the support
grid at 45 ± 5◦ to give sufficient contrast in the image. Thus, to
investigate a new superconductor and obtain the most accurate
measurement of the penetration depth and coherence length in
all directions, it would be best to cut two samples and mount
both to the grid, one tilted about a and the other tilted about c.

We used the Ginzburg-Landau model for the magnetic
structure of flux vortices but as MgB2 is a two-band supercon-
ductor, the vortices may well have a more complex structure
as described in Ref. [29]. We obtained good fits to the vortex
images and there was no indication of a more complex structure
within the accuracy of the technique but our simulation
scheme would allow any model for the vortex structure to be
used for image simulations provided that the magnetic vector
potential for a vortex in an infinitely thick superconductor is
known.
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