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Chiral superconductivity in nematic states
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We investigate chiral superconductivity which occurs in the electronic nematic state. A vortex state in a
c-axis magnetic field is studied on the basis of the two-component Ginzburg-Landau model for nematic-chiral
superconductors. It is shown that various vortex lattice structures are stabilized by nontrivial cooperation of
nematicity and chirality in superconductors. In particular, the vortex lattice structural transition occurs when a
square anisotropy parameter ν is positive (negative) and the nematicity is induced along the [110] axis ([100]
axis). We discuss nematic-chiral superconductivity in URu2Si2, Sr2RuO4, and UPt3. An experimental test for the
examination of nematic order and chiral superconductivity is proposed.
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I. INTRODUCTION

Recent studies on the strongly correlated electron systems
have explored the chiral superconductivity with broken time-
reversal symmetry. A chiral (px ± ipy)-wave superconductiv-
ity analogous to the 3He A phase has been established in
Sr2RuO4 [1,2], and a chiral (dzx ± idyz)-wave superconduc-
tivity in URu2Si2 has been identified by recent experimental
studies [3–7]. Spontaneous time-reversal symmetry breaking
characteristic of chiral superconductors has been observed in
both compounds [5,6,8,9]. Furthermore, a recent polar Kerr
rotation measurement detected broken time-reversal symmetry
in UPt3 [10], and thus, a chiral superconducting (SC) state
which belongs to the E1u, E2u, or E1g representation is
suggested.

Interestingly, chiral superconductivity coexists with a ne-
matic order in at least some of these superconductors. Nematic
states in itinerant electron systems analogous to classical liquid
crystals have been one of the highlights in recent condensed-
matter physics [11]. A “quantum nematic liquid crystal”
accompanying spontaneous rotation symmetry breaking has
been studied in some strongly correlated electron systems. For
instance, a nematic order arising from the fluctuating stripe
order has been proposed for cuprate superconductors [12],
and a nematic state in a bilayer ruthenate Sr3Ru2O7 has been
investigated extensively [13]. Furthermore, a nematic fluctua-
tion in Fe-based superconductors has been investigated [14,15]
and identified as a possible glue of Cooper pairs [16,17].

There is accumulating evidence for a nematic order in the
so-called hidden-ordered state of URu2Si2 [18]. The magnetic
torque [19], cyclotron resonance [20], NMR [21], and x-ray
scattering [22] measurements uncovered a broken fourfold
rotation symmetry below the hidden-order temperature T <

THO, although another NMR measurement did not detect any
broken symmetry [23]. Since the SC transition is a continuous
second-order phase transition, the nematic order has to coexist
with the superconductivity below Tc. Indeed, a signature of
nematic order has been observed in the SC state [24]. A kink
in the lower critical field Hc1 has been attributed to a second
SC transition due to the broken fourfold rotation symmetry.
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It is also known from early experimental results [25,26]
that the sixfold rotation symmetry in the hexagonal crystal
lattice of UPt3 is broken in the SC state. The splitting of
two transition temperatures and the existence of the A phase
at zero magnetic field has been attributed to the effect of a
nematicity [27,28]. Although the origin of broken rotation
symmetry is still unclear, the antiferromagnetic order [26,29]
may cause the nematicity. What is clear is that a nematicity
plays an essential role in the multiple SC phases in UPt3.
Although a spontaneous nematic order does not occur in
Sr2RuO4, a nematicity is artificially induced by uniaxial
pressure. Indeed, an enhancement of the transition temperature
due to the uniaxial pressure has been observed in Sr2RuO4 [30].
Thus, all the chiral superconductors known up to now coexist
with the nematicity.

It is interesting to study the vortex state of these nematic-
chiral superconductors because of the following two reasons.
First, an effect of nematic order competes with the gradient
mixing in order parameters due to a magnetic field. Al-
though the nematicity favors a nonchiral state, such as the
(px ± py)-wave state or (dzx ± dyz)-wave state, the magnetic
field along the c axis stabilizes the chiral state, such as the
(px ± ipy)-wave state or (dzx ± idyz)-wave state, through the
gradient mixing. Therefore, the order parameter in nematic-
chiral superconductors is nontrivial. Second, various vortex
lattice structures are stabilized in the chiral superconductors
because of the gradient coupling of two-component order
parameters [31–33]. Thus, it is expected that rich vortex lattice
phases appear in nematic-chiral superconductors. From the
other perspective, the vortex state in chiral superconductors is
sensitive to the nematicity in the underlying electronic state.
Therefore, the vortex lattice structure will be a sensitive probe
for detecting the nematic order.

In this paper we investigate the vortex state of nematic-
chiral superconductors on the basis of the Ginzburg-Landau
(GL) theory. Signatures of the nematic order in the chiral SC
state are clarified. The organization of this paper is as follows.
In Sec. II, we introduce the GL model and describe a variational
method by which we study the vortex state. In Sec. III, we
show the phase diagram for the order parameter and vortex
lattice structure. Experimental results on URu2Si2, Sr2RuO4,
and UPt3 are discussed and future experimental studies are
proposed in Sec. IV.
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II. GINZBURG-LANDAU THEORY

A. Ginzburg-Landau model

In this section, we construct a two-component Ginzburg-
Landau (GL) model for chiral superconductors in the nematic
state. Essential variables are two-component order parameters
(η a(r),η b(r)), by which the pairing function is described
as �(r,k) = η a(r)φa(k) + η b(r)φb(k). Here, φa(k) and φb(k)
stand for pairing functions in the momentum space which
belong to a two-dimensional representation of the crystal
point group [34]. For instance, the chiral (px ± ipy)-wave SC
state in Sr2RuO4 belongs to the Eu representation of the D4h

point group [35], while the chiral (dzx ± idyz)-wave state in
URu2Si2 belongs to the Eg representation. The chiral f -wave
superconductivity, which belongs to the E2u representation of
the D6h point group, has been suggested for a representative
multicomponent superconductor UPt3 [27]. On the other
hand, a recent thermal conductivity measurement indicated
the E1u representation [36]. All of these chiral SC states are
represented by two-component order parameters (η a(r),η b(r))
as above, although the pairing functions φa(k) and φb(k)
depend on materials.

First, we discuss a GL model in the absence of the
nematicity. Assuming a weak nematicity, we later add a
quadratic symmetry-breaking term. The symmetric part of the
GL free-energy density has been obtained as

F0 = α(|η a|2 + |η b|2) + β1

2
(|η a|2 + |η b|2)2

+ β2

2
(η aη

∗
b − c.c.)2 + β3|η a|2|η b|2

+ κ1(|D′
xη a|2 + |D′

yη b|2)

+ κ2(|D′
xη b|2 + |D′

yη a|2)

+ κ3[(D′
xη a)(D′

yη b)∗ + c.c.]

+ κ4[(D′
xη b)(D′

yη a)∗ + c.c.] (1)

for chiral superconductors in the type-II limit [34]. Following
the conventional notation, we denote α = α0(T/T 0

c − 1), with
T 0

c being the transition temperature at zero magnetic field, and
covariant derivatives D′

j = −i∂j + (2π/�0)Aj , with �0 =
hc/2|e|. We omit gradient terms containing z derivatives
because we focus on the vortex state in magnetic fields applied
along the c axis.

In the weak-coupling BCS theory, parameters are given by
the following relations: β2/β1 = 〈φ2

a φ
2
b〉FS / 〈φ4

a 〉FS, β3/β1 =
3β2/β1 − 1, κ2/κ1 = 〈φ2

a v
2
y〉FS

/ 〈φ2
a v

2
x〉FS, and κ3/κ1 =

κ4/κ1 = 〈φaφbvxvy〉FS / 〈φ2
a v

2
x〉FS, where vx and vy are Fermi

velocities in the ab plane and brackets 〈· · ·〉FS denote an
average over the Fermi surface. Despite three independent
parameters, β2/β1, κ2/κ1, and κ3/κ1, a single-parameter
description of the GL model has been adopted in studies of
chiral (px ± ipy)-wave superconductivity [31–33]. As shown
by Agterberg [31,32], the coupling constants are represented
by a single parameter ν as [37]

β2/β1 = κ2/κ1 = κ3/κ1 = (1 + ν)/(3 − ν) (2)

when we assume pairing functions (φa(k), φb(k)) =
(vx(k), vy(k)) (Agterberg model). Adopting similar

pairing functions for the chiral (dzx ± idyz)-wave SC
state, (φa(k), φb(k)) = (vx(k)f (kz), vy(k)f (kz)), with f (kz)
being an odd function (extended Agterberg model), we
approximately obtain parameters shown in Eq. (2). Strictly
speaking, the single-parameter description breaks down
since β2/β1 �= κ2/κ1 = κ3/κ1. However, the deviation is
negligible, β2/β1 − κ2/κ1 � 1, for a smooth function f (kz).
Thus, the single-parameter description is also applicable
to the chiral (dzx ± idyz)-wave superconductors. In crystals
satisfying the D4h point group, the parameter ν indicates
the square anisotropy in the Fermi surface because ν = 0
for the cylindrical or spherical Fermi surface, while ν �= 0
otherwise. On the other hand, the chiral E1u state in
the D6h point-group symmetry is similarly described as
(φa(k), φb(k)) = (vx(k)f (kz), vy(k)f (kz)), with f (kz) being
an even function. Then, we obtain β2/β1 = κ2/κ1 = κ3/κ1 =
1/3, and thus, ν = 0 in Eq. (2) irrespective of the Fermi
surface [38]. Thus, we can rely on the single-parameter
description of the GL model for these chiral p-wave, d-wave,
and f -wave superconductivities when the Fermi velocity and
pairing functions have a smooth momentum dependence.
Adopting the single-parameter description, we investigate
the vortex state in chiral superconductors. On the other hand,
Eq. (2) seriously breaks down in the chiral E2u state in the D6h

point-group symmetry. Thus, the chiral E2u state is beyond
the scope of our study, but we will briefly discuss it in Sec. IV.

We rewrite the GL model using order parameters in the
chirality basis, η1 = γ (η a − iη b)/

√
2 and η2 = γ (η a +

iη b)/
√

2, with γ =
√

β̃1/α0 and β̃1 = β1 − β2 + β3/2 =
2β1/(3 − ν). With the two-dimensional coordinate rotated
through an angle θ around the z axis (see Fig. 1), the
dimensionless free-energy density is given by

f0 = T − T 0
c

T 0
c

(|η1|2 + |η2|2) + 1

2
(|η1|4 + |η2|4)

+ 2|η1|2|η2|2 − ν

2
[(η1η

∗
2)2 + c.c.]

+ |Dx̃η1|2 + |Dỹη1|2 + |Dx̃η2|2 + |Dỹη2|2

+ 1

2
{(e2iθ − νe−2iθ )[(Dx̃η1)(Dx̃η2)∗

− (Dỹη1)(Dỹη2)∗] + c.c.} + 1

2

{
i(e2iθ + νe−2iθ )

× [(Dx̃η1)(Dỹη2)∗ + (Dỹη1)(Dx̃η2)∗] + c.c.}, (3)

where the unit of energy, length, and magnetic field are
α2

0/β̃1, ξ = [(κ1 + κ2)/2α0]1/2, and �0/2πξ 2, respectively.

FIG. 1. Primitive vectors of the vortex lattice a1 and a2. Two-
dimensional coordinates (x,y) and (̃x,̃y) and angles θL and θ are
illustrated.
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The covariant derivatives are denoted as Dj̃ = −i∂ j̃ + Aj̃ .
We focus on the magnetic field along the c axis and choose
the vector potential A = −ỹH ẽx. In the reasonable parameter
range |ν| � 1, a chiral SC state with (η1,η2) ∝ (1,0) or
(η1,η2) ∝ (0,1) is stable at zero magnetic field.

A weak nematicity leading to the violation of fourfold or
sixfold rotational symmetry is taken into account by adding
the symmetry-breaking term in the quadratic form

f2h = g(iη1η
∗
2 + c.c.) = gγ 2(η aη

∗
b + c.c.) (4)

to f0. Thus, the total free-energy density is given by

f = f0 + f2h. (5)

The coupling constant g represents a lifting of degeneracy
between two orbital pairing functions φa(k) and φb(k) due to
the nematic order. As a consequence of the symmetry-breaking
term, double SC transitions occur at zero magnetic field. In the
high-temperature phase near the SC transition temperature,
Tc2 < T < Tc, a nonchiral state where (η1,η2) ∝ (1,±i) is
stabilized, while a chiral state is stabilized below Tc2. The
time-reversal symmetry is spontaneously broken in the low-
temperature phase. The double SC transition has been observed
in UPt3 [25–28], and a signature of double SC transition has
been reported in URu2Si2 [24].

In Eq. (4) we assume a nematicity along the [110]
direction to be consistent with experimental observations in
URu2Si2 [19–22]. The nematicity along the [100] axis is also
investigated on the basis of our model. When we change the
coordinate θ → θ + π/4 and take the phase factor (η1,η2) →
(η1e

−iπ/4,η2e
iπ/4), the f0 term is almost invariant except for

the sign reversal ν → −ν. Then, the symmetry-breaking term
changes to

f
′
2h = g(η1η

∗
2 + c.c.) = gγ 2(|η a|2 − |η b|2), (6)

which is nothing but the symmetry-breaking term due to the
nematicity along the [100] axis. A symmetry-breaking term of
this form has been adopted for studies on multiple SC phases
in UPt3 [27,28]. We change the sign of ν instead of considering
the symmetry-breaking term in Eq. (6) for studies of nematicity
along the [100] axis.

B. Variational method

We investigate the order parameters and vortex lattice
structure using the variational method. We assume variational
wave functions of Cooper pairs so that the solution of the
linearized GL equation is reproduced. First, we solve the
linearized GL equation using the Landau-level expansion.
Differentiating the quadratic terms in the f0 term [Eq. (3)] with
respect to η1 and η2, we obtain the linearized GL equation in
the absence of the symmetry-breaking term,

λ

(
η1

η2

)
= 1

l2
c

(
1 + 2�+�− e−2iθ�2

− − νe2iθ�2
+

e2iθ�2
+ − νe−2iθ�2

− 1 + 2�+�−

)

×
(

η1

η2

)
, (7)

where lc = 1/
√

H and �± = −(lc/
√

2)(Dx̃ ± iDỹ). The so-
lution for the minimum eigenvalue λ = λmin is represented

as (
ψ1+(r)
ψ2+(r)

)
=

∑
n�0

(
a4n(θ )ϕ4n(r,ρ,σ )

a4n+2(θ )ϕ4n+2(r,ρ,σ )

)
, (8)

where ϕn(r,ρ,σ ) denotes the nth Landau-level wave func-
tion. The leading term is the lowest Landau level of the
positive chirality component, and thus, (ψ1+(r),ψ2+(r)) �
(a0(θ )ϕ0(r,ρ,σ ),0). We obtain another solution for the pairing
state with a dominantly negative chirality,(

ψ1−(r)
ψ2−(r)

)
=

∑
n�0

(
b4n+2(θ )ϕ4n+2(r,ρ,σ )

b4n(θ )ϕ4n(r,ρ,σ )

)
, (9)

where the leading term is the lowest Landau level
of the negative chirality component, (ψ1−(r),ψ2−(r)) �
(0,b0(θ )ϕ0(r,ρ,σ )). Coefficients an(θ ) and bn(θ ) are numer-
ically determined. We assume variational wave functions
consisting of a linear combination of the two solutions:(

η1(r)
η2(r)

)
= C+

(
ψ1+(r)
ψ2+(r)

)
+ C−

(
ψ1−(r)
ψ2−(r)

)
, (10)

where |C+| (|C−|) represents the weight of Cooper pairs having
dominantly positive (negative) chirality. The variational wave
function is justified near the transition temperature and for a
small symmetry-breaking term g, although the reconstruction
of higher Landau levels affects the vortex lattice structure
at low temperatures [33]. Our main result is concerned with
the vortex lattice structural transition near Tc, and thus, the
variational wave function is appropriate.

In order to study the vortex lattice structure, we adopt a
general form of the nth Landau-level wave functions [39]

ϕn(r,ρ,σ ) = 1√
2nπ1/2n!

∑
m

cme2π i(m−1/2)̃x/a

×Hn

(
ỹ − ym

lc

)
e−(̃y−ym)2/2l2

c , (11)

where cm = eiπm(ρ+1−mρ), ym = lc
√

2πσ (m − 1/2), and
Hn(y) is the Hermit polynomials. The vortex lattice struc-
ture is determined by the variables ρ = (b/a) cos θL and
σ = (b/a) sin θL. Primitive vectors are a1 = a ẽx and a2 =
b(cos θL ẽx + sin θL ẽy) = a(ρ ẽx + σ ẽy) (see Fig. 1). The area
of the unit cell is |a1 × a2| = ab sin θL = 2πl2

c . The rectangu-
lar and centered rectangular lattices are formed for ρ = 0 and
ρ = 1/2, respectively. The square and triangular lattices are
special cases of them; (ρ,σ ) = (0,1) or (ρ,σ ) = (1/2,1/2) in
the square lattice, and (ρ,σ ) = (1/2,

√
3/2) in the triangular

lattice. The angle of a primitive vector a1 from the original x

axis is θ , and it is dealt with as a variational parameter. Thus,
variational parameters for the vortex lattice structure are ρ, σ ,
and θ .

Substituting Eqs. (8)–(11) into Eqs. (3) and (4) and
integrating over the unit cell, we obtain the free-energy density
as

F (C+,C−,ρ,σ,θ ) = 〈f 〉uc = 1

2πl2
c

∫
uc

f (r)d2r. (12)

The brackets 〈· · ·〉uc denote an average over the unit cell. Op-
timizing variational parameters (C+,C−,ρ,σ,θ ) to minimize
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the free-energy density, we determine the order parameters
and vortex lattice structure.

III. CHIRAL SUPERCONDUCTING STATES

A. Vortex lattice in the non-nematic state

In this section, we investigate the vortex state in the absence
of nematicity. Thus, we consider a tetragonal or hexagonal
system and choose the parameter g = 0. The effects of nematic
order on the chiral SC state are studied in the following
sections.

First, we determine the vortex lattice structure near the
upper critical field. Since the symmetry-breaking term f2h is
absent, a solution of the linearized GL equation (η1,η2) =
C+(ψ1+(r),ψ2+(r)) minimizes the free energy near the SC
transition. Thus, C− = 0, and the vortex lattice structure is
determined so as to minimize the Abrikosov parameter βA =
2 〈f4〉uc /(〈|ψ1+|2〉uc + 〈|ψ2+|2〉uc)2, where f4 is the quartic
term in Eq. (3). Figure 2 shows the Abrikosov parameter for
various vortex lattice structures as a function of the anisotropy
parameter ν, and we illustrate the vortex lattice structure which
minimizes the free energy in Fig. 3. It is shown that the
centered rectangular lattice, square lattice, rectangular lattice,
and, again, centered rectangular lattice are stabilized with
increasing |ν|. These results are consistent with previous works
which investigated the vortex lattice structure in the small-|ν|
region [31–33]. Agterberg showed that the square lattice is
stable unless the anisotropy parameter is extraordinary small,
|ν| < 0.0114 [31,32]. The triangular lattice is formed at ν = 0
like in conventional superconductors, and it is deformed with
increasing |ν|. The parameter σ decreases from

√
3/2 to

1/2 when |ν| increases from 0 to 0.0114. The qualitatively
same results have been obtained by Kita using a sophisticated
calculation which takes into account higher Landau levels
and screening current [33]. He also found that the rectangular

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

ν

β A

rectangular lattice

centered rectangular lattice

square lattice

FIG. 2. (Color online) Abrikosov parameter βA for the rectan-
gular lattice (ρ = 0, red solid line) and centered rectangular lattice
(ρ = 1/2, black long-dashed line) as a function of ν. The variational
parameter σ is optimized to minimize βA. The Abrikosov parameter
for the square lattice [(ρ,σ ) = (0,1)] is shown by the green short-
dashed line. The other variational parameter θ is fixed to θ = 0
(θ = π/4) for ν > 0 (ν < 0), for which the Abrikosov parameter
is optimized when |ν| > 0.0114. When |ν| < 0.0114, the optimized
angle is θ = π/4 (θ = 0) for ν > 0 (ν < 0), but the θ dependence of
βA is negligible.

FIG. 3. Schematic of the vortex lattice structure near the upper
critical field. We show the result for ν > 0. The vortex lattice is rotated
π/4 for ν < 0.

lattice is stabilized for a large anisotropy parameter |ν|. Our
calculation reproduces these results and, furthermore, shows
that the centered rectangular lattice and rectangular lattice
are stabilized for 0.27 � |ν| � 0.58 and 0.58 � |ν| � 0.7,
respectively. We do not consider a further large parameter
|ν| > 0.7 since the numerical convergence becomes worse.

Next, we show the phase diagram against magnetic fields
and temperatures (H -T phase diagram) for two anisotropy
parameters, ν = 0.15 and ν = 0.3. For ν = 0.15, the square
vortex lattice is stable near the transition temperature T =
Tc(H ), as illustrated in Fig. 3. Figure 4 shows that the structural
transition occurs at a moderate temperature T = Tc2(H ), and
the rectangular vortex lattice is stabilized below Tc2(H ).
Figure 5 shows the magnetic field dependences of variational
parameters |C±| and the “nematicity of the vortex lattice” b/a

at T/T 0
c = 0.4. It is shown that the emergence of nematicity

b/a − 1 coincides with C−, although C− = 0 and b/a = 1
in the high magnetic field region, H/Hc2(0) > 0.38. Thus,
the structural transition in the vortex lattice accompanies the
mixing of chirality in the order parameter.

On the other hand, the vortex lattice structural transition
does not occur for ν = 0.3. Then, the centered rectangular

FIG. 4. (Color online) Phase diagram of the vortex lattice as
a function of the dimensionless magnetic field H/Hc2(0) and
temperature T/T 0

c for (ν,g) = (0.15,0). The red solid line shows the
SC transition temperature Tc(H ), while the black dashed line shows
the second transition temperature Tc2(H ). The vortex lattice structures
are shown schematically. The phase diagram is independent of the
sign of ν, while the vortex lattice for ν < 0 is rotated π/4 from that
for ν > 0.
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 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
|C

±|
(a) |C+|

|C−|

 0.9
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 1.1

 1.2

 1.3

 1.4

 1.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

H/Hc2(0)

b/
a

(b)

FIG. 5. (Color online) Magnetic field dependence of (a) order
parameters |C±| and (b) a structural parameter b/a (=σ ) at T/T 0

c =
0.4 for (ν,g) = (0.15,0). The other structural parameters are θL =
π/2 (ρ = 0) and θ = 0.

lattice is formed in the whole SC state (Fig. 6). Because of
the orthorhombic symmetry of the vortex lattice, the order
parameter for pairing with dominantly negative chirality is
finite, C− �= 0. However, the positive chirality is favored by
the linear coupling of magnetic field and chirality in Cooper
pairs [31], and therefore, |C+| � |C−|. A similar H -T phase
diagram is obtained for the isotropic case ν = 0. Then, the
triangular vortex lattice is stabilized.

FIG. 6. (Color online) Phase diagram of the vortex lattice for
(ν,g) = (0.3,0). As shown schematically, the centered rectangular
lattice is stabilized in the whole SC state.

B. Vortex lattice in the nematic state (ν > 0)

Now we turn to the main topic of this paper. We study the
vortex state of chiral superconductors which coexist with the
nematic order. The GL model with a finite symmetry-breaking
term (g �= 0) is analyzed. The sign of the coupling constant
g is not important at all, and thus, we assume g > 0. For
g < 0, the vortex lattice rotates π/2. We choose g = 0.05
unless we explicitly state otherwise. The SC double transition
occurs at zero magnetic field, and the splitting of two transition
temperatures is 10% of T 0

c for our choice of the coupling
constant g. This splitting is consistent with the experimental
data indicating a double transition in URu2Si2 [24] and UPt3
[25–28].

In a magnetic field H > 0, the chiral SC state with positive
chirality (η1,η2) ∝ (1,0) is favored by the gradient mixing
in order parameters [31]. Then, the second SC transition is
smeared, and it changes to the chiral-nonchiral crossover (C-
NC crossover in Figs. 7, 11, and 12). We show here that the
vortex lattice structural transition occurs as a result of the C-NC
crossover when the anisotropy parameter is positive, ν > 0.
Owing to the symmetry-breaking term, the phase diagram is
no longer independent of the sign of ν. Thus, we study the
case with ν > 0 in this section, and the case with ν < 0 is
investigated in the next section. The isotropic case, ν = 0, will
be discussed for UPt3 in Sec. IV.

T T

H
H

T

T

T

x

y
a

a

FIG. 7. (Color online) Phase diagram for (ν,g) = (0.15,0.05).
The red solid line shows the SC transition temperature Tc(H ).
The green squares and blue triangles show the critical point
of the vortex lattice structural transition. The black dotted line depicts
the C-NC crossover, which we define by |C−| = 0.7|C+|. Phase I’ is
the nonchiral SC state in which the pairing function is approximately
described as �(k) ∼ φa(k) − φb(k), while phases I, II, and III are the
chiral SC states in which �(k) ∼ φa(k) + iφb(k). The vortex lattice
structures in phases I (I’), II, and III are illustrated on top of the phase
diagram.
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FIG. 8. (Color online) Temperature dependence of (a) order parameters |C±| and structural parameters (b) σ , (c) ρ, and (d) θ at H/Hc2(0) =
0.1 for (ν,g) = (0.15,0.05).

First, we show the phase diagram for ν = 0.15 in Fig. 7.
Indeed, the vortex lattice structural transition occurs, and three
phases, I (I’), II, and III, appear. Although the square or
rectangular lattice is formed in the absence of the nematicity
(see Fig. 4), a centered rectangular lattice is stabilized in phases
I and I’ near Tc. This is intuitively understood as follows.
Although a finite chirality is slightly induced by the gradient
mixing, the order parameter is approximately nonchiral,
(η1,η2) ∝ (1, − i), in the high-temperature region near Tc.
Thus, an elongated triangular vortex lattice is stabilized as in
single-component superconductors. Note that the elongated
triangular lattice is equivalent to the centered rectangular
lattice.

We would like to stress that the symmetry-breaking term
significantly affects the vortex lattice structure even below the
C-NC crossover temperature. We define the C-NC crossover
line dividing phases I and I’ using the variational parameters
as |C−| = 0.7|C+|. We see that the centered rectangular lattice
(which equals the elongated triangular lattice) is stabilized well
below the C-NC crossover temperature. Thus, the vortex lattice
structure in chiral superconductors is sensitive to the nematic
order. This is because of the small stiffness of Abrikosov vortex
lattice and the large coupling of nematicity and chirality in
superconductors.

The vortex lattice structure in phase II is interpreted to
be a distorted rectangular lattice. A nematicity gives rise to
a stress along the [110] axis, and therefore, the rectangular
lattice is deformed to an oblique lattice (ρ �= 0,1/2) in
phase II. In particular, a marked effect of nematicity appears
near the second-order phase transition to phase I, as we show
the temperature dependence of variational parameters in Fig. 8.

The structural parameter is ρ = 1/2 in phase I (centered
rectangular lattice) and decreases to ρ = 0 (rectangular lattice)
with decreasing temperature in phase II. At the same time
the angle of the primitive vector θ rotates from θ = π/4 to
θ ∼ 0. The second-order transition from phase I to phase II
is accompanied by the spontaneous violation of the reflection
symmetry along the [110] axis. Thus, we see marked signatures
of nematic order in the vortex lattice structure in the low-
temperature phase II. We show typical vortex lattice structures
in phases I and II in Figs. 9(a) and 9(b), respectively.

The square vortex lattice is deformed to the centered
rectangular lattice in the high-field phase III owing to the
symmetry-breaking term. Then, θL �= π/2; however, the defor-
mation is negligible, as shown in Fig. 10. The structural phase
transition between phase II and phase III is characterized by
the increase in b/a, as it occurs in the absence of nematicity
(see Fig. 5).

Although the phase transition between phases II and III is
specific for the parameter ν = 0.15, the vortex lattice structural
transition between phases I and II is ubiquitous as it is induced
by the C-NC crossover. Indeed, the latter occurs for a wide
range of the anisotropy parameter ν. For instance, we show
the phase diagram at ν = 0.3 (Fig. 11). It is shown that the
vortex lattice structural transition is induced by the C-NC
crossover. The centered rectangular lattice is stabilized in the
high-temperature phases I and I’, while the oblique lattice is
stabilized in the low-temperature phase II, similar to the case
of ν = 0.15. Although the centered rectangular lattice is stable
in the absence of the nematicity for ν = 0.3 (see Fig. 6), it is
deformed to the oblique lattice because the primitive vectors a1

and a2 are not parallel to the stress along the [110] axis. The
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FIG. 9. (Color online) Vortex lattice structures (a) in phase I and
(b) in phase II for (ν,g) = (0.15,0.05). We choose T/T 0

c = 0.8 and
H/Hc2(0) = 0.1 in (a) and T/T 0

c = 0.5 and H/Hc2(0) = 0.1 in (b).
We show the amplitude of the order parameter |η(r)|, which is
obtained by |η(r)|2 = |η1(r)|2 + |η2(r)|2.

orientation of the vortex lattice is significantly rotated from
θ = π/4 to θ ∼ 0 by decreasing the temperature in phase II.
Interestingly, a structural parameter ρ shows a marked change
from ρ = 0.5 to ρ ∼ −0.4 at the same time.

Our results for ν = 0.15 and ν = 0.3 imply that the angle of
a primitive vector from the x axis θ plays an important role in
the vortex lattice structural transition. The x axis is no longer
a principal axis of the electronic state for g �= 0. Because
the primitive vector should be parallel to the principal axis
in the nonchiral state, we obtain θ = ±π/4 above the C-NC
crossover temperature. The vortex lattice structural transition
is induced by the C-NC crossover when we obtain θ ∼ 0 in the
chiral state. As shown in Fig. 3, this condition is satisfied for
ν > 0.00114 since the vortex lattice structure in the chiral state
is little affected by the symmetry-breaking term. As expected
from this consideration, the vortex lattice structural transition
between phases I and II disappears when ν < −0.00114. Then,
θ = ±π/4 in the whole SC state, as we will show in the next
section.

C. Vortex lattice in the nematic state (ν < 0)

As expected from the above discussions, Fig. 12 shows the
H -T phase diagram without any structural phase transition
for ν = −0.15 and ν = −0.3. The C-NC crossover occurs,
as indicated by the dotted lines. However, the vortex lattice

structural transition does not occur because the stress due to
the nematicity is applied parallel to a primitive vector of the
vortex lattice (θ = π/4). The rectangular lattice and centered
rectangular lattice are stabilized in the whole SC state for ν =
−0.15 and for ν = −0.3, respectively. The effect of nematicity
is only the increase in the parameter σ . The sign of the coupling
constant g determines the orientation of the elongated vortex
lattice. When we choose σ � 1 for ρ = 0 and σ � 1/2 for ρ =
1/2, the orientation is θ = π/4 for g > 0, while θ = −π/4
for g < 0. For ν = −0.15, the square-rectangular structural
transition occurs at g = 0, but it is smeared by the external
nematic order. The square lattice is deformed to the rectangular
lattice owing to nematic order.

IV. SUMMARY AND DISCUSSION

In this paper we studied chiral SC states coexisting with
a nematic order. The phase diagram of the order parameter
and vortex lattice structure has been clarified on the basis of
the two-component GL model. It is shown that the vortex
lattice structure is sensitive to the chirality in Cooper pairs
as well as to the nematicity in the electronic state. Because
the chirality and nematicity cooperate in a nontrivial way,
various vortex lattice structures are stabilized. In particular, the
structural phase transition occurs in the vortex lattice when the
nematicity is along the [110] axis and the anisotropy parameter
is positive ν > 0 or when the nematicity is along the [100]
axis and ν < 0 [37]. Otherwise, the vortex lattice structural
transition is not induced by the nematic order, although the
structural parameters are affected by the C-NC crossover in the
pairing function. The structural phase transition and structural
change discussed in this work are distinguished from those
due to the anisotropy in the Fermi surface and SC gap [40,41],
gradient mixing in several irreducible representations [42], and
the Pauli depairing effect [43,44]. The former occurs in the
low-magnetic-field region near Tc, although the latter appears
in the high-magnetic-field region.

Finally, we discuss the vortex state in the chiral supercon-
ductors on the basis of our results. Our study has been mainly
focused on a heavy-fermion superconductor URu2Si2 [18] in
which nematic order has attracted much attention recently. The
nematicity observed by several experiments [19–22] is along
the [110] direction. When we assume that two heavy Fermi
surfaces around the M point cause the superconductivity,
the anisotropy parameter is estimated to be ν = 0.41 [45]
on the basis of the band structure calculation [46] and the
Shubnikov–de Haas measurement [47]. Thus, it is reasonable
to assume a positive ν, although the anisotropy parameter
should be affected by the multiband structure. According to
our results, it is expected that the structural phase transition
will occur in the vortex state under the c-axis magnetic
field. If it were observed by a small-angle neutron scattering
(SANS) measurement [48], for instance, clear evidence for
both nematic order and chiral superconductivity would be
obtained.

SANS measurements reported a square vortex lattice in
Sr2RuO4 [49]. The orientation is θ = π/4, implying a small
negative parameter ν < 0, and therefore, a nematicity along the
[100] axis may induce the vortex lattice structural transition.
Then, the symmetry-breaking term deforms the square lattice
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FIG. 10. (Color online) Magnetic field dependence of (a) order parameters |C±| and structural parameters (b) b/a, (c) θL, and (d) θ at
T/T 0

c = 0.1 for (ν,g) = (0.15,0.05). We show b/a and θL instead of σ and ρ.

to the centered rectangular lattice at low temperatures. On
the other hand, the nonchiral SC state with another centered
rectangular vortex lattice is stabilized near Tc. The two vortex
lattices have the same symmetry; however, the structural
parameters are quite different. For instance, our calculation for
ν = −0.05 and g = 0.01 shows that the structural parameter
is 2σ ∼ 1.1 in the chiral SC state but 2σ ∼ 3.0 in the nonchiral
SC state. Thus, the vortex lattice structural change accompany-
ing the C-NC crossover may be caused by the uniaxial pressure
along the [100] axis. Interestingly, a significant enhancement
of the transition temperature due to the uniaxial pressure
has been observed [30]. However, we should discuss the
spin degree of freedom in Cooper pairs because Sr2RuO4 is

FIG. 11. (Color online) Phase diagram for (ν,g) = (0.3,0.05).
The order parameter and vortex lattice structures in phases I, I’,
and II are similar to those in Fig. 7.

considered to be a spin-triplet superconductor [1,2]. When the
spin-orbit coupling in Cooper pairs is small enough to allow
the rotation of the d vector, a helical SC state, such as d =
pxx̂ − pyŷ, is stabilized in the c-axis magnetic field [50]. This
state is beyond the scope of this paper, but it is expected that
the nematicity affects the vortex lattice structure through the
crossover in the pairing function. For instance, the nematicity
along the [100] axis stabilizes a planar state d = pxx̂ or
d = pyŷ near Tc, while the helical state is robust at low
temperatures.

The symmetry of the pairing state in UPt3 is controversial
despite intensive studies for more than three decades. A recent
polar Kerr rotation measurement found a spontaneous time-
reversal symmetry breaking, which implies a chiral SC state
d(k) = [φa(k) ± iφb(k)]ĉ [10], consistent with the suppression
of the upper critical field along the c axis [27]. On the other
hand, NMR data indicate a rotation of the d vector [51] and
implies a helical SC state, such as d(k) = φa(k)b̂ + φb(k)ĉ.
As for the orbital symmetry, the E2u and E1g representations
have been considered as predominant candidates [27,28]. On
the other hand, a recent thermal conductivity measurement
is consistent with the E1u orbital symmetry with a hybrid
nodal structure [36]. Among these SC states, the chiral E1u

state and chiral E1g state are described by the extended
Agterberg model, and then, the square anisotropy parameter
has to be zero, ν = 0, owing to the hexagonal symmetry
in the crystal lattice. Unfortunately, this model seems to be
incompatible with several experimental results. First, the SC
double transition is smeared in the c-axis magnetic field,
although it has been observed in experiments [25–28]. Second,
the vortex lattice structure significantly changes through
the C-NC crossover, although only a realignment without
any structural deformation has been observed by a SANS
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FIG. 12. (Color online) Phase diagram for ν < 0. (a) The rectangular lattice (ρ = 0,θ = π/4) is stable in the whole region of the SC state
for (ν,g) = (−0.15,0.05), while (b) the centered rectangular lattice is stable for (ν,g) = (−0.3,0.05).

measurement [52]. In order to avoid these discrepancies, we
have to assume parameters in the GL model without relying
on the extended Agterberg model. The parameters allowed by
symmetry [38], κ2 � κ1 and κ3 = κ4 � 0, may be compatible
with those experiments and may be consistent with the nearly
isotropic upper critical field in the basal plane [36]. Although
these parameters are naturally obtained by the weak-coupling
theory for the E2u state [27], a fine-tuning of pairing functions
and Fermi surfaces is required for the chiral E1u and E1g

states.
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