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Pair breaking due to orbital magnetism in iron-based superconductors
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We consider superconductivity in the presence of impurities in a two-band model suited for the description
of iron-based superconductors. We analyze the effect of interband scattering processes on superconductivity,
allowing for orbital, i.e., nonspin-magnetic but time-reversal symmetry-breaking impurities. Pair breaking in
such systems is described by a nontrivial phase in an interband-scattering matrix element. We find that the
transition temperature of conventional superconductors can be suppressed due to interband scattering, whereas
unconventional superconductors may be unaffected. We also discuss the stability of density wave phases in the
presence of impurities. As an example, we consider impurities associated with imaginary charge density waves
that are of interest for iron-based superconductors.
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I. INTRODUCTION

Conventional superconductivity is astonishingly robust
against impurity scattering. The transition temperature Tc

remains approximately constant in the presence of nonmag-
netic impurities as follows from the Anderson theorem [1–3].
The physical reason for this protection against nonmagnetic
impurities is visualized in Fig. 1(a). Superconductivity occurs
as a consequence of an effective attraction between electrons
which is mediated by the distorted lattice, and this coupling
is largest for electrons on time-reversed paths. In a disordered
material, the trajectories are changed due to scattering, but the
coupling remains unaffected as long as the disorder strength
is weak. Magnetic impurities, on the other hand, are pair
breaking for conventional superconductors and suppress the
transition temperature [4] that vanishes at a critical value of the
scattering rate. Unconventional superconductors, in contrast,
are already sensitive to nonmagnetic impurities [5,6], and
again, superconductivity vanishes at a critical scattering rate.
The suppression of Tc with increasing scattering rate due to
nonmagnetic impurities is therefore considered as a signature
of unconventional superconductivity.

In iron-based superconductors there is strong evidence
supporting an s+− scenario for superconductivity in these ma-
terials, where the pairing gap changes sign between different
bands without breaking a point group symmetry. However, the
pairing state is still under debate [7,8], and in particular the
relatively weak suppression of the superconducting transition
temperature with increasing concentration of nonmagnetic
impurities has been used as an argument in favor of a
conventional pairing state [9,10]. One explanation for this
behavior is that intraband and interband scattering are not
equally strong in iron-based superconductors, and transport
properties are mainly determined by intraband scattering
effects, whereas the suppression of Tc is due to interband
scattering [11]. Moreover, in this paper, we show that the
discrimination of s++ and s+− pairing state based on their
response to the presence of apparently nonmagnetic impurities
is not always possible.

The iron-based systems are multiband superconductors in
which electrons from different orbitals contribute to super-
conductivity and/or magnetic order. Furthermore, competing

states of order are a characteristic of these materials. Model
calculations [12–14] show that imaginary charge density
waves are expected to compete with antiferromagnetism
and superconductivity in these materials. Such imaginary
charge density wave order could, similar to spin density
wave order [15–17], nucleate around nonmagnetic impurities
which then break time-reversal symmetry and can thereby be
associated with (orbital) magnetism. Thus, the detailed impact
of orbital-magnetic impurities on pairing in these multiband
systems is an interesting open topic.

In this paper we consider a two-band model for iron-
based superconductors with impurities causing intraband and
interband scattering processes. In contrast to previous stud-
ies [10,18–23] which all concentrated on either nonmagnetic
or spin-magnetic impurities in iron-based superconductors,
we investigate how the interplay between pairing and orbital
magnetism takes place. In particular, we find that impurities
associated with orbital magnetism can lead to the suppression
of Tc in conventional superconductors which is visualized in
Fig. 1(b). Scattering on such impurities involves a relative
phase of π , and therefore the interaction matrix element
between the electrons accumulates a random phase factor
(which is a multiple of π ) that destroys superconductivity if
the mean-free path becomes smaller than the superconducting
coherence length. In addition, we will see that the transition
temperature in unconventional superconductors may remain
unaffected, i.e., there exists an Anderson theorem for the
s+− pairing state which is protected against time-reversal
symmetry-breaking interband scattering. This protection is
a result of an additional phase of π associated with the
coupling matrix element which results in a total phase of
2π associated with every interband scattering process which
is of no importance. This is sketched in Fig. 1(c). As we
will show, these effects can be due to impurities that nucleate
local orbital-magnetic states. Therefore, it is important for our
theory that we allow for spatially extended impurity potentials.

II. DISORDERED TWO-BAND MODEL

We consider a two-band superconductor with impuri-
ties, described by the Hamiltonian Ĥ = Ĥ0 + Ĥint + Ĥdis.
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FIG. 1. (Color online) Visualization of (a) the Anderson theorem
in single-band s-wave superconductors, (b) pair breaking as a
consequence of interband scattering due to time-reversal symmetry-
breaking impurities in a two-band s++ superconductor, and (c) an
analog of the Anderson theorem for the two-band s+− superconductor.
The broken lines correspond to the trajectories of electrons scattered
by impurities, where different colors indicate electrons carrying
different band indices.

The noninteracting part is given by

Ĥ0 =
∑
k,σ

∑
α

ξα,kψ̂
†
α,k,σ ψ̂α,k,σ , (1)

where α labels the two bands, σ denotes spin, and ξα,k =
εα,k − μ is the dispersion of band α, measured from the
chemical potential. We assume that the quasiparticles in band
1 have small momenta near the center of the Brillouin zone
(� point), while the momenta of quasiparticles in band 2 are
close to Q, where 2Q is a reciprocal primitive vector, as it
is suitable for iron-based superconductors. The concrete form
of the dispersion relation is not important for our calculations
as long as ξα,k = ξα,−k holds. For simplicity we assume the
density of states near the Fermi level to have the same value
ρF in both bands. The generalization to different densities
of states in the two bands is straightforward. Note that, as
a consequence of assuming a constant density of states at
the Fermi level, our results are independent of the shape of
the two Fermi surfaces. In particular, the possibility of an
elliptical electron Fermi surface, which is important in the
context of magnetic order in iron-based superconductors, is
thereby included in our considerations.

Furthermore, we consider superconductivity (SC) due to
interband pairing, described in a BCS-like model,

Ĥint =
∑
k,k′

∑
α

V αᾱ
k,k′ψ̂

†
α,k,↑ψ̂

†
α,−k,↓ψ̂ᾱ,−k′,↓ψ̂ᾱ,k′,↑,

(2)

V αᾱ
k,k′ =

{
V for |ξα,k|,|ξᾱ,k′ | < 
,

0 otherwise,

where ᾱ labels the band other than α.
The most generic Hamiltonian of disorder in such a system

reads

Ĥdis =
∑
α,β

∑
s,s ′

ψ̂†
α(Rs)Wαβ(Rs ,Rs ′ )ψ̂β(Rs ′ ), (3)

where the indices s and s ′ label lattice sites Rs and Rs ′ . Here
the ψ̂α(Rs) and Wαβ(Rs ,Rs ′ ) are vectors and matrices in spin
space, respectively, i.e., ψ̂α(Rs) = (ψ̂α,↑(Rs), ψ̂α,↓(Rs))T ,
where by ψ̂ (†)

α,σ (R) we denote field operators in position space
which have to be understood as convolution with momenta in
band α only.

This disorder is typically represented by identical impurities
with random locations Ri ,

Ĥdis =
N∑

i=1

ÛRi
,

(4)
ÛRi

=
∑
α,β

∑
s,s ′

ψ̂†
α(Rs + Ri)J

αβ

ss ′ ψ̂β(Rs ′ + Ri).

These two formulations of the impurity Hamiltonian, Eqs. (3)
and (4), are connected by

Wαβ(Rs ,Rs ′ ) =
∑

i

J
αβ

s−i,s ′−i . (5)

The matrix element J
αβ

ss ′ can account for intraband (α = β) as
well as interband (α �= β) scattering processes. In general, J αβ

ss ′
are the matrix elements of a nondiagonal matrix in position
space, allowing us to describe spatially extended scattering
centers, which is essential, e.g., to account for orbital-magnetic
impurities.

At the same time, in what follows, we assume for simplicity
that the disorder is short correlated on the scale k−1

F , where kF

is the largest of the Fermi wave vectors in the two bands.

III. SYMMETRY CONSIDERATIONS

Before we explicitly calculate the effect of impurities on the
SC transition temperature of s++ and s+− superconductors,
we will provide an extension of Anderson’s theorem [1–3]
for two-band superconductors. Specifically, it will be demon-
strated that the s++ pairing state is robust against time-
reversal-symmetric (TRS) scattering, while for the s+− pairing
state, the gap is unchanged by time-reversal-antisymmetric
(TRA) interband and TRS intraband disorder. Furthermore,
we present a criterion for the protection of density waves in
the presence of disorder.

We consider the two-band s-wave superconductor as
defined in Eqs. (1) and (2). The corresponding mean-field
Hamiltonian is given by

ĤMF
SC =

∑
k,α

ψ̂
†
α,kξα,kψ̂α,k +

∑
k,α

�α

2

[
ψ̂

†
α,kiσ̂2(ψ̂†

α,−k)T

+ ψ̂T
α,−k(iσ̂2)†ψ̂α,k

]
, (6)

where �α ∈ R denotes the pairing in band α which is taken to
be momentum independent (s wave), as in Eq. (2). The mean-
field Hamiltonian (6) with a homogeneous order parameter �α

can be applied to a disordered system provided the disorder
strength is sufficiently weak [24,25], so that electron states
near the Fermi surface are delocalized in the normal metal
phase (�α = 0) or the localization length is large,

ξ � (TcρF)−
1
d , (7)

054501-2



PAIR BREAKING DUE TO ORBITAL MAGNETISM IN . . . PHYSICAL REVIEW B 91, 054501 (2015)

where Tc is the critical temperature of the superconductive
transition. Throughout the paper we assume that kFl � 1,
where l is the mean-free path close to the Fermi surface in the
normal phase. This condition, in particular, ensures the absence
of localization in 3D materials and, thus, the applicability of
the mean-field Hamiltonian (6). In the case of a 2D material,
we assume additionally that the condition (7) is fulfilled.

We introduce Nambu spinors ̂α(k) =
(ψ̂α,k, iσ̂2(ψ̂†

α,−k)T )T and ̂†
α(k) = (ψ̂†

α,k, ψ̂T
α,−k(iσ̂2)†)

to write the mean-field Hamiltonian (6) in the quadratic form

ĤMF
SC = 1

2

∑
k,α

̂†
α(k)

(
ξα,k �α

�α −ξα,k

)
̂α(k). (8)

It is convenient to consider a given disorder realization [26],
as described by the general quadratic term (3), in momentum
space, where it reads

Ĥdis = 1

2

∑
k,k′

∑
α,α′

̂†
α(k)

×
(

Wα,α′ (k,k′) 0
0 −iσ̂2W

T
α′,α(−k′, − k)(iσ̂2)†

)
̂α′(k′).

(9)

The only constraint on Wα,α′ (k,k′) is W
†
α′,α(k′,k) =

Wα,α′ (k,k′) due to Hermiticity. For the following analysis of
time-reversal symmetry, it is convenient to split Wα,α′ (k,k′)
according to

Wα,α′ (k,k′) = W+
α,α′ (k,k′) + W−

α,α′ (k,k′) (10)

into parts that are symmetric and antisymmetric under time
reversal,

W±
α,α′ (k,k′) ≡ 1

2 [Wα,α′ (k,k′) ± T̂ Wα,α′ (−k, − k′)T̂ −1],

(11)

where T̂ = iσ̂2K̂ denotes the time-reversal operator for spin- 1
2 ,

with K̂ representing complex conjugation. Introducing Pauli
matrices τ̂i acting in band space, and defining �± = 1√

2
(�1 ±

�2), the Hamiltonian can be written compactly as ĤMF
SC +

Ĥdis = 1
2

∑
k,k′

∑
α,α′ ̂†

α(k)ĥαα′(k,k′)̂α′(k′) with

ĥ =
(

ξ̂ + Ŵ+ + Ŵ− 1√
2

(�+τ̂0 + �−τ̂3)
1√
2
(�+τ̂0 + �−τ̂3) −(ξ̂ + Ŵ+ − Ŵ−)

)
, (12)

where ξ̂ is the diagonal matrix of band energies ξα(k).
The spectrum of ĥ is found by solving det(ĥ − ε1̂) = 0 for

ε, where we can use that

det

(
A B

C D

)
= det(AD − CB) (13)

holds for arbitrary square matrices A, B, C, and D, if [A,C] =
0 is satisfied.

A. Nonmagnetic disorder

We start by considering TRS disorder, i.e., we assume
Ŵ− = 0 but Ŵ+ �= 0 in Eq. (12). From the Anderson theorem
we expect the s++ state to be robust against such nonmagnetic

impurities. The spectrum of ĥ can straightforwardly be found
from the condition

det

(
ξ̂ + Ŵ+ − ε1̂ 1√

2
(�+τ̂0 + �−τ̂3)

1√
2
(�+τ̂0 + �−τ̂3) −(ξ̂ + Ŵ+ + ε1̂)

)
= 0, (14)

where for a pure s++ pairing state, �− = 0 and �+ �= 0 holds
in addition. Then the commutator[

ξ̂ + Ŵ+ − ε1̂,
1√
2

(�+τ̂0 + �−τ̂3)

]
= 1√

2
�−[Ŵ+,τ̂3]

(15)

vanishes, and we can use Eq. (13) for the evaluation of the
determinant. We obtain the eigenvalues of ĥ in the case of
TRS disorder in an s++ superconductor,

±
√

(ξi + Wi)2 + �2+/2, (16)

where ξi + Wi denote the different real eigenvalues of the
Hermitian matrix ξ̂ + W+. Consequently, the gap of the
disordered system is larger than or equal to |�+|/√2, the gap
of the clean system. We have hereby shown that the gap will
be unaffected by the presence of the disorder potential which
indicates the stability of the s++ superconducting state against
TRS impurity scattering, and thus obtained the Anderson
theorem for s++ superconductors.

We note that the commutator (15) also vanishes for �− �=
0 if the disorder potential is purely band diagonal, i.e., no
interband scattering processes occur. Therefore, from similar
reasoning, we obtain that the s+− pairing state is protected
against nonmagnetic intraband scattering.

B. Anderson theorem for s+− superconductors

The same approach can be used to motivate an analog of
the Anderson theorem for the s+− pairing state. We rewrite
the determinant by performing a unimodular transformation
in band space,

det(ĥ − ε1̂) = det

((
τ̂0 0
0 τ̂3

)
(ĥ − ε1̂)

(
τ̂0 0
0 τ̂3

))
. (17)

For the specific microscopic scattering mechanism to be
discussed below, that is, for a purely band diagonal TRS
component and a purely band off-diagonal TRA component
of the disorder potential, it follows:

τ̂3Ŵ
+τ̂3 = Ŵ+, τ̂3Ŵ

−τ̂3 = −Ŵ−, (18)

and, hence, we have to solve

det

(
ξ̂ + Ŵ − ε1̂ 1√

2
(�+τ̂3 + �−τ̂0)

1√
2
(�+τ̂3 + �−τ̂0) −(ξ̂ + Ŵ + ε1̂)

)
= 0. (19)

From the analysis of Sec. III A we know that the relevant
quantity for the sensitivity to disorder is the commutator[

ξ̂ + Ŵ − ε1̂,
1√
2

(�+τ̂3 + �−τ̂0)

]
= 1√

2
�+[Ŵ ,τ̂3].

(20)

It vanishes in case of s+− SC where �+ = 0 and �− �= 0, but
assumes finite values for the s++ superconductor when TRA
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interband scattering is present. This is the algebraic reason
for why the s++ superconductor is in general prone to TRA
scattering, while the s+− state is stable against TRA interband
disorder and TRS intraband disorder. Let us finally emphasize
that this conclusion holds irrespective of the form of the bands
(as long as ξα,−k = ξα,k holds) and the detailed momentum
dependence of Wα,α′ (k,k′). In particular, the disorder potential
does not have to be momentum independent within each band
for the s+− Anderson theorem to hold. Furthermore, it does not
rely on the disorder potential breaking time-reversal symmetry
due to spin or orbital magnetism. It is only important that
τ̂3Ŵ

±τ̂3 = ±Ŵ± holds. Here the insensitivity to spin results
from the investigation of singlet pairing.

C. Symmetry protection of density waves

Criteria for the stability against a specific class of impuri-
ties, analogous to the Anderson theorem for superconductivity,
can be derived for particle-hole instabilities as well. The
general density wave mean-field Hamiltonian reads

ĤMF
DW =

∑
k

ψ̂
†
α,kξα,kψ̂α,k +

∑
k

ψ̂
†
α,kÔα,α′ψ̂α′,k,

(21)

Ô =
(

0 m

m† 0

)
,

which includes both real (m† = m) and imaginary (m† = −m)
spin (m = Mσ ) and charge (m ∝ σ0) density waves. For
simplicity we assume particle-hole symmetric bands, i.e.,
ξ2,k = −ξ1,k. In that case, the density wave phases are fully
gapped already at infinitesimal m. However, our arguments
can be extended to the case of small deviations from perfect
particle-hole symmetry but then we have to assume an order
parameter large enough to ensure a fully gapped Fermi surface.

Again, we consider an arbitrary but fixed disorder
realization as given in Eq. (3). The full mean-field
Hamiltonian can be written compactly as ĤMF

DW + Ĥdis =
1
2

∑
k,k′

∑
α,α′ ̂†

α(k)ĥαα′(k,k′)̂α′(k′) with

ĥ =
(

ξ̂1 0
0 −ξ̂1

)
+ Ô + Ŵ . (22)

The condition under which the gap of the density wave will
not be reduced in the presence of impurities is

{Ŵ ,Ô} = 0, (23)

and hence the density wave is stable against impurities satis-
fying the criterion (23). The proof is presented in Appendix A.

In the remainder we apply this result to our model for
the iron-based superconductors, where real spin density wave
order (SDW) is competing with superconductivity, i.e., we
consider m = Mσ̂ = m†. In general, this phase is stable
against disorder configurations of the form

Ŵ = τ̂0Â1 + τ̂1Â2 + τ̂2Ĉ1 + τ̂3Ĉ2, (24)

where Ĉ and Â denote matrices in spin and momentum
space that are commuting and anticommuting with the order
parameter Ô, respectively. This is satisfied by the choice

(Aj )k,k′ = (aj )k,k′ σ̂ , (25)

(Cj )k,k′ = (
c
j

0

)
k,k′ σ̂0 + (cj )k,k′ σ̂ , (26)

where the vectors aj and cj are oriented perpendicular and
parallel to the magnetic order parameter, respectively, i.e.,
it holds that (aj )k,k′ ⊥ M and (cj )k,k′ ‖ M. If we restrict
ourselves to spin-independent impurities, this reduces to

Ŵ =
(

c2
0 ic1

0
−ic1

0 −c2
0

)
. (27)

Therefore, also scenarios where SDW is stable against impuri-
ties are conceivable, and in particular, we find that spin density
waves are protected against impurities breaking time-reversal
symmetry by nucleation of imaginary charge density order
which are discussed in Sec. VI B as an example relevant for
iron-based superconductors. However, SDW order is prone to
intraband scattering breaking the particle-hole symmetry of
the bands (Ŵ ∝ τ̂0).

IV. DISORDER AVERAGING

In the following sections we do not consider spin-magnetic
impurities. To evaluate physical observables, we use the
disorder-averaging diagrammatic technique [27]. A basic
element of this technique is the impurity line

=
N∑

i=1

〈〈k1,α|ÛRi
|k′

1,β〉〈k2,γ |ÛRi
|k′

2,δ〉〉Ri

= (2π )d�αβγ δ(k1,k
′
1,k2,k

′
2)

× δ(k1 + k2 − k′
1 − k′

2 + K), (28)

where

�αβγ δ(k1,k
′
1,k2,k

′
2) = nimpU

αβ

k1k′
1
U

γδ

k2k′
2
. (29)

Here U
αβ

kk′ is the matrix element of the perturbation due to
a single impurity at site R = 0, 〈· · · 〉Ri

= �−1
∫

dRi · · · is
the averaging with respect to the position Ri of impurity i,
nimp = N/� denotes the impurity concentration, and � is the
d-dimensional volume. It holds that K = 0 if all or two of the
momenta k1, k2, k′

1, k′
2 belong to the same band, and K = Q

if one momentum belongs to one band, and three other to the
other band. [In Eq. (28) we have taken into account that 2Q is
a reciprocal vector.]

The impurity line, Eq. (28), describes the elastic scattering
of two momentum states k1 and k2 into another two momentum
states k′

1 and k′
2. The scattering can occur within the same

band or involve interband processes, as shown in Fig. 2.
The δ function in Eq. (28) represents the conservation of
quasimomentum, and the quantity �αβγ δ(k1,k

′
1,k2,k

′
2), defined

in Eq. (29), is hereinafter referred to as the rate of elastic
scattering between the pair of momentum states k1, k2 and k′

1,
k′

2, respectively.
The intraband scattering process within band α is depicted

in Fig. 2(a), and we abbreviate the corresponding scattering
rate by �α ≡ �αααα . For sufficiently short-correlated disorder
considered in this paper, the rates

�1 ≈ nimp

∣∣U 11
00

∣∣2
, �2 ≈ nimp

∣∣U 22
QQ

∣∣2
(30)
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FIG. 2. Scattering processes that can occur in a two-band system.
(a) Intraband scattering process in band α. (b)–(e) Interband scattering
processes.

are independent of the momenta k1, k2, k′
1, and k′

2. Such
intraband scattering processes are pair breaking neither for
conventional nor for unconventional superconducting states.
We emphasize that in general �1 �= �2, because the momentum
states in the two bands may have different structure, e.g., in
terms of sublattices or atomic orbital degrees of freedom, and
thus may be scattered differently by impurities.

Processes involving interband scattering are shown in
Figs. 2(b)–2(e). The process in Fig. 2(b) requires a momentum
transfer of K = Q which is not a reciprocal lattice vector
and thus this scattering process is forbidden due to the
conservation of quasimomentum. The process in Fig. 2(c)
affects neither the quasiparticle self-energy part nor the
superconductive properties but can be important, e.g., for the
magnetic properties of the material. The process depicted
in Fig. 2(d) affects the quasiparticle self-energy part, as we
discuss in Sec. IV. In what follows, we assume that the
respective rate �αᾱᾱα is independent of the momenta k1, k2,
k′

1, and k′
2 and, generally speaking, is different from �1 and

�2. Such assumption is rather generic and may be justified,
e.g., if the disorder (perturbation ÛR) has components varying
both on length scales significantly smaller than 1/|Q| and on
scales λ: 1/|Q| � λ � 1/kF. The former will contribute to the
intraband scattering rates as well as to the interband scattering
rates, whereas the latter contributes significantly only to the
interband scattering rates. The rate of the process in Fig. 2(d)
is

�αᾱᾱα ≈ nimp

∣∣Uαᾱ
0Q

∣∣2
. (31)

We note that the rate given in (31) is real, �αᾱᾱα ∈ R, and
it holds that �1221 = �2112. On the contrary, the scattering
process shown in Fig. 2(e) in general comes with a phase

�αᾱαᾱ ≈ nimp
(
Uαᾱ

0Q

)2 = nimp

∣∣Uαᾱ
0Q

∣∣2
eiφα , (32)

where φα �= 0 (modulo 2π ) if Im Uαᾱ
0Q �= 0. This process

describes the scattering of a pair of momentum states in one
band into a pair of momentum states in the other band. Since
|�αᾱαᾱ| = �αᾱᾱα , we introduce the notation �12 ≡ �1221 ∈ R

and the phase φ,

�1212 = �12e
iφ, �2121 = �12e

−iφ. (33)

In principle, the phase φ is defined relative to a similar
phase of the BCS coupling matrix element V αᾱ

k,k′ , that is
contained in Eq. (2), which couples pairs of momentum states
in different bands. Thus, the interplay of the scattering process
in Fig. 2(e) and the superconductive coupling may affect the
superconductive properties of the system. The fact that φ must
be understood as a relative phase becomes more evident in our
discussion in Sec. VII.

Self energy and Cooperons

Assuming that the scattering is sufficiently weak such that
the mean-free path l = vFτ satisfies kFl � 1, single-particle
interference effects are subleading. This means, diagrams
with crossed impurity lines can be neglected since they are
suppressed by a factor 1/kFl.

Because the process in Fig. 2(b) is forbidden by quasi-
momentum conservation, only the processes in Figs. 2(a)
and 2(d) contribute to the electron self-energy part in the Born
approximation,

Σα = + , (34)

and therefore, in the disorder-averaged electron propagator,

Gα,k(νn) = 1

iνn − ξα,k + i
2τα

sgn νn

,

τα = [2πρF(�α + �12)]−1,

(35)

the full scattering rate that determines the elastic scattering
time τα in band α is a sum of the intraband �α and the interband
�12 rates.

Further corrections due to impurity scattering can be
conveniently summarized into vertex corrections, as they
appear in the diagrams contributing to the SC transition
temperature shown in Fig. 3. In the presence of intraband as
well as interband scattering processes, most contributions can
be accounted for by a generalized form Cα of the Cooperon
ladder of the impurity line. This generalized Cooperon is
indicated in dark gray in the diagrams in Fig. 3 and accounts
for all combinations of scattering processes starting and ending
in band α, including (pairwise) interband scattering processes
and intermediate scattering processes in band ᾱ. To calculate
this generalized Cooperon, a single rung of the Cooperon
ladder in band α as known from one-band models has to be
modified as

→ + ×
(

1 +

+ + . . .

)
× ,

(36)
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FIG. 3. Diagrams that contribute to the quadratic coefficients of
the free energy in the presence of intraband and interband scattering.
Here dark gray vertices indicate vertex renormalization given by
the generalized Cooperon ladder, whereas light gray vertices are
only renormalized by the respective single-band Cooperon ladder.
Diagrams (a) and (b) also survive in the absence of interband
scattering, whereas diagrams (c) and (d) are only nonzero if interband
scattering processes are included.

where the gray lines do not enter the calculation but are drawn
for the sake of clarification. The summation of the full ladder is
presented in Appendix B and leads to a frequency-dependent
factor

Cα(νn) = (πρF�12 + |νn|)[πρF(�α + �12) + |νn|]
|νn|(2πρF�12 + |νn|) (37)

at vertices associated with the order parameter �α . We note that
the vertex corrections Cα(νn) associated with �α only depend
on the intraband scattering rate in the respective band α, and
on the interband scattering rate �12. The vertex corrections are
independent of the other band to which electrons are scattered
in intermediate processes and within which they can also be
scattered.

In addition, to avoid double counting in the interband
diagrams d12 and d21, we need the usual single-band Cooperon
ladder in band α, C0

α , which is indicated in light gray in the
diagrams in Fig. 3, and given by

C0
α(νn) = |νn| + πρF(�α + �12)

|νn| + πρF�12
. (38)

Note that both intraband �α and interband �12 scattering rates
enter the Cooperon in Eq. (38) through the disorder-averaged
electron propagators as given in Eq. (35).

Furthermore, even though it is the elastic scattering process
in Fig. 2(e), associated with a nontrivial phase factor, see
Eq. (32), that is accounted for by the above vertex correction,
this process enters only pairwise with its complex conjugate,
and thus the resulting vertex corrections are real. Therefore, all
physical observables which contain only electron self-energies
�α and vertex corrections Cα and C0

α are unaffected by
the phase factor arising in the interband scattering process
that is defined in Fig. 2(e) and Eq. (32). However, not
all contributions arising from impurity scattering can be
summarized in terms of electron self-energies and vertex

corrections, and consequently, physical observables can indeed
be affected by such a phase related to orbital magnetism,
the most prominent example for superconductors being the
superconducting transition temperature Tc, as established in
Sec. V.

V. TRANSITION TEMPERATURE IN THE PRESENCE OF
IMPURITY SCATTERING

The action associated with the interacting Hamiltonian
given in Eq. (2) can be decoupled by introduction of the
auxiliary fields �± = 1√

2
(�1 ± �2), where �1 and �2 are

the values of the order parameter on the respective sheets of
the Fermi surface. For attractive interaction we use

e−V b∗
+b+ =

∫
D�∗

+D�+ e
1
V

�∗
+�++�∗

+b++�+b∗
+ ,

eV b∗
−b− =

∫
D�∗

−D�− e
1
V

�∗
−�−+i�∗

−b−+i�−b∗
− ,

(39)

where b± = 1√
2
(b1 ± b2) which are linked to the original

fermionic fields by bα = ∑
k ψα,−k,↓ψα,k,↑. The respective

decoupling for repulsive interaction has the same structure,
but the factor i is then associated with the �+ mode rather
than the �− mode, ensuring the convergence of the integral.

Then the SC transition temperature can be extracted from
the quadratic part of an expansion of the free energy in terms
of the order parameters �+ and �−, which can be written in
matrix form as

�F = (
�∗

+ �∗
−
) (

a++ a+−
a−+ a−−

) (
�+
�−

)
. (40)

The sign change of the lower eigenvalue of this quadratic form,

λ1,2 = 1

2
(a++ + a−−) ± 1

2

√
(a++ − a−−)2 + 4a+−a−+,

(41)

determines the transition temperature. The coefficients in this
expansion of the free energy in the presence of disorder can
be obtained from our microscopic model, and the intraband
and interband diagrams dij contributing to the quadratic
coefficients are depicted in Fig. 3.

The quadratic coefficients in terms of these diagrams read

a++ = 1

|V | + 1

2
sgn V [d11 + d22 + d12 + d21], (42)

a−− = 1

|V | − 1

2
sgn V [d11 + d22 − d12 − d21], (43)

a+− = − i

2
[d11 − d22 + d12 − d21], (44)

a−+ = − i

2
[d11 − d22 − d12 + d21]. (45)

Since for equal density of states in the two bands, d11 = d22

and d12 = d∗
21, the eigenvalues reduce to

λ1,2 = 1

|V | + sgn V Re d12 ±
√

d2
11 − (Im d12)2, (46)
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(a)

(b)

FIG. 4. (Color online) Suppression of the transition temperature
Tc with increasing interband scattering rate �12 for phases φ = 0
(green dotted line), φ = π

2 (red lines), and φ = π (blue dashed line)
in case of (a) attractive and (b) repulsive interaction. For φ = π

2 ,
the transition temperature depends on the dimensionless coupling
constant, and we plotted our results for ρF|V | ∈ {0.1,0.2,0.3,0.4}.

and the sign change of the lower one determines the transi-
tion temperature. The respective diagrams can be evaluated
analytically, and expressed in terms of digamma functions ψ0,

d11 = d22 = ρF

2

[
ψ0

(
1

2
+ 


2πT

)
− ψ0

(
1

2

)

+ ψ0

(
1

2
+ 


2πT
+ ρF�12

T

)
− ψ0

(
1

2
+ ρF�12

T

)]

= ρF

2

{
2 ln 


2πT
, T � ρF�12,

ln
(


2

(2π)2ρF�12T

) − ψ0
(

1
2

)
, T � ρF�12,

(47)

d12 = d∗
21 = ρF

2
eiφ

[
ψ0

(
1

2
+ ρF�12

T

)
− ψ0

(
1

2

)]

= ρF

2
eiφ

{
π2

2
ρF�12

T
, T � ρF�12,

ln
(

ρF�12

T

) − ψ0
(

1
2

)
, T � ρF�12,

(48)

where we also gave the results in the limiting cases of a
clean system and strong interband scattering (but in the sense
that 1/kFl � 1 still holds). The transition temperature can
be determined numerically from these diagrams for arbitrary
phases of φ, but it is most instructive to highlight three
important limits, namely φ = 0, φ = π

2 , and φ = π . Our
results for the SC transition temperature as a function of the

interband scattering rate are shown in Fig. 4 for attractive and
repulsive interaction.

In the clean case and for φ = 0, we reproduce well-known
results, namely that, depending on the sign of the coupling
constant V , one of the two modes condenses. In case of
attractive interaction, s++ superconductivity, characterized by
the order parameter �+, is realized, whereas for repulsive
interaction, it is s+− superconductivity characterized by �−.
The SC transition occurs at the critical temperature Tc,0, as
known from BCS theory,

Tc,0 = 

2eγ

π
e
− 1

|V |ρF , (49)

where γ denotes the Euler constant. Furthermore, the consid-
eration of φ = 0 in a dirty superconductor is also consistent
with previous work. In case of attractive interaction, the �+
mode condenses, and the transition temperature is unaffected
by the presence of impurities, Tc ≈ Tc,0. This result for s++
SC is known as the Anderson theorem and, as expected,
consistent with our symmetry analysis of Sec. III A. For
repulsive interaction we find the �− mode to be the one that
condenses, and now (unconventional) SC is affected by the
presence of impurities, and the suppression of the transition
temperature is given by the usual Abrikosov-Gorkov law [4].
Particularly, at a critical scattering rate

�c = Tc,0

4eγ ρF
, (50)

s+− superconductivity vanishes completely.
However, for a phase of π , we find the reversed situation:

Conventional superconductivity is now harmed by impurities,
and even suppressed at a critical scattering rate, whereas for
s+− SC, there exists an analog of the Anderson theorem as
also follows from our symmetry analysis in Sec. III B. An
illustration of these results can be found in Figs. 1(b) and 1(c).

In the case of φ = π
2 , we find that the transition temperature

is suppressed for attractive as well as repulsive interaction.
However, in neither case, a critical scattering rate at which
superconductivity vanishes is found,

Tc =
{

Tc,0 − π2

4 ρF�12, T � ρF�12,


 2eγ

π
e
− 1

ρFVeff (�12) , T � ρF�12,
(51)

where Veff(�12) = ρF|V |2 ln( 

2πρF�12

). Furthermore, the pairing
state in case of such an intermediate phase is a superposition
of the �+ and �− mode.

Studies considering SDW order coexisting with supercon-
ductivity in iron-based superconductors [28,29] found that
the superconducting transition temperature can increase with
increasing disorder in the underdoped regime. This is due to
the fact that SDW order is affected more severely by impurity
scattering than superconductivity. Based on our analysis of
Sec. III C, we expect that such a behavior occurs in the
case of dominant particle-hole symmetry-breaking intraband
scattering. On the other hand, for interband scattering due
to imaginary charge density wave impurities as discussed
in Sec. VI B, we find that both SDW as well as s+−
superconductivity are protected.
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VI. APPLICATION TO IRON-BASED
SUPERCONDUCTORS

We showed that s++ superconductivity can be destroyed by
impurities which cause certain interband scattering processes
characterized by a nontrivial phase in the impurity line,
whereas the s+− pairing state remains robust under certain
conditions. In this section we establish the connection of
our preceding observations to the situation in iron-based
superconductors. We reveal the necessity of time-reversal-
symmetry breaking for the occurrence of the effect in these
materials and discuss the nucleation of imaginary charge
density wave (iCDW) order around impurities as a possible
origin of time-reversal-symmetry breaking associated with
orbital magnetism in these materials.

A. Role of time-reversal symmetry

As anticipated in Sec. III B, the consideration of time-
reversal symmetry-breaking interband scattering allows us
to formulate an analog of the Anderson theorem for s+−
superconductivity. This was formalized in Sec. IV by the
introduction of a nontrivial phase in the interband scattering
rate �1212.

In this section we elucidate the role of time-reversal
symmetry-breaking impurities in iron-based superconductors,
where electrons from d orbitals [30,31] are forming the
superconducting condensate.

Since �αᾱαᾱ ∝ (Uαᾱ
0Q )2, in order to have a nontrivial phase

in the impurity line, we need Uαᾱ
0Q = ∑

s,s ′ e−iRs′ ·QJ αᾱ
ss ′ to have

a nonzero imaginary part. Since 2Q is a reciprocal lattice
vector, and thus exp(−iR · Q) = ±1 for any lattice vector R,
this requirement can only be met if the matrix element

J αᾱ
ss ′ =

∫
dr (ϕα

Rs
(r))∗UR=0ϕ

ᾱ
Rs′ (r) (52)

itself has a nonzero imaginary part. Here ϕα
Rs

(r) denotes the
Wannier function of band α centered around site Rs . The
Wannier functions in band space are related to the tight-binding
wave functions in orbital space by an orthogonal, that is, real,
transformation matrix, since the dispersion in band space is
symmetric.

The wave functions of electrons on d orbitals with which
we are concerned in the iron-based superconductors, can be
chosen real, so J αᾱ

ss ′ can have an imaginary part only due to the
phases in the impurity Hamiltonian.

In the absence of spin-orbit coupling, the Hamiltonian can
be split into an orbital and a spin part, Ĥimp = Ĥorb

imp ⊗ Ĥspin
imp .

We consider the transformation properties under time reversal,
described by the operator

T̂ = (T̂ orb ⊗ T̂ spin)K̂, (53)

where K̂ denotes complex conjugation. For spin- 1
2 , the spin

part T̂ spin is given by the Pauli matrix iσ̂2. In real space, the
orbital part T̂ orb is just the identity, T̂ orb = 1̂

orb
.

We consider the most generic time-reversal symmetric im-
purity Hamiltonian Ĥimp = T̂ ĤimpT̂

−1, and if Ĥimp is invari-
ant under time reversal, the matrix element J αᾱ

ss ′ is invariant as
well. If we do not consider scattering processes involving spin
flips, that is, if Ĥspin

imp ∝ σ̂0, then the spin part is also invariant

under time reversal, and as a consequence, the orbital part of
the Hamiltonian is real, yielding J αᾱ

ss ′ ∈ R.
In conclusion, impurities that are invariant under time

reversal are not able to generate nontrivial phases in the
scattering matrix elements such that a nontrivial phase can
arise. Since we are not concentrating on spin magnetism, this
implies that a nontrivial phase is caused by orbital magnetism
in multiband superconductors.

B. iCDW impurities

The renormalization group analysis [12] of the two-band
Hubbard model with particle-hole symmetry, as suited for
the description of iron-based superconductors, revealed the
existence of a fixed point where the Hamiltonian exhibits
an SO(6) symmetry, and three different states of order
compete [12–14]. For repulsive interband interactions, these
ordered states are spin density waves (SDW) with a real order
parameter

M =
∑

k,σ,σ ′
〈ψ̂†

α,k,σσ σσ ′ψ̂ᾱ,k,σ ′ 〉, (54)

s+− superconductivity (SC) with order parameter

� =
∑

k

〈ψ̂†
1,k,↑ψ̂

†
1,−k,↓ − ψ̂

†
2,k,↑ψ̂

†
2,−k,↓〉, (55)

and charge density waves (iCDW) with an imaginary order
parameter

ρ = − i

2

∑
k,σ

〈ψ̂†
1,k,σ ψ̂2,k,σ − ψ̂

†
2,k,σ ψ̂1,k,σ 〉 (56)

associated with orbital magnetism. Thus, at this fixed point,
the free energy F is a function of a combined order parameter
F = F (M2 + |�|2 + ρ2).

Since iron-based superconductors are only close to this
SO(6)-symmetric fixed point, the SDW or SC instabilities
occur first, and iCDW order has not been observed in any
iron-based superconductor so far, although being close in
energy. It is, however, a conceivable scenario that such order
could nucleate around impurities in these materials, similar
to SDW order [15–17]. Such iCDW-type impurities break
time-reversal symmetry and thereby are responsible for orbital
magnetism. Thus we consider such iCDW impurities as an
example to demonstrate the emergence of a nontrivial phase in
the impurity line in iron-based superconductors. Since ρ is an
Ising order parameter, it can nucleate with either sign around
a given impurity site.

An iCDW-type impurity at site Ri is described by

ÛRi
= −i

U0

2

∑
s,σ

eiQ·(Ri+Rs )[ψ̂†
1,i+s,σ ψ̂2,i+s,σ

− ψ̂
†
2,i+s,σ ψ̂1,i+s,σ ], (57)

and therefore each impurity breaks time-reversal symmetry.
Here U0 is proportional to the iCDW order parameter ρ and
an appropriate electron-electron interaction matrix element.
Furthermore, such an impurity is associated with an orbital
loop current which can be described by an Ising order param-
eter. For short-ranged impurities, the sum over lattice sites s
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can, for example, be restricted to nearest neighbors (NN).
In momentum space, the corresponding matrix element is
given by

〈k,α|ÛRi
|k′,β〉 = −i

U0

2
ei(k−k′)·Ri

∑
s

ei(k−k′+Q)·Rs

× [δα,1δβ,2 − δα,2δβ,1], (58)

and thus the scattering rate is given by

�αβγ δ(k1,k
′
1,k2,k

′
2) = −nimpU

2
0

4

∑
s

ei(k1−k′
1+Q)·Rs

×
∑

t

ei(k2−k′
2+Q)·Rt δband. (59)

Hence, even if impurities at different sites were to exhibit a
different sign of the loop-current Ising order parameter, the
scattering rate would be unaffected because it only depends
on the order parameter squared. For the interband scattering
process corresponding to the exchange of two electrons
between the bands, α = δ �= γ = β, it holds that δband = −1.
The interband scattering process from which a phase in the
impurity line might arise is associated with δband = +1 and
corresponds to a Cooper pair being scattered to the other band,
that is, α = γ �= β = δ. All other combinations of band indices
yield δband = 0, reflecting that this particular type of impurities
can only cause certain interband scattering processes.

Keeping in mind that a global prefactor of −1 corresponds
to a phase of π , we evaluate the imaginary part of the impurity
line that might yield arbitrary phases. It is determined from
the phase factors,

Im �αβγ δ(k1,k
′
1,k2,k

′
2)

∝ Im

[∑
s

ei(k1−k′
1+Q)·Rs

∑
t

ei(k2−k′
2+Q)·Rt

]

=
∑
s,t

sin[(k1 − k′
1 + Q) · Rs + (k2 − k′

2 + Q) · Rt ],

(60)

which can be evaluated assuming a lattice possessing certain
symmetries and a finite range of the impurity. As long as
inversion symmetry is present in the crystal, the imaginary
part of the impurity line is zero. However, phases of 0
and π are possible even in case of an inversion-symmetric
lattice. For example, in case of zero incoming momenta,
k1 = k2 = 0, and outgoing momenta Q, k′

1 = k′
2 = Q, an

inversion-symmetric lattice, and short-ranged impurities that
only affect neighboring sites, we find a phase of π since

�1212 = −nimp

4
(NNN)2, (61)

where NNN is the number of nearest-neighbor sites. When,
additionally, the lattice breaks inversion symmetry, even
arbitrary phases are conceivable, also leading to suppression
of Tc, but with a different functional behavior.

VII. CONCLUSION

We consider a two-band superconductor in the pres-
ence of impurities. Depending on the interaction leading to

superconductivity, this model describes conventional or un-
conventional superconductivity which is known to react differ-
ently to the presence of impurities, also depending on whether
the impurities are sensitive to the spin of the scattered electrons
or not. Extended potential impurities, although insensitive to
spin, can still break time-reversal symmetry, and in this paper
we consider the effect of such impurities associated with orbital
magnetism on the transition temperature. One example for the
occurrence of this effect could be a competing state of order
nucleated by the impurity. Such a scenario is conceivable
in the case of iron-based superconductors, where imaginary
charge density waves are a hidden state of order competing
with superconductivity.

Orbital magnetism, that as competing ordered state nucle-
ates near impurities, manifests itself in a nontrivial phase in
the impurity line of one interband scattering process, and
we classify different limits by this phase. Our results for
the transition temperature are summarized in Fig. 4. The
trivial phase φ = 0 corresponds to the well-known situation:
The transition temperature Tc of conventional superconductors
remains unaffected by impurities, whereas for unconventional
superconductors, Tc is suppressed with increasing interband
scattering rate, and even vanishes completely at a critical
scattering rate. The functional behavior of Tc on the inter-
band scattering rate corresponds to the functional behavior
originally only associated with paramagnetic impurities by
Abrikosov and Gorkov. For a phase of φ = π , however, we
find the reversed situation. Then, impurities are pair breaking
for conventional superconductors with the same functional
behavior, and there exists an analog of the Anderson theorem
for unconventional superconductors. This scenario is indeed
realized in case of the imaginary charge density wave state
discussed in Refs. [12–14].

Since the phase φ in the impurity line is only defined relative
to a similar phase in the BCS coupling matrix element V αᾱ

k,k′ ,
this result can also be understood in terms of a redefinition
of the electron operators in order to absorb the phase of the
impurity line associated with the scattering process with rate
�1212,

ψ̂1,k,σ → ψ̂ ′
1,k,σ = ei

φ

2 ψ̂1,k,σ ,

ψ̂2,k,σ → ψ̂ ′
2,k,σ = ψ̂2,k,σ .

(62)

This leaves the intraband scattering processes as well as
the interband scattering process associated with rate �1221

unaffected, but entails a simultaneous rescaling of the BCS
coupling matrix element V → V ′ = e−iφV . In the case of
φ = π this corresponds to V → V ′ = −V , and thus, an
attractive interaction under this transformation effectively
becoming repulsive, and vice versa. Therefore, for a phase
of φ = π we find an Anderson theorem for the s+− pairing
state, whereas the transition temperature of the s++ pairing
state is suppressed according to the Abrikosov-Gorkov law.

In the intermediate regime, impurities are pair breaking for
both pairing states, but there is no critical interband scattering
rate at which superconductivity is suppressed completely. As
an example, we consider φ = π

2 , and find linear suppression
of Tc for small interband scattering rates, and exponential
suppression of Tc in the dirty limit.
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In conclusion, in the presence of impurities associated with
orbital magnetism, pair breaking due to interband scattering
does not only occur in unconventional superconductors, and
the robustness of Tc against impurities does not necessarily
imply conventional superconductivity.

Additionally, we give a condition under which spin density
waves as they occur in iron-based superconductors are also
protected against impurities. We find that spin density waves
are stable against the impurities associated with orbital
magnetism that we considered as an example in Sec. VI B, but
prone to intraband scattering breaking particle-hole symmetry.
Thus, we expect no change of the SDW and s+− SC transition
temperatures in the case of iCDW impurities. However,
particle-hole symmetry-breaking intraband scattering will
suppress SDW order while leaving SC order unchanged
such that in a coexisting state of spin density wave order
and superconductivity Tc may increase as demonstrated in
Refs. [28,29].

We note that the effect of spin-magnetic impurities (not
considered here microscopically) on the superconductive
transition has been addressed recently in Ref. [32]. Their
results are consistent with our general symmetry analysis of
Sec. III, while our diagrammatic calculation of Secs. IV and V
focuses on the other case of orbital-magnetic impurities and a
possible microscopic mechanism for such impurities.
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APPENDIX A: DERIVATION OF THE STABILITY
CONDITION FOR DENSITY WAVE PHASES IN THE

PRESENCE OF DISORDER

This Appendix is devoted to the proof of the condition (23)
for stability of SDW order, {Ŵ ,Ô} = 0. Let us first consider
two Hermitian matrices A and B with (real) eigenvalues
{λ(i)

A } and {λ(i)
B }, respectively. Furthermore, let us denote the

eigenvalues of A + B by {λ(i)
A+B}. When A and B anticommute,

it holds

(A + B)2 = A2 + B2 + {A,B} = A2 + B2. (A1)

Since A2 and B2 commute, they can be diagonalized simulta-
neously and, thus, we have(

λ
(i)
A+B

)2 = (
λ

(i)
A

)2 + (
λ

[π(i)]
B

)2
, (A2)

with some permutation π . In particular, this implies

min
i

∣∣λ(i)
A+B

∣∣ � min
i

∣∣λ(i)
A

∣∣, min
i

∣∣λ(i)
B

∣∣. (A3)

When condition (23) is satisfied, it holds that{(
ξ̂1 0
0 −ξ̂1

)
+ Ŵ ,Ô

}

=
{(

ξ̂1 0
0 −ξ̂1

)
,

(
0 m

m† 0

)}
+ {Ŵ ,Ô} = 0. (A4)

Due to (A3), the gap cannot be reduced by Ŵ and, con-
sequently, the density wave is stable against any disorder
configuration that anticommutes with its order parameter.

APPENDIX B: CALCULATION OF THE GENERALIZED
COOPERON LADDER

This Appendix provides details on the calculation of the
generalized form of the Cooperon ladder, denoted by Cα . A
single rung of the ladder Cα is given by

+ ×

⎛
⎜⎜⎝1 + + + · · ·

⎞
⎟⎟⎠ ×

= �α

∫
k
Gα,k(νn)Gα,−k(−νn)

[
1 + �2

12

�α

∫
k′
Gᾱ,k′(νn)Gᾱ,−k′(−νn)

∞∑
m=0

(
�ᾱ

∫
k′′

Gᾱ,k′′ (νn)Gᾱ,−k′′(−νn)

)m
]

= πρF�α|νn| + (πρF)2�12(�α + �12)

(πρF�12 + |νn|)[πρF(�α + �12) + |νn|] , (B1)

where the second term appears in addition to the usual Cooperon ladder for scattering in single-band models or in models with
intraband scattering only. In Eq. (B1) the propagators drawn in light gray are only shown for clarification of the respective
scattering processes and not part of the calculation. The last line has been obtained by performing the energy integration.

In order to obtain the full generalized Cooperon ladder, the result for a single rung, Eq. (B1), is summed, yielding

Cα(νn) =
∞∑

m=0

(
πρF�α|νn| + (πρF)2�12(�α + �12)

(πρF�12 + |νn|)[πρF(�α + �12) + |νn|]
)m

= (πρF�12 + |νn|)[πρF(�α + �12) + |νn|]
|νn|(2πρF�12 + |νn|) . (B2)
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