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Novel magnetic state in d4 Mott insulators
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We show that the interplay of strong Hubbard interaction U and spin-orbit coupling λ in systems with
d4 electronic configuration leads to several unusual magnetic phases. Most notably, we find that competition
between superexchange and spin-orbit coupling leads to a phase transition from a nonmagnetic state predicted by
atomic physics to a novel magnetic state in the large-U limit. We show that the local moment changes dramatically
across this phase transition, challenging the conventional wisdom that local moments are robust against small
perturbations in a Mott insulator. The Hund’s coupling plays an important role in determining the nature of the
magnetism. We identify candidate materials and present predictions for resonant x-ray scattering signatures of
the unusual magnetism in d4 Mott insulators.
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I. INTRODUCTION

Strong interactions lead to phenomena such as high-Tc

superconductivity [1] and colossal magnetoresistance [2]. On
the other hand, spin-orbit coupling (SOC) alone can lead to
topological band insulators [3]. These two features naturally
combine in the 4d/5d transition metal materials, which hold
the potential of hosting new phases of matter with entangled
spin, orbital, and charge degrees of freedom. Already there are
many predictions for exotic topological matter, for example
the topological Mott insulators [4] and Weyl semimetals [5].
Recent experiments demonstrating that Sr2IrO4 is an unusual
Mott insulator with a half filled J = 1/2 band resulting from
strong SOC [6] have prompted the search for Weyl semimetals
in iridium pyrochlores [7].

Most of the focus in this field to date has been on iridium
based materials with a d5 electronic configuration that can
be understood in terms of a half filled J = 1/2 manifold
arising from large spin-orbit induced splitting of t2g orbitals.
The physics is dramatically different for other fillings. Mott
insulators with d1 and d2 configurations have been shown
to exhibit exotic magnetic phases [8,9] in the presence of
large SOC. In the d3 case, SOC is quenched in a cubic
environment [10] and the problem reduces to a conventional
spin-only model. This leaves the d4 case, which has been
largely ignored because large SOC and strong interactions are
expected to give rise to a nonmagnetic state in the atomic
limit [9] [see Fig. 1(a)].

We show that, contrary to naive expectations, the d4

configuration has a rich magnetic phase diagram as a function
of SOC, Hubbard U , and Hund’s coupling JH . For large
U in particular, the atomic limit is a nonmagnetic insulator
of local J = 0 singlets. Turning on hopping leads to two
unusual phenomena: (a) quantum phase transition from the
expected nonmagnetic insulator to a novel magnetic state, (b)
local moments are spontaneously generated in the magnetic
phase due to superexchange-induced mixing of the on-site
singlet state with higher energy triplet states. We emphasize
the importance of Hund’s coupling JH in determining the
sign of the superexchange interaction between these local
moments. If JH is ignored, the superexchange is antiferromag-
netic [12], however we show that even a modest value of the
Hund’s coupling, which is realistic for 4d and 5d transition

metal oxides, leads to a ferromagnetic interaction between
moments.

Our result provides a counterexample to the commonly
held notion that Mott insulators have well defined local
moments that cannot be affected by perturbations that are small
compared with the interaction scale U . We further present
predictions for resonant x-ray scattering (RXS). Unlike the
iridates with d5 configuration, the RXS amplitude in d4 Mott
insulators depends on the strength of SOC. We conclude by
identifying candidate materials among the ruthenates.

II. HAMILTONIAN

We consider a three-orbital Hubbard model with SOC
which captures the essence of 4d/5d materials. Cubic crystal-
field splitting is typically larger than U [13,14], and for d4

configuration only the t2g orbitals are occupied. The situation
is reversed in the case of 3d materials [13,15] and the eg orbitals
also come into play. The Hamiltonian under consideration is
given by

H = Hhop +
∑

i

(Hi,U + Hi,SOC), (1)

where

Hhop =
∑
ij

∑
αβ

∑
σσ ′

(
t
ασ,βσ ′
ij c

†
iασ cjβσ ′ + H.c.

)
, (2)

Hi,SOC = λ
∑
αβ

∑
σσ ′

〈s · l〉ασ,βσ ′c
†
iασ ciβσ ′ , (3)

Hi,U = (U − 3JH )
N̂i(N̂i − 1)

2
+ 5

2
N̂i − 2JH Ŝ2

i − 1

2
JH L̂2

i .

(4)

Here c
†
iασ (ciασ ) creates (annihilates) an electron at site i in

orbital α with spin σ . N̂i , Ŝi , and L̂i are the total occupation
number, total spin momentum, and total orbital momentum
operators at site i. t

ασ,βσ ′
ij is the hopping matrix element from

the state βσ ′ at site j to ασ at site i. We consider only nearest-
neighbor hopping, and take it to be diagonal in both spin and
orbital space (tασ,βσ ′

ij → tij δαβδσσ ′). This symmetry allows a
more transparent understanding of the exact diagonalization

1098-0121/2015/91(5)/054412(8) 054412-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.054412


MEETEI, COLE, RANDERIA, AND TRIVEDI PHYSICAL REVIEW B 91, 054412 (2015)

FIG. 1. (Color online) (a) The atomic ground state of d4 ions in
both U,JH � λ and λ � U,JH limits is nonmagnetic with J = 0.
(b) The two-site phase diagram of the d4 system calculated by
exact diagonalization shows the existence of ferromagnetic phases
(J = 1 and J = 2) in addition to the nonmagnetic (J = 0) phase
in the U -λ plane. We have used JH = 0.2U , the typical value for
4d/5d oxides. Dashed line indicates U = 20t relevant for candidate
materials proposed here [11].

results, but does not effect the qualitative features of the
low-energy physics, compared to a more realistic choice of
t
ασ,βσ ′
ij (see Appendix D for more details). U , JH , and λ are

intraorbital interaction strength, Hund’s coupling, and SOC
strength respectively. 〈s · l〉ασ,βσ ′ are the matrix elements of
atomic SOC in the t2g basis. Note that the t2g orbitals have an
effective orbital momentum l = 1 with opposite sign of SOC.
All energy scales are measured in units of t .

III. TWO-SITE RESULTS

We first present exact results obtained by numerical
diagonalization of Eq. (1) for a two-site system with eight
electrons defining a Hilbert space of 12C8 = 495 basis states.
We have used JH = 0.2U relevant for 4d/5d oxides [16,17].
The two-site system exhibits three different magnetic states as
a function of λ and U as shown in Fig. 1(b): (i) a nonmagnetic
state (J = 0) in the large λ limit, (ii) a ferromagnet with
J = 2 for small λ and moderate U , and (iii) a ferromagnet
with J = 1 at large values of U and small λ. Here J refers to
the total moment in the ground state of the two-site system.
While J �= 0 is a good diagnostic for magnetic states even on a
lattice, the integer values in Fig. 1(b) are specific to the two-site
system. Strictly at λ = 0 all J states become degenerate and
the states should be labeled in terms of spin (S) and orbital (L)
moments.

The two-site results are most reliable in the Mott limit
with large U/t where charges are spatially localized and
the single-particle excitation gap is set by U . In this limit,
the atomic picture is expected to give a good description of
local properties. For d4 Mott insulators, the atomic picture
would predict decoupled nonmagnetic ions at every site [see
Fig. 1(a)]. Instead, we find a phase transition from a total
J = 0 state to a total J = 1 state with decreasing λ/t [see
Fig. 1(b)]. The origin of this behavior lies in a dramatic
change in the expectation value of the local moment 〈J 2

i 〉
across the magnetic phase transition as shown in Fig. 2(a). In
a conventional Mott insulator, the local moment is determined
by the large interaction scale U and any perturbation which

FIG. 2. (Color online) (a) Two-site exact diagonalization result
of the full electronic Hamiltonian in Eq. (1) showing magnetic phase
transition as a function of λ in the Mott limit (U/t = 20 and JH =
0.2U ). The total J moment changes from J = 1 to J = 0 at λc/t ≈
0.33. The local moment Ji shows a discontinuous jump at the phase
transition, while the local Si and Li moments do not change. (b)
The low-energy magnetic Hamiltonian in Eq. (6) accurately captures
the phase transition from J = 0 to J = 1 with decreasing λ at the
two-site level.

is small compared to U does not affect the local moment. In
the case of d4 Mott insulators, U fixes the local Si = 1 and
Li = 1 moments which are robust as shown in Fig. 2(a). The
total moment Ji , on the other hand, is determined by λ which
is a small parameter. As we will show later, superexchange
interaction competes with λ and gives rise to the magnetic
phase transition.

Away from the large-U limit, the two-site calculation is
less reliable. However, we can easily understand the limiting
cases. The J = 0 state at large λ and small U corresponds to
a band insulator with a completely filled J = 3/2 manifold. It
is smoothly connected to the J = 0 Mott insulator at larger U ,
consistent with recent Gutzwiller and dynamical mean-field
theory calculations [18]. The postperovskite material NaIrO3

and perovskites BaOsO3 and CaOsO3 are believed to be in
such a state [18,19]. In the limit of small λ and moderate U ,
the J = 2 ferromagnet is essentially the Stoner ferromagnet
seen in SrRuO3 [20].

IV. ROLE OF HUND’S COUPLING

The sign of the superexchange interaction in d4 Mott
insulators is greatly affected by Hund’s coupling JH . Starting
with an antiferromagnetic (AFM) superexchange for JH = 0,
in agreement with Ref. [12], we show from the exact diago-
nalization of a two-site problem, there is a phase transition
to a ferromagnetic (FM) superexchange [see Fig. 3(d)].
Specifically, for realistic parameters of U ≈ 20t [11] and
JH ≈ 0.2U [16,17] relevant for 4d oxides, the superexchange
is firmly in the ferromagnetic regime.

To gain insight into the exact result in Fig. 3(d), we have also
done a simplified perturbative calculation using the FM and
AFM states as shown in Figs. 3(a)–3(c). With JH = xU the
energy gained by the FM state is �EFM = − 2t2

U
1

1−3x
and by

the AFM state is �EAFM = − 2t2

U
( 1

3(1−3x) + 7
6 + 1

2(1+2x) ) (see
details in Appendix A). For x = 0.2 our perturbative analysis
also gives rise to a ferromagnetic superexchange.
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FIG. 3. (Color online) Superexchange pathways: (a) ferromagnetic; (b) and (c) antiferromagnetic. Hund’s coupling favors the ferromagnetic
pathway. (d) Exact diagonalization result of the electronic Hamiltonian in Eq. (1) with anisotropic hopping relevant for t2g orbitals showing the
sign of superexchange interaction as a function of t/U and JH /U . Dashed line indicates U = 20t [11].

V. RXS CROSS SECTION

We now make predictions for RXS cross sections, which
can be used to characterize the ferromagnetic insulator. For
Mott insulators, RXS matrix elements are usually calculated
in the free ion approximation [6,21]. However, to include
nonlocal effects, which we show is crucial for understanding
the d4 ferromagnetic Mott insulator, we need to generalize the
expression for RXS amplitude as follows (see Appendix C):

�f (ω) ∝ Tr

[
ρ

∑
n

(e′ · D)†|ψn〉〈ψn|e · D
En − E0 − �ω − i�n

]
, (5)

where ρ is the reduced density matrix at the scattering site,
and the trace is over atomic states in the d4 configuration. Here
e (e′) is the incoming (outgoing) polarization, D is the dipole
operator, |ψn〉 is an excited state (in the d5 configuration) with
energy En, and E0 is the ground-state energy. �n is the inverse
lifetime of the excited state |ψn〉.

FIG. 4. (Color online) (a) Schematic of resonant x-ray elastic
scattering (RXS) from momentum k to k′ with scattering angle θ .
(b),(c) Magnetic RXS cross section for L2 and L3 edges respectively
at θ = π/2. For d4 Mott insulators, the scattering cross section is
identically zero in the paramagnetic insulator (PMI) at large λ/t

and undergoes a discontinuous jump at a critical λ/t to a nonzero
value in the ferromagnetic insulator (FMI). In sharp contrast, d5

Mott insulators with half filled J = 1/2 manifold show no change
with λ/t .

The L2 and L3 edges corresponds to excitations from 2p1/2

and 2p3/2 levels respectively to the intermediate d5 states as
shown in Fig. 4(a). We ignore the SOC induced energy splitting
among the d5 states as it is much smaller than the inverse
lifetime �n, and consider resonant enhancement coming from
all intermediate states.

The magnetic (σ − π ) scattering cross sections at scattering
angle θ = π/2 for d4 Mott insulators at the L2 and L3

edges are shown in Figs. 4(b) and 4(c) respectively as a
function of λ/t . The RXS matrix elements are calculated
using the eigenstates of the two-site system in order to
include the effects of superexchange. For comparison we
have also included the results for d5 Mott insulators, in
which case atomic calculations suffice. As seen clearly from
Figs. 4(b) and 4(c), the resonant enhancement in scattering
for d4 Mott insulators changes with λ/t . This indicates the
dependence of local physics on the competition between λ

and JFM ∼ O(t2/U ). In the nonmagnetic state, λ dominates
local physics. Only the lowest energy Ji = 0 state contributes
to ρ and magnetic RXS cross section is identically zero. With
decreasing λ/t , the system becomes ferromagnetic and the
higher energy local Ji = 1 state also contributes significantly
to ρ, resulting in nonzero magnetic scattering which depends
on λ/t . In sharp contrast, the cross sections for the d5 case
are independent of λ/t and only the L3 edge is resonantly
enhanced. Note that an antiferromagnet in the absence of
canting will not give rise to magnetic RXS scattering because
the large x-ray spot size averages over local moments to give
a zero net moment. Our RXS result can easily distinguish
between the novel ferromagnetic insulator presented here and
the antiferromagnetic insulator proposed in Ref. [12].

VI. MAGNETIC HAMILTONIAN AND
GINZBURG-LANDAU THEORY

Building on the intuition from the two-site results, we now
extend our analysis to a lattice. Using perturbation theory, we
derive the following magnetic Hamiltonian (see Appendix B):

H̃ =−JFM

2

∑
〈ij〉

Si · SjP(Li + Lj = 1) + λ

2

∑
i

Li · Si , (6)

which includes SOC and superexchange mediated by only the
lowest-lying virtual state. Here Si = 1 and Li = 1 are local
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S and L moments at site i, and JFM = 4t2/(U − 3JH ) sets
the ferromagnetic superexchange scale. In order to maximize
energy gain from virtual hops, each bond is projected by
P(Li + Lj = 1) on to the total L = 1 space. P(Li + Lj = 1)
also generates orbital entanglement which is unusual in the
ferromagnetic state. The factor of 1/2 in the SOC term comes
from rewriting the SOC Hamiltonian in the L − S coupling
scheme relevant for the d4 configuration. The competition
between JFM and λ is clear in Eq. (6): the first term likes
each bond to have S = 2 and L = 1, while the second term
prefers each site to have Ji = 0. As shown in Fig. 2(b), the
effective Hamiltonian in Eq. (6) accurately reproduces the
phase transition at the two-site level from a total J = 0 to a
J = 1 state as a function of λ/JFM .

On a lattice, the magnetic phase transition is best described
in terms of bosonic operators s

†
i which creates a singlet at site

i and T
†
i,(0,±) which creates a triplet carrying J z

i = 0, ± 1 at
site i [22,23]. We ignore the Ji = 2 states as they are much
higher in energy. By calculating the matrix elements of S and
L operators in the singlet-triplet space, we get

Sα
i = −

√
2

3
(T †

iαsi + s
†
i Tiα) − i

2
εαβγ T

†
iβTiγ ,

Lα
i =

√
2

3
(T †

iαsi + s
†
i Tiα) − i

2
εαβγ T

†
iβTiγ , (7)

where α,β,γ = x,y or z, T †
iz = T

†
i0, T †

ix = −(T †
i1 − T

†
i−1)/

√
2,

and T
†
iy = i(T †

i1 + T
†
i−1)/

√
2. Substituting these expressions

into Eq. (6), we obtain the Hamiltonian in terms of bosonic
operators. Within the saddle-point approximation, the non-
magnetic ground state which consists of singlets at every site
is described by a condensate of singlets with a gap to triplet
excitation. With increasing JFM , the gap is reduced. The phase
transition to the ferromagnetic state, described by a condensate
of triplets, is signaled by the closing of the gap. Close to the
phase transition, we assume 〈si〉 ≈ 1 and 〈Tiα〉 = φiα � 1 and
the effective Ginzburg-Landau functional with terms up to
second order in φiα is given by

L = λ

2

∑
iα

[φ∗
iα φiα]

[
1 0

0 1

] [
φiα

φ∗
iα

]

− ηJFM

∑
〈ij〉,α

[φ∗
iα φiα]

[
1 a

a 1

] [
φjα

φ∗
jα

]
, (8)

where η and a are parameters of O(1) which depend
on details of the model. This can be solved easily by
a Bogoliubov transformation which gives a gap function
�k =

√
[λ/2 − ηJFMf (k)]2 − [aηJFMf (k)]2 where f (k) =∑

δ cos(k · δ) and δ is the nearest-neighbor position. The gap
closes at k = 0 (indicating the ferromagnetic phase) when
λc/JFM = 2zη(1 + |a|) or λc ∼ zO(t2/U ) where z is the
coordination number.

VII. MATERIALS

We propose candidate materials from the double perovskite
family (A2BB ′O6, A is an alkaline earth, B, B ′ are two
different transition metal ions, ordered in a 3D checkerboard

pattern) which can be tuned across the magnetic transition by
chemical substitution and/or pressure. If we choose the B sites
to have completely filled shells, and B ′ to be an active magnetic
4d/5d element, then the bandwidth is suppressed and SOC
competes with JF M in the Mott insulating state. Of particular
interest to us is La2ZnRuO6 which is an insulator with Ru in d4

configuration. Two different samples grown by two different
groups have shown different magnetic states; one group found
a ferromagnetic state with Tc ≈ 165 K [24], while the other
found a nonmagnetic state [25] indicating that La2ZnRuO6

is close to the phase boundary so that small differences in
the lattice parameter could produce this discrepancy. Another
closely related material La2MgRuO6 [24] is also a promising
candidate. An RXS study under pressure will be an ideal
experiment to observe the phase transition.

VIII. CONCLUSION

In conclusion, coming from 3d oxides, the standard
paradigm for Mott insulators is the following: (a) Local
moments, determined by the large interaction scale U , are
robust. (b) Atomic physics gives a good description of local
properties. A naive extension to the 4d/5d oxides ions with
four electrons in the t2g orbitals and with spin orbit coupling
predicts nonmagnetic J = 0 singlets. Here we find a major
departure from the standard paradigm for the d4 case: (1)
Local moments are no longer robust. Weak tunneling of
electrons between atoms generates a local moment, and
therefore, atomic physics is no longer adequate to describe the
local properties. (2) The local moments once formed interact
by the superexchange mechanism (JFM ) which depends
crucially on Hund’s coupling JH . Hund’s coupling favors
ferromagnetic superexchange and for the 4d/5d oxides with
typical JH/U ≈ 0.2 we predict a novel orbitally entangled
ferromagnetic Mott insulator with distinct signatures in RXS
scattering. Recent dynamical mean-field theory [26] and
exact [27] results emphasized the role of Hund’s coupling
in electronic and magnetic properties, and our work adds
another prime example of how Hund’s coupling, which is
often relegated to a secondary role compared to U , can be
the driving force for novel magnetic states. While we have
focused mostly on the physics at large U and λ, the phase
diagram in Fig. 1(b) is extremely rich, allowing for a broader
exploration of magnetic and metal-insulator phase transitions.
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APPENDIX A: ROLE OF HUND’S COUPLING
IN SUPEREXCHANGE INTERACTION

Here we present the details of the simplied perturbative
analysis discussed in the main text to determine the nature
of superexchange interaction in d4 Mott insulators. We use
simple classical FM and AFM states shown in Figs. 3(a)–3(c)
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of main text to get a clear intuitive picture of the role of Hund’s
coupling in favoring FM superexchange over AFM. A more
accurate perturbative calculation would use quantum S = 2
(FM) and S = 0 (AFM) states that have entanglement in spin
and/or orbital space. For instance, one needs a superposition
of states with total L = 1. We do not pursue this elaborate
approach here since our only goal is to gain insight into the
exact results of Fig. 3(d). We also ignore spin-orbit coupling
(SOC) in this analysis, which is later added back in the effective
magnetic Hamiltonian within an L − S coupling scheme.

In the atomic limit, the Hamiltonian for the t2g orbitals is

H0 =
∑

i

H at
i , (A1)

Hat
i = (U − 3JH )

2
N̂i(N̂i − 1) + 5

2
JH N̂i

−2JH Ŝ2
i − 1

2
JH L̂2

i , (A2)

where N̂i , Ŝi , and L̂i are the number of electrons, total
spin moment, and total orbital moment operators at site i

respectively. They are all good quantum numbers in the atomic
limit. We have ignored the chemical potential because we will
fix the filling at d4, for which the chemical potential term is
just a constant.

To analyze the superexchange interaction, we consider a
two-site system. The ground state in the atomic limit is in
the d4-d4 configuration with Li = 1 and Si = 1. Its energy is
calculated easily using Eq. (A1),

E0 = 12U − 26JH . (A3)

The hopping term acts as a perturbation to H0 and is given by

Hhop = −t
∑
α,σ

(c†1ασ c2ασ + H.c.). (A4)

The ground state gains energy via virtual hops and
to determine the nature of the superexchange interaction
generated by such virtual hops we calculate the energy
gained by both ferromagnetic and antiferromagnetic states.
Figure 3(a) of the main text shows the ferromagnetic pathway.
The intermediate state in d3-d5 configuration has S1 = 3/2,
L1 = 0, S2 = 1/2, and L2 = 1. Then using Eq. (A1), the energy
of the intermediate state is EFM

1 = 13U − 29JH . Then the
energy gained by the ferromagnetic state including a factor of
2 coming from identical hopping in the reverse direction is

�EFM = − 2t2

U − 3JH

. (A5)

For an antiferromagnetic configuration, there are multiple
exchange pathways as shown in Figs. 3(b) and 3(c) of the main
text. The intermediate state shown in Fig. 3(b) of the main text
has S2 = 1/2 and L2 = 1, whereas the configuration on site 1
has the following composition:

1√
3
|S1 = 3/2,L1 = 0〉 +

√
2

3
|S1 = 1/2,L1 = 2〉. (A6)

The energy gained by the antiferromagnetic state from this
pathway is

�EAF
1 = −1

3

t2

U − 3JH

− 2

3

t2

U
. (A7)

Similarly, the intermediate state in the other antiferromag-
netic exchange pathway shown in Fig. 3(c) of the main text
has S2 = 1/2, L2 = 1 and the configuration on site 1 has the
following composition:

1√
2
|S1 = 1/2,L1 = 2〉 + 1√

2
|S1 = 1/2,L1 = 1〉. (A8)

The energy gained from this pathway is

�EAF
2 = −1

2

t2

U
− 1

2

t2

U + 2JH

. (A9)

Therefore, the total energy gained by the antiferromagnetic
state including a factor of 2 coming from identical hopping in
the reverse direction is

�EAF = −2

3

t2

U − 3JH

− 14

6

t2

U
− t2

U + 2JH

. (A10)

It is clear from Eqs. (A5) and Eq. (A10) that JH favors
ferromagnetic superexchange. With increasing JH/U the
superexchange will change from being antiferromagnetic to
a ferromagnetic superexchange when �EFM = �EAF or
JH /U ≈ 0.19. For a more accurate estimate of this ratio,
we present in Fig. 3(d) of the main text exact numerical
results from a two-site calculation which shows the sign of
superexchange as a function of U/t and JH/U . Using properly
constructed ferromagnetic S = 2 and antiferromagnetic S = 0
states and including all intermediate states shows that the
superexchange becomes ferromagnetic for JH/U ≈ 0.1 for
a realistic estimate of U/t ≈ 20. In 4d materials, we have
JH /U ≈ 0.2 [16,17] which places them firmly in the ferro-
magnetic regime. Ignoring Hund’s coupling can erroneously
lead to antiferromagnetic superexchange.

APPENDIX B: MAGNETIC HAMILTONIAN

In this section, we present a detailed derivation of the spin-
orbital Hamiltonian in Eq. (6) of the main text. In the atomic
limit with no SOC, the d4 Mott insulator has Li = 1 and
Si = 1 at each site. For two sites, the ground state with d4-d4

configuration is a direct product state,

|�GS〉 = |S1 = 1〉 ⊗ |L1 = 1〉 ⊗ |S2 = 1〉 ⊗ |L2 = 1〉, (B1)

which can give rise to total L= 2, 1, or 0 and total S = 2, 1,
or 0, all of which are degenerate with energy E0 [see Eq. (A3)].
From second-order perturbation theory, the magnetic exchange
term that captures the correction to the atomic ground state
energy has the form

H̃ ′ = Hhop

[∑
nα

|ψnα〉〈ψnα|
E0 − En

]
Hhop, (B2)

where Hhop is the kinetic energy described in Eq. (A4) and
|ψnα〉 is the intermediate exited atomic state with d3-d5

configuration and energy En. α indicates any degeneracy of
the intermediate states.
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Let us now examine the excited states. The ground state
for d3 has Li = 0 and Si = 3/2 while d5 has Li = 1 and
Si = 1/2 in its ground state. So, the lowest-lying excited state
with energy E1 = 13U − 29JH , which we will call |ψ1α〉, can
have a total L = 1 and a total S = 2 or 1. Since |ψ1α〉 provides
the dominant term in Eq. (B2), we will only keep |ψ1α〉 and
ignore higher energy intermediate states.

The form of Hhop in Eq. (A4) is invariant under rotations in
both spin and orbital space. It, therefore, commutes with total
L̂2 and total Ŝ2 operators and only connects states with the
same total L and total S. |ψ1α〉 has L = 1, and consequently
the energy gain from the exchange term is maximized if |�GS〉
is in the L = 1 state. Similarly, only the S = 2 and S = 1
components of |�GS〉 gains energy via virtual excitations to
|ψ1α〉. The magnetic Hamiltonian in Eq. (B2) can be written
in terms of spin and orbital projection operators as

H̃ ′ ≈ −J2|S = 2〉|L = 1〉〈L = 1|〈S = 2|
− J1|S = 1〉|L = 1〉〈L = 1|〈S = 1|, (B3)

where

Ji =
∑

α

|〈ψ1α|Hhop|�GS(L = 1,S = i)〉|2
|E0 − E1| . (B4)

After a rather long but straightforward algebra, we can show
that

J2 = 4t2

U − 3JH

, J1 = 4t2

3(U − 3JH )
. (B5)

Therefore, magnetic Hamiltonian in Eq. (B3) can be written
as

H̃ ≈ −JFMS1 · S2P(L1 + L2 = 1), (B6)

where JFM = 4t2/(U − 3JH ) and P is the same as |L = 1〉
〈L = 1| which projects the total L of the two sites to L = 1,
and it has the form

P(L1 + L2 = 1) = (1 − L1 · L2)(2 + L1 · L2)

2
. (B7)

We can add to Eq. (B6) the spin-orbit coupling term and
generalize to a lattice in order to obtain the desired spin-orbital
Hamiltonian

H̃ = −JFM

2

∑
〈ij〉

Si · SjP(Li + Lj = 1) + λ

2

∑
i

Li · Si .

(B8)

APPENDIX C: RESONANT X-RAY SCATTERING

In this section, we describe the general theory of resonant
x-ray scattering (RXS) that we have used to calculate the
results shown in Fig. 4 of the main text. The starting point
is the scattering amplitude. Within second-order perturbation
theory and the dipole approximation, the resonant scattering
amplitude has the following form [21]:

�f (ω) ∝
∑

n

〈�GS(�e′ · �D)†|ψn〉〈ψn|�e · �D|�GS〉
En − EG − �ω − i�n

, (C1)

where |�GS〉 is the ground state with energy EG and |ψn〉 is
an excited state with energy En. �n corresponds to the inverse

lifetime of the particular excited state |ψn〉 and �e (�e′) is the
polarization of the incoming (outgoing) x-ray photon.

It is convenient to write the dipole operator �D in second
quantized form to facilitate calculation of the matrix elements
in the numerator of Eq. (C1). For the L2(3) edge, absorbing a
photon promotes a core 2p electron to the valence d shell,

�e · �D ≈ �e · �̂r =
∑
αβσ

�e · 〈dα|�̂r|pβ〉d†
ασ pβσ + H.c., (C2)

where the 〈dα|�̂r|pβ〉 ≡ Rαβ are easily determined by symmetry
and tabulated

R ∝

⎛
⎜⎜⎝

|px〉 |py〉 |pz〉
〈dyz| 0 ẑ ŷ

〈dzx | ẑ 0 x̂

〈dxy | ŷ x̂ 0

⎞
⎟⎟⎠ . (C3)

The proportionality constant depends on fine details of the
atomic states, but symmetry dictates that it should be the same
for all combinations of p and d orbitals. Hence it is an overall
constant which we hereafter ignore.

Free ion approximation: A common practice in calculating
RXS matrix elements is to approximate the scattering site as
a free ion [6,21]. This usually gives a good description for
Mott insulators where the scattering amplitude is primarily
determined by local properties. The effect of the lattice comes
only through the geometrical structure factor. Within the free
ion approximation, the ground state in Eq. (C1) is replaced by
the atomic ground state and the excited states are replaced by
atomic excited states.

Nonlocal effects: When interaction between different sites
have a significant effect on local properties, as in the case of the
d4 ferromagnetic Mott insulator, the free ion approximation
breaks down. Substituting the ground state in Eq. (C1) by
the atomic ground state is no longer a good approximation.
However, it turns out that the excited states can still be
substituted by the atomic exited states because the core
hole generates an additional binding energy for the excited
electron [21,28].

To include the nonlocal effects correctly, we need to write
the ground state as a direct product of states defined only on
the scattering site |ψn〉 and states defined on the rest of the
lattice |φn〉,

|�GS〉 =
∑
pq

apq |ψp〉|φq〉. (C4)

Substituting this into Eq. (C1), the matrix element in the
numerator becomes

〈�GS |(�e′ · �D)†|ψn〉〈ψn|�e · �D|�GS〉
=

∑
pqrs

a∗
rsapq〈ψr |(�e′ · �D)†|ψn〉〈ψn|�e · �D|ψp〉〈φs |φq〉

=
∑
pr

ρpr〈ψr |(�e′ · �D)†|ψn〉〈ψn|�e · �D|ψp〉

= Tr[ρ(�e′ · �D)†|ψn〉〈ψn|�e · �D], (C5)

where ρpr = ∑
q a∗

rqapq is the reduced density matrix at the
scattering site. Finally, we get the desired expression for the
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resonant scattering amplitude with nonlocal effects included
correctly,

�f (ω) ∝ Tr

[
ρ

∑
n

(e′ · D)†|ψn〉〈ψn|e · D
En − EG − �ω − i�n

]
. (C6)

The influence of the lattice on the scattering site through
the superexchange interaction is crucial in understanding the
ferromagnetic d4 Mott insulator.

In Figs. 4(a) and 4(b) of the main text, we show the magnetic
(σ − π ) scattering cross section of the ferromagnetic d4 Mott
insulator. Both L2 and L3 edges are significantly enhanced.
The nonmagnetic insulator for larger λ does not exhibit any
magnetic scattering and, therefore, the (σ − π ) RXS can
be used as a diagnostic for distinguishing the two magnetic
phases. In our calculation, the intermediate states contributing
to the resonant enhancement are the J = 1/2 and J = 3/2
states in the d5 configuration. We include all the intermediate
states assuming that the energy splitting between them is much
smaller than the inverse lifetime �n of the excited states. If we
include only the lower energy J = 1/2 states, we find that
the L3 edge is completely suppressed while the L2 edge is
enhanced. This is the exact opposite of the case in iridates
where the L2 edge is completely suppressed [6].

APPENDIX D: DIFFERENT CHOICES
FOR THE HOPPING MATRIX

The Hamiltonian in Eq. (1) of the main text assumes that
the hopping matrix elements are diagonal and symmetric
in orbital space. This is a simplification because hopping
matrix elements in real materials can be strongly dependent
on orbitals and bond angles. For the case of 180◦ bond angles
relevant for our two-site analysis, only two of the three t2g

orbitals contribute to hopping [29]. It raises two important
questions: (1) Will the sign of superexchange interaction
change if we use a more realistic model? (2) Does our simple
model capture the low-energy physics properly? We address
both of these issues here.

Superexchange. We have repeated the exact diagonalization
calculations for the two-site system with realistic hopping

FIG. 5. (Color online) Evolution of lowest-lying energy levels of
two-site system as a function of λ: (a) realistic model with only two
t2g orbitals contributing to hopping; (b) simple model with hopping
diagonal and symmetric in orbital space. Energy levels are obtained
by exact diagonalization. We used U = 20t and JH = 0.2U . E0 is
the energy of ground state at λ = 0 in each case. Note that kinks in
the evolution of energy levels are just level crossings with the higher
energy state removed for clarity.

terms—only two t2g orbitals contributing to hopping. In the
absence of spin-orbit coupling (λ = 0) the ground state has
S = 2 which proves beyond doubt that the superexchange is
always ferromagnetic.

Low energy physics. Figures 5(a) and 5(b) show the
evolution of the lowest-lying eigenvalues as a function
of λ for the two-site system with realistic and simplified
Hamiltonians respectively. The ground state in the realistic
case is nondegenerate, however it is clear that the relevant
low-energy levels consist of three nearly degenerate states and
a nondegenerate state which cross at around λ = 0.12t . At a
qualitative level, a very similar evolution of energy levels is
realized in the simplified model. The only difference is that
the three nearly degenerate levels become exactly degenerate
for hopping which is diagonal and symmetric in orbital space.
This simplification is reasonable because the energy splitting
of the nearly degenerate levels is smaller than any other energy
scale of the problem. Since the goal of our paper is to illustrate
the existence of a new ferromagnetic state, we have chosen to
work with the simpler model.
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